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ABSTRACT: A chiral NHC-catalyzed benzoin condensation reaction in water was developed, thereby 

affording α-hydroxy ketones in good to high yields and high enantioselectivities. Water was proposed 

as a proton shuttle in the aqueous asymmetric condensation reaction. 

In nature, the largest number of biochemical reactions are enzymatic catalytic ones, which are 

complex, highly efficient and highly selective reactions occurring in aqueous conditions. One of the 

most well-known biotransformations is the nucleophilic acylation reaction catalyzed by transketolase 

enzyme1 in the presence of coenzyme thiamine (vitamin B1).2 Until 1943, Ugai proposed that the 

coenzyme thiamine was actually a natural thiazolium salt used as a catalyst in the acylation reaction, 

the so-called benzoin reaction.
3
 To organic chemists, one of the important research aims is to develop 

synthetic reactions that mimic enzymatic processes such as this enzymatic system.4 Consequently, 

significant developments in the last decade have been made in enabling organic reactions in aqueous 

media with the application of chiral organocatalysts, such as aldol condensations, Michael reactions 

and Mannich reactions.
5
 Aqueous reactions have various advantages for instance: reduced pollution, 

lower cost and simpler processing compared to reactions carried out in organic solvents. Furthermore, 
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water is widespread and extremely attractive as a renewable green medium for organic synthesis. 

N-Heterocyclic carbenes (NHCs), with their special electronic characteristics, not only serve as 

excellent ligands in organometallic catalysis,6 but also act as organocatalysts.7 Over the past decade, 

NHCs have received significant interest in organocatalyzed reactions due to their special electronic 

characteristics.
8 

Making use of intriguing organocatalytic activation of NHC for new bond-formation 

opens up a new avenue for the synthesis of target molecules. For example, the traditional a
1
-d

1
 

umpolung (benzoin condensation and Stetter reaction)
9
 and a

3
-d

3 
umpolung (homoenolate 

cycloaddition10) approaches have been well-documented. We have disclosed a series of chiral 

NHC-catalyzed reactions
11

 and our ongoing interest on this topic prompted us to go back to investigate 

the well-known, direct and useful benzoin condensation reaction in water with a chiral environment. 

Many reports on carrying out NHC-catalyzed reactions have been prepared, due to their ability to 

produce acyl anion equivalents.
12

 The benzoin condensation catalyzed by NHCs has been intensively 

investigated. Since the first asymmetric benzoin condensation reactions reported by Sheehan and 

Hunneman,
13

 there have been further reports on this topic.
14

 Furthermore, benzoin condensation 

reactions have been carried out in aqueous media.
15

 However, to the best of our knowledge, 

NHC-catalyzed asymmetric benzoin condensation reactions in water have never been investigated or 

successfully achieved. Herein, we report a NHC-catalyzed asymmetric benzoin condensation reaction 

catalyzed by a pentafluorophenyl substituted triazolium salt in water to afford α-hydroxy ketones in 

good to high yields and high enantioselectivities. 

To investigate this chiral benzoin condensation reaction, we first surveyed the simple substrate 

benzaldehyde (1a) in the presence of different catalysts and bases with water as the solvent. The 

screening of different chiral triazolium catalysts was carried out and the results are summarized in 
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Table 1. When catalyst A (with Mes), with K2CO3 as base in water was used, the reaction could 

proceed smoothly and afforded the desired product α-hydroxycarbonyl, albeit with moderate yield 

(65%) and low enantioselectivity (55:45 er) (entry 1). When a catalyst with a strong electron 

withdrawing group (4-CF3) or a strong electron donating group (4-MeO) on a phenyl ring was used, 

only a trace amount of the desired product was obtained. To our delight, when catalyst D was used, a 

significantly better result was obtained (80% yield, 90:10 er, Table 1, entry 4). Subsequent screening of 

catalyst indicated that catalyst E was the best catalyst, which led to the desired product in higher yield 

and enantioselectivity (entry 6). The screening of different bases revealed that organic bases were 

deemed to be unsuitable for the reaction as they led to only a trace amount of the desired product. This 

is likely because of the very low solubility of the organic bases in water. Accordingly, Na2CO3 was 

found to be the best base. When DCM was employed as the solvent, the yield decreased dramatically to 

40%. Furthermore, a mixed solvent of water and DCM in a 1:3 or 3:1 ratio led to only a trace amount 

of the desired product (Table 1, entries 17 and 18), while brine promoted the reaction and afforded a 

higher yield of 85% (entry 15) and no change in the enantioselectivity was observed. 

