2012 Vol. 14, No. 3 728–731

Ruthenium-Catalyzed Oxidative C—H Alkenylations of Anilides and Benzamides in Water

Lutz Ackermann.* Lianhui Wang, Ratnakancana Wolfram, and Alexander V. Lygin

Institut für Organische und Biomolekulare Chemie, Georg-August-Universität, Tammannstrasse 2, 37077 Göttingen, Germany

Lutz.Ackermann@chemie.uni-goettingen.de

Received December 6, 2011

ABSTRACT

$$R^{1} \stackrel{FG}{=} H + H \stackrel{R^{2}}{\longrightarrow} \frac{cat. [RuCl_{2}(\rho\text{-cymene})]_{2}}{cat. KPF_{6}} \\ Cu(OAc)_{2} H_{2}O, H_{2}O$$

$$FG = N(H)C(O)R^{3}$$

$$R^{1} \stackrel{H}{\longrightarrow} R^{2}$$

$$R^{3} \stackrel{R^{3}}{\longrightarrow} R^{2}$$

$$R^{1} \stackrel{H}{\longrightarrow} R^{2}$$

A cationic ruthenium(II) complex enabled efficient oxidative alkenylations of anilides in water as a green solvent and proved applicable to double C—H bond functionalizations of (hetero)aromatic amides with ample scope. Detailed studies provided strong support for a change of ruthenation mechanism in the two transformations, with an irreversible metalation as the key step in cross-dehydrogenative alkenylations of benzamides.

Direct oxidative alkenylations of (hetero)arenes *via* two-fold C–H bond cleavages are highly attractive tools for atom- and step-economical organic syntheses, because they avoid the preparation and use of prefunctionalized starting materials. Based on early reports by Fujiwara and Moritani^{2,3} a wealth of palladium- and rhodium-catalyzed oxidative alkenylations were developed. Conversely, less

expensive ruthenium complexes were as of yet underutilized for cross-dehydrogenative alkenylations of (hetero)arenes, with notable exceptions being accomplished only very recently. ^{5,6} Despite this significant recent progress, ruthenium-catalyzed direct oxidative alkenylations continue to be limited to (hetero)arenes bearing electron-withdrawing directing groups. ^{5,6} Given the importance of anilines as key intermediates for the preparation of bioactive

⁽¹⁾ Selected recent reviews on metal-catalyzed C—H bond functionalizations: (a) Cho, S. H.; Kim, J. Y.; Kwak, J.; Chang, S. Chem. Soc. Rev. 2011, 40, 5068–5083. (b) Yeung, C. S.; Dong, V. M. Chem. Rev. 2011, 111, 1215–1292. (c) Willis, M. C. Chem. Rev. 2010, 110, 725–748. (d) Ackermann, L.; Potukuchi, H. K. Org. Biomol. Chem. 2010, 8, 4503–4513. (e) Yoo, W.-J.; Li, C.-J. Top. Curr. Chem. 2010, 292, 281–302. (f) Daugulis, O. Top. Curr. Chem. 2010, 292, 57–84. (g) Colby, D. A.; Bergman, R. G.; Ellman, J. A. Chem. Rev. 2010, 110, 624–655. (h) Fagnou, K. Top. Curr. Chem. 2010, 292, 35–56. (i) Giri, R.; Shi, B.-F.; Engle, K. M.; Maugel, N.; Yu, J.-Q. Chem. Soc. Rev. 2009, 38, 3242–3272. (j) Ackermann, L.; Vicente, R.; Kapdi, A. Angew. Chem., Int. Ed. 2009, 48, 9792–9826. (k) Thansandote, P.; Lautens, M. Chem.—Eur. J. 2009, 15, 5874–5883 and references cited therein.

⁽²⁾ Moritani, I.; Fujiwara, Y. *Tetrahedron Lett.* **1967**, *8*, 1119–1122.

⁽³⁾ For early studies on rhodium-catalyzed oxidative alkenylations, see: (a) Matsumoto, T.; Yoshida, H. *Chem. Lett.* **2000**, *29*, 1064–1065. (b) Matsumoto, T.; Periana, R. A.; Taube, D. J.; Yoshida, H. *J. Catal.* **2002**, *206*, 272–280

⁽⁴⁾ Selected reviews: [Pd]: (a) Jia, C.; Kitamura, T.; Fujiwara, Y. Acc. Chem. Res. **2001**, *34*, 633–639. (b) Wasa, M.; Engle, K. M.; Yu, J.-Q. Isr. J. Chem. **2010**, *50*, 605–616. [Rh]: (c) Satoh, T.; Miura, M. Chem.—Eur. J. **2010**, *16*, 11212–11222.

^{(5) (}a) Ackermann, L.; Pospech, J. *Org. Lett.* **2011**, *13*, 4153–4155. For oxidative annulations from our laboratories, see: (b) Ackermann, L.; Lygin, A. V.; Hofmann, N. *Angew. Chem., Int. Ed.* **2011**, *50*, 6379–6382. (c) Ackermann, L.; Lygin, A. V.; Hofmann, N. *Org. Lett.* **2011**, *13*, 3278–3281. (d) Ackermann, L.; Fenner, S. *Org. Lett.* **2011**, *13*, 6548. (e) Ackermann, L.; Wang, L.; Lygin, A. V. *Chem. Sci.* **2012**, *3*, 177–180. See also: (f) Ackermann, L.; Novák, P.; Vicente, R.; Pirovano, V.; Potukuchi, H. K. *Synthesis* **2010**, 2245–2253.

^{(6) (}a) Hashimoto, Y.; Ueyama, T.; Fukutani, T.; Hirano, K.; Satoh, T.; Miura, M. Chem. Lett. 2011, 40, 1165–1166. (b) Arockiam, P. B.; Fischmeister, C.; Bruneau, C.; Dixneuf, P. H. Green Chem. 2011, 13, 3075–3078. (c) Padala, K.; Jeganmohan, M. Org. Lett. 2011, 13, 6144–6147. (d) Ueyama, T.; Mochida, S.; Fukutani, T.; Hirano, K.; Satoh, T.; Miura, M. Org. Lett. 2011, 13, 706–708. (e) Kwon, K.-H.; Lee, D. W.; Yi, C. S. Organometallics 2010, 29, 5748–5750. (f) Weissman, H.; Song, X.; Milstein, D. J. Am. Chem. Soc. 2001, 123, 337–338. For illustrative examples of ruthenium-catalyzed C—H bond alkylations, see: (g) Murai, S.; Kakiuchi, F.; Sekine, S.; Tanaka, Y.; Kamatani, A.; Sonoda, M.; Chatani, N. Nature 1993, 366, 529–531. (h) Ackermann, L.; Novák, P.; Vicente, R.; Hofmann, N. Angew. Chem., Int. Ed. 2009, 48, 6045–6048. (i) Ackermann, L.; Novák, P. Org. Lett. 2009, 11, 4966–4969. (j) Lee, D.-H.; Kwon, K.-H.; Yi, C. S. Science 2011, 333, 1613–1616.

compounds and functional materials,⁷ we hence set out to develop the first ruthenium-catalyzed cross-dehydrogenative alkenylations of anilines, on which we wish to report herein. Notably, the most efficient catalysis was achieved with a cationic^{6c,e} ruthenium(II) complex in water^{8,9} as a green solvent, which allowed for efficient cross-dehydrogenative alkenylations of benzamides¹⁰ as well.

Table 1. Optimization of