Table 1. Optimization of Reaction Conditions
a
 

 

 

entry cat. base solvent 
reaction 

time (h) 

yieldb 

(%) 
erc 

1 A K2CO3 H2O 8 65 55:45 
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2 B K2CO3 H2O 24 trace n.d. 

3 C K2CO3 H2O 24 trace n.d. 

4 D K2CO3 H2O 8 80 90:10 

5 E K2CO3 H2O 8 65 92:8 

6 E Na2CO3 H2O 8 75 93:7 

7 E CS2CO3 H2O 7 50 92:8 

8 E Et3N H2O 24 trace n.d. 

9 E DIPEA H2O 24 trace n.d. 

10 E AcONa H2O 9 63 93:7 

11 E AcOK H2O 
9 61 92:8 

12 E KOH H2O 10 52 90:10 

13 E NaOH H2O 10 46 91:9 

14 E K3PO4 H2O 10 64 89:11 

15 E Na2CO3 Brine 7 85 93:7 

16 E Na2CO3 DCM 24 40 91:9 

17 E Na2CO3 DCM/H2O 

(1:3) 
24 

trace n.d. 

18 E Na2CO3 DCM/H2O 

(3:1) 
24 

trace n.d. 

a Unless otherwise specified, the reaction was performed by using 0.2 mmol aldehyde in water (2.0 mL) at rt, and the racemic 

version was catalyzed by cat. F. b Yields of isolated products. c er values determined by HPLC analysis on Chiralcel column (see 

the Experimental Section).  

With the optimal reaction conditions established, we evaluated the substrate scope (Table 2) of this 

NHC-catalyzed asymmetric benzoin condensation reaction in water. The reaction proceeded smoothly 

for a broad spectrum of substituted benzaldehydes to afford the desired products in good yields and 

high enantioselectivities. Both electron-donating and electron-withdrawing substituents on the phenyl 

group were tolerated. The reaction proceeded smoothly for substituted benzaldehydes bearing 

electron-withdrawing group on phenyl ring (2b, 2c and 2e). Similarly, electron-donating substituents 

were also tolerated, with 4-methyl and 4-ethyl substituted benzaldehydes giving the highest 

enantioselectivities (94:6 er) with good yields (2f and 2h). When a substrate with a bulkier group was 
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used, the desired product was provided with a lower enantioselectivity and lower yield (2k). The 

position of the substituent on phenyl ring seemed to have little influence on the reaction outcomes (2c, 

2d, 2f and 2g). Replacing the phenyl group with a heteroaryl, such as furan-2-yl, thiophene-2-yl, did 

Table 2. Substrate Scope of the Asymmetric Condensation Reaction in Water
 

10 mol% cat. E

Na2CO3 (0.5 eqiuv)

H2O (2.0 mL)

H

O O

OH

1 2

2 R

R

R

 

O

OH

O

OH

O

OH
F

F

Cl

Cl

O

OH
Br

Br O

OH

O

OH

O

OH

O

OH

O

OH

O

OH

Cl

Cl

O
O

HO

OS
O

HO

S
S

O

HO

S

O

OH

2a, 75% yield, 93:7 er 2b, 28% yield, 90:10 er 2c, 78% yield, 89:11 er

2e, 80% yield, 90:10 er 2f, 71% yield, 94:6 er

2h, 64% yield, 94:6 er 2i, 80% yield, 91:9 er

2j, 56% yield, 84:16 er 2k, 59% yield, 80:20 er

2d, 77% yield, 85:15 er

2g, 79% yield, 93:7 er

2l, 52% yield, 90:10 er 2m, 55% yield, 90:10 er 2n, 57% yield, 84:16 er
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not change the reaction result in terms of yields and enantioselectivities (2m and 2n). A thiophene-3-yl 

heteroaryl was also well tolerated, giving the yield and enantioselectivity (2l) similar to those of 

thiophene-2-yl aldehyde (2m). The absolute configuration of the benzoin condensation products was 

confirmed to be S (with exception of 2m for R) by comparison with the optical rotation data reported in 

the literature.
17 

Figure 1. Proposed Mechanism and Water Was Proposed as a Proton Shuttle 

 

To understand the asymmetric benzoin condensation reaction in aqueous conditions, we proposed a 

mechanism (Figure 1). In which, the addition of NHC to benzaldehyde (1a) provides a zwitterion of 

triazolium salt adduct I. The proton transfer from carbon to oxygen leads to the formation of an 

enol-type Breslow intermediate II. The Breslow intermediate II is actually an acylation reagent, which 

reacts with another benzaldehyde 1a to provide an intermediate III. Water was deemed to be a proton 

shuttle in a 1,4-H shift process by simultaneously providing one proton to the oxygen and obtaining 

another from the hydroxyl group to give an intermediate IV. This is followed by the regeneration of the 

NHC catalyst and elimination of the benzoin product 2a. As such, when dichloromethane was 
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employed as a solvent, a low yield of 40% was obtained in contrast to a higher yield of 75% when the 

reaction was carried out in water. Furthermore, when brine was selected as the solvent, the reaction 

could be accelerated slightly in 85% yield, thereby indicating the presence of a hydrophobic effect.16  

In conclusion, an asymmetric benzoin condensation reaction of benzaldehydes in water has been 

developed. This transformation provides rapid access to optically enriched α-hydroxy carbonyl 

products that are found common in bioactive compounds. Water was proposed as a proton shuttle in the 

aqueous asymmetric condensation reaction. 

Experimental SectionExperimental SectionExperimental SectionExperimental Section    

1
H and 

13
C NMR spectra were measured at 500 and 125 MHz, respectively. The solvent used for 

NMR spectroscopy was CDCl3, using tetramethylsilane as the internal reference. HRMS (Quadrupole, 

ESI, m/z) was determined by an HRMS/MS instrument. Analytical grade solvents for the column 

chromatography were used after distillation, and commercially available reagents were used as 

received. 

To a 10 mL vial was added 2.0 mL water, aldehyde (21.2 mg, 0.20 mmol, 1.0 equiv), cat. E (9.3 mg, 

0.02 mmol, 10 mol%) and Na2CO3 (10.5 mg, 0.10 mmol, 0.5 equiv). Then the resulting solution was 

stirred under at room temperature, until complete disappearance of the starting material monitored by 

TLC. The reaction mixture was concentrated under reduced pressure and the residue was subjected to 

column chromatography using EtOAc/PE = 1:15 as eluent to afford the desired product 2. 

(S)-2-hydroxy-1,2-diphenylethan-1-one (2a).
17a

 White solid, 75% yield (15.9 mg), reaction time 8 h. 

1
H NMR (500 MHz, CDCl3) δ 7.91 (dd, J = 8.4, 1.3 Hz, 2H), 7.54 – 7.49 (m, 1H), 7.39 (t, J = 7.8 Hz, 

2H), 7.35 – 7.29 (m, 4H), 7.29 – 7.26 (m, 1H), 5.95 (d, J = 6.1 Hz, 1H), 4.55 (d, J = 6.1 Hz, 1H). 
13

C 

NMR (125 MHz, CDCl3) δ 199.3, 139.3, 134.6, 133.8, 129.5, 129.5, 129.0, 128.9, 128.1, 76.6. HRMS 
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m/z calculated for C14H11O2 [M-H]
-
: 211.0765, found: 211.0758. HPLC: Chiralcel OD 

(n-hexane/i-PrOH, 90/10, flow rate 0.7 mL/min, λ= 254 nm), tR (major) = 18.2 min, tR (minor) = 13.3 

min; 93:7 er, [α]D
25 = +94.5 (c = 0.50, CHCl3); lit

17a: > 99.5:0.5 er, [α]D
22 = +123.3 (c = 1.51, MeOH) 

for (S)-2a. Melting point: 116 - 117 °C. 

(S)-1,2-bis(4-fluorophenyl)-2-hydroxyethan-1-one (2b).
17b

 White solid, 28% yield (6.5 mg), reaction 

time 19 h. 
1
H NMR (500 MHz, CDCl3) δ 7.99 – 7.81 (m, 2H), 7.35 – 7.26 (m, 2H), 7.14 – 6.94 (m, 4H), 

5.90 (s, 1H), 4.51 (s, 1H). 
13

C NMR (125 MHz, CDCl3) δ 197.5, 15.8 (d, J = 422.1 Hz), 163.8 (d, J = 

413.3 Hz), 135.2 (d, J = 2.5 Hz), 133.1 (d, J = 3.8 Hz), 132.2 (d, J = 8.8 Hz), 130.0 (d, J = 2.5 Hz), 

129.9 (d, J = 8.8 Hz), 116.52 (d, J = 42.84 Hz), 116.5, 75.7. HRMS m/z calculated for C14H9F2O2 

[M-H]
-
: 247.0576, found: 247.0579. HPLC: Chiralcel IC (n-hexane/i-PrOH, 90/10, flow rate 1 mL/min, 

λ= 254 nm), tR (major) = 9.4 min, tR (minor) = 7.9 min; 90:10 er, [α]D
25

 = +56.8 (c = 0.50, CHCl3); 

lit
17b

: 92:8 er, [α]D
26

 = +98.3 (c = 0.6, CHCl3) for (S)-2b. Melting point: 78 - 79 °C. 

(S)-1,2-bis(4-chlorophenyl)-2-hydroxyethan-1-one (2c).
 17b

 White solid, 78% yield (21.9 mg), 

reaction time 6 h. 
1
H NMR (500 MHz, CDCl3) δ 7.85 – 7.79 (m, 2H), 7.42 – 7.35 (m, 2H), 7.33 – 7.28 

(m, 2H), 7.26 – 7.23 (m, 2H), 5.88 (d, J = 5.9 Hz, 1H), 4.48 (d, J = 5.9 Hz, 1H). 
13

C NMR (125 MHz, 

CDCl3) δ 197.8, 141.1, 137.5, 135.1, 131.9, 130.8, 129.8, 129.6, 129.4, 75.8. HRMS m/z calculated for 

C14H9Cl2O2 [M-H]
-
:
 
278.9985, found: 278.9991. HPLC: Chiralcel IC (n-hexane/i-PrOH, 90/10, flow 

rate 1.0 mL/min, λ= 254 nm), tR (major) = 9.2 min, tR (minor) = 7.6 min; 89:11 er. [α]D
25 = +44.0 (c = 

0.50, CHCl3); lit
17b

: 87:13 er [α]D
25

 = +34.3 (c = 0.28, MeOH) for (S)-2c. Melting point: 84 - 85 °C. 

(S)-1,2-bis(3-chlorophenyl)-2-hydroxyethan-1-one (2d).
 17a

 White solid, 77% yield (21.6 mg), 

reaction time 6 h. 
1
H NMR (500 MHz, CDCl3) δ 7.90 (t, J = 1.9 Hz, 1H), 7.74 (dt, J = 7.8, 1.4 Hz, 1H), 

7.52 (ddd, J = 8.0, 2.2, 1.0 Hz, 1H), 7.36 (t, J = 7.9 Hz, 1H), 7.32 (q, J = 1.4 Hz, 1H), 7.28 – 7.26 (m, 
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2H), 7.20 (dq, J = 5.3, 1.7 Hz, 1H), 5.88 (d, J = 6.0 Hz, 1H), 4.45 (d, J = 6.1 Hz, 1H). 
13

C NMR (125 

MHz, CDCl3) δ 197.7, 140.6, 135.6, 135.5, 135.1, 134.5, 130.9, 130.5, 129.4, 129.4, 128.2, 127.5, 

126.2, 76.0. HRMS m/z calculated for C14H9Cl2O2 [M-H]-: 278.9985, found: 278.9988. HPLC: 

Chiralcel IC (n-hexane/i-PrOH, 95/5, flow rate 1.0 mL/min, λ= 254 nm), tR (major) = 15.4 min, tR 

(minor) = 12.7 min; 85:15 er, [α]D
25

 = +29.8 (c = 0.50, CHCl3); lit
17a

:
 
93:7 er, [α]D

25 
= +93.4 (c = 1.82, 

CHCl3) for (S)-2d. Melting point: 78 - 79 °C. 

(S)-1,2-bis(4-bromophenyl)-2-hydroxyethan-1-one (2e).
17b

 White solid, 80% yield (29.4 mg), 

reaction time 6 h. 1H NMR (500 MHz, CDCl3) δ 7.79 – 7.69 (m, 2H), 7.59 – 7.51 (m, 2H), 7.49 – 7.42 

(m, 2H), 7.21 – 7.14 (m, 2H), 5.85 (s, 1H), 4.47 (s, 1H). 
13

C NMR (125 MHz, CDCl3) δ 198.0, 138.0, 

132.8, 132.6, 132.3, 130.8, 129.9, 129.7, 123.3, 75.9. HRMS m/z calculated for C14H9Br2O2 [M-H]
-
: 

366.8975, found: 366.8977. HPLC: Chiralcel IC (n-hexane/i-PrOH, 90/10, flow rate 1.0 mL/min, λ= 

254 nm), tR (major) =9.9 min, tR (minor) = 8.1 min; 90:10 er, [α]D
25

 = +31.64 (c = 0.50, CHCl3); lit
17b

: 

93:7 er, [α]D
25 = +14.2 (c = 0.50, CHCl3) for (S)-2e. Melting point: 93 - 94 °C. 

(S)-2-hydroxy-1,2-di-p-tolylethan-1-one (2f).
17b

 White solid, 71% yield (17.1 mg), reaction time 10 h. 

1
H NMR (500 MHz, CDCl3) δ 7.81 (d, J = 8.3 Hz, 2H), 7.19 (dd, J = 14.7, 8.0 Hz, 4H), 7.11 (d, J = 7.8 

Hz, 2H), 5.89 (d, J = 6.1 Hz, 1H), 4.53 (d, J = 6.1 Hz, 1H), 2.35 (s, 3H), 2.28 (s, 3H). 
13

C NMR (125 

MHz, CDCl3) δ 198.9, 145.2, 138.7, 136.7, 131.3, 130.1, 129.7, 129.6, 128.0, 76.1, 22.1, 21.5. HRMS 

m/z calculated for C16H15O2 [M-H]-: 239.1078, found: 239.1070. HPLC: Chiralcel IC (n-hexane/i-PrOH, 

90/10, flow rate 1.0 mL/min, λ= 254 nm), tR(major) = 20.6 min, tR (minor) = 16.8 min; 94:6 er, [α]D
25

 = 

+31.6 (c = 0.5, CHCl3); lit
17b

: 95.5:4.5 er, [α]D
25

 = +81.0 (c = 0.3, CHCl3) for (S)-2f. Melting point: 85 - 

86 °C. 

(S)-2-hydroxy-1,2-di-m-tolylethan-1-one (2g).
17a 

White solid, 79% yield (19.0 mg), reaction time 10 
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h. 
1
H NMR (500 MHz, CDCl3) δ 7.76 (s, 1H), 7.69 (d, J = 7.9 Hz, 1H), 7.32 (d, J = 7.6 Hz, 1H), 7.28 – 

7.24 (m, 1H), 7.20 (t, J = 7.8 Hz, 1H), 7.13 (d, J = 6.7 Hz, 2H), 7.07 (d, J = 7.5 Hz, 1H), 5.90 (d, J = 

6.1 Hz, 1H), 4.52 (d, J = 6.1 Hz, 1H), 2.35 (s, 3H), 2.30 (s, 3H). 13C NMR (125 MHz, CDCl3) δ 199.5, 

139.3, 139.2, 138.9, 135.0, 133.8, 129.9, 129.7, 129.3, 128.8, 128.6, 126.8, 125.3, 76.5, 21.7, 21.7. 

HRMS m/z calculated for C16H15O2 [M-H]
-
: 239.1078, found: 239.1089. HPLC: Chiralcel IC 

(n-hexane/i-PrOH, 90/10, flow rate 1.0 mL/min, λ= 254 nm), tR (major) = 16.3 min, tR (minor) = 13.9 

min; 93:7 er, [α]D
25

 = +70.4 (c = 0.50, CHCl3); lit
17a

: 98:2 er, [α]D
22

 = +95.6 (c = 1.03, MeOH) for 

(S)-2g. Melting point: 73 - 74 °C. 

(S)-1,2-bis(4-ethylphenyl)-2-hydroxyethan-1-one (2h). White solid, 64% yield (17.2 mg), reaction 

time 10 h.
 1

H NMR (500 MHz, CDCl3) δ 7.85 (d, J = 8.3 Hz, 2H), 7.23 (dd, J = 16.0, 8.1 Hz, 4H), 7.15 

(d, J = 8.0 Hz, 2H), 5.90 (d, J = 6.2 Hz, 1H), 4.53 (d, J = 6.2 Hz, 1H), 2.65 (q, J = 7.6 Hz, 2H), 2.59 (q, 

J = 7.6 Hz, 2H), 1.23 – 1.16 (m, 6H). 
13

C NMR (125 MHz, CDCl3) δ 198.9, 151.3, 144.6, 136.9, 131.5, 

129.8, 129.0, 128.5, 128.0, 76.2, 29.3, 28.9, 15.7, 15.3. HRMS m/z calculated for  C18H19O2 [M-H]-: 

267.1391, found: 267.1381. HPLC: Chiralcel IC (n-hexane/i-PrOH, 90/10, flow rate 1.0 mL/min, λ= 

254 nm), tR (major) = 19.9 min, tR (minor) = 16.9 min; 94:6 er, [α]D
25

 = +68.9 (c = 0.50, CHCl3); lit
17a

: 

97:3 er, [α]D
22 = +58.8 (c = 1.47, MeOH) for (S)-2h. Melting point: 88 - 89 °C. 

(S)-2-hydroxy-1,2-bis(4-isopropylphenyl)ethan-1-one (2i).
17c

 White solid, 80% yield (23.7 mg), 

reaction time 12 h. 1H NMR (500 MHz, CDCl3) δ 7.91 – 7.81 (m, 2H), 7.27 – 7.23 (m, 4H), 7.18 (d, J 

= 8.2 Hz, 2H), 5.90 (d, J = 6.2 Hz, 1H), 4.52 (d, J = 6.2 Hz, 1H), 2.87 (dh, J = 27.7, 6.9 Hz, 2H), 1.24 – 

1.16 (m, 12H). 
13

C NMR (125 MHz, CDCl3) δ 198.8, 155.9, 149.6, 137.0, 131.6, 129.8, 128.0, 127.6, 

127.2, 76.1, 34.6, 34.1, 24.2, 24.2, 23.9, 23.8. HRMS m/z calculated for C20H23O2 [M-H]
-
: 295.1693, 

found: 295.1706. HPLC: Chiralcel IC (n-hexane/i-PrOH, 95/5, flow rate 1.0 mL/min, λ= 254 nm), tR 
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(major) = 25.6 min, tR (minor) = 20.8 min; 91:9 er, [α]D
25

 = +20.2 (c = 0.50, CHCl3). Melting point: 91 

- 92 °C. 

(S)-2-hydroxy-1,2-bis(4-isobutylphenyl)ethan-1-one (2j). White solid, 56% yield (18.2 mg), reaction 

time 12 h. 
1
H NMR (500 MHz, CDCl3) δ 7.87 – 7.78 (m, 2H), 7.26 – 7.22 (m, 2H), 7.18 – 7.13 (m, 2H), 

7.11 – 7.06 (m, 2H), 5.89 (d, J = 6.1 Hz, 1H), 4.54 (d, J = 6.2 Hz, 1H), 2.47 (d, J = 7.2 Hz, 2H), 2.41 (d, 

J = 7.2 Hz, 2H), 1.76 – 1.89 (m, 2H), 0.86 (dd, J = 8.4, 6.6 Hz, 12H). 
13

C NMR (125 MHz, CDCl3) δ 

198.9, 148.9, 142.5, 136.9, 131.6, 130.2, 129.7, 129.5, 127.9, 76.2, 45.8, 45.4, 30.5, 30.3, 22.7, 22.7. 

HRMS m/z calculated for C22H27O2 [M-H]-: 323.2017, found: 323.2034. HPLC: Chiralcel IC 

(n-hexane/i-PrOH, 95/5, flow rate 1.0 mL/min, λ= 254 nm), tR (major) = 14.1 min, tR (minor) = 11.7 

min; 84:16 er. [α]D
25

 = +29.8 (c = 0.50, CHCl3). Melting point: 94 - 95 °C. 

(S)-1,2-bis(4-(tert-butyl)phenyl)-2-hydroxyethan-1-one (2k).
17a

 White solid, 59% yield (19.1 mg), 

reaction time 12 h. 
1
H NMR (500 MHz, CDCl3) δ 7.89 (d, J = 8.6 Hz, 2H), 7.42 (d, J = 8.6 Hz, 2H), 

7.34 (d, J = 8.4 Hz, 2H), 7.27 (d, J = 8.5 Hz, 2H), 5.91 (d, J = 5.0 Hz, 1H), 4.51 (d, J = 6.2 Hz, 1H), 

1.29 (s, 9H), 1.27 (s, 9H). 
13

C NMR (125 MHz, CDCl3) δ 198.7, 158.1, 151.8, 136.6, 131.2, 129.6, 

127.7, 126.4, 126.0, 76.0, 35.6, 34.9, 31.6, 31.3. HRMS m/z calculated forC22H27O2 [M-H]
-
: 323.2017, 

found: 323.2043. HPLC: Chiralcel IC (n-hexane/i-PrOH, 95/5, flow rate 1.0 mL/min, λ= 254 nm), tR 

(major) = 15.2 min, tR (minor) = 12.2 min; 80:20 er, [α]D
25

 = +45.6 (c = 0.50, CHCl3); lit
17a

: 98:2 er, 

[α]D
25 = +54.8 (c = 2.37, CHCl3) for (S)-2k. Melting point: 111 - 112 °C. 

(S)-2-hydroxy-1,2-di(thiophen-3-yl)ethan-1-one (2l).
17d

 White solid, 52% yield (11.6 mg) , reaction 

time 14 h. 
1
H NMR (500 MHz, CDCl3) δ 8.05 (dd, J = 3.0, 1.3 Hz, 1H), 7.52 (dd, J = 5.2, 1.3 Hz, 1H), 

7.33 (dd, J = 3.0, 1.3 Hz, 1H), 7.29 (ddd, J = 5.1, 2.9, 0.9 Hz, 2H), 7.00 (dd, J = 5.0, 1.4 Hz, 1H), 5.84 

(d, J = 6.0 Hz, 1H), 4.34 (d, J = 6.0 Hz, 1H). 
13

C NMR (125 MHz, CDCl3) δ 191.4, 138.9, 136.9, 133.2, 
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126.2, 126.1, 125.6, 125.2, 123.2, 71.4. HRMS m/z calculated for C10H7O2S2 [M-H]
-
: 222.9893, found: 

222.9894. HPLC: Chiralcel IC (n-hexane/i-PrOH, 90/10, flow rate 1.0 mL/min, λ= 254 nm), tR (major) 

= 21.5 min, tR (minor) = 16.9 min; 90:10 er. [α]D
25 = +67.84 (c = 0.50, CHCl3); lit

17d: > 99.5:0.5 er, 

[α]D
25

 = -103.96 (c = 0.005, CHCl3) for (R)-2l. Melting point: 103 - 104 °C. 

(R)-2-hydroxy-1,2-di(thiophen-2-yl)ethan-1-one (2m).
17e

 White solid, 55% yield (12.3 mg), reaction 

time 14 h. 
1
H NMR (500 MHz, CDCl3) δ 7.75 (dd, J = 3.9, 1.1 Hz, 1H), 7.70 (dd, J = 4.9, 1.1 Hz, 1H), 

7.30 (dd, J = 5.1, 1.2 Hz, 1H), 7.13 – 7.06 (m, 2H), 6.97 (dd, J = 5.1, 3.5 Hz, 1H), 6.03 (d, J = 6.4 Hz, 

1H), 4.35 (d, J = 6.5 Hz, 1H). 13C NMR (125 MHz, CDCl3) δ 190.3, 142.4, 139.6, 135.7, 134.6, 128.7, 

127.6, 127.3, 127.2, 72.0. HRMS m/z calculated for C10H7O2S2 [M-H]
-
:
 
222.9893, found: 222.9911. 

HPLC: Chiralcel IC (n-hexane/i-PrOH, 90/10, flow rate 1.0 mL/min, λ= 254 nm), tR (major) = 22.2 

min, tR (minor) = 19.7 min; 90:10 er, [α]D
25 = +22.8 (c = 0.50, CHCl3); lit

17e: 97.5:2.5 er for (S)-2m, 

[α]D
25 

= -380 (c = 0.1, CHCl3). Melting point: 114 - 115 °C. 

(S)-1,2-di(furan-2-yl)-2-hydroxyethan-1-one (2n).
17d

 White solid, 57% yield (11.0 mg), reaction time 

12 h. 
1
H NMR (500 MHz, CDCl3) δ 7.65 – 7.58 (m, 1H), 7.37 (dd, J = 1.9, 0.9 Hz, 1H), 7.25 (d, J = 3.9 

Hz, 1H), 6.54 (dd, J = 3.7, 1.7 Hz, 1H), 6.40 (d, J = 3.3 Hz, 1H), 6.35 (dd, J = 3.3, 1.8 Hz, 1H), 5.80 (s, 

1H), 4.18 (s, 1H). 
13

C NMR (125 MHz, CDCl3) δ 184.7, 151.6, 150.0, 148.1, 143.5, 120.5, 113.0, 111.1, 

109.5, 69.6. HRMS m/z calculated for
 
C10H7O4 [M-H]

-
: 191.0350; found: 191.0347. HPLC: Chiralcel 

IA (n-hexane/i-PrOH, 90/10, flow rate 1.0 mL/min, λ= 254 nm), tR (major) = 16.6 min, tR (minor) = 

20.1 min; 84:16 er, [α]D
25

 = +38.7 (c = 0.5, CHCl3); lit
17d

: 98.5:1.5 er, [α]D
25

 = -110.8 (c = 0.0066, 

CHCl3) for R-2n. Melting point: 99 - 100 °C. 

ASSOCIATED CONTENT 

Supporting Information 

Page 12 of 19

ACS Paragon Plus Environment

The Journal of Organic Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



13 
 

The Supporting Information is available free of charge on the ACS Publications website. 

Copies of 
1
H NMR, 

13
C NMR and HPLC spectra for all the products (2a-2n) (PDF). 
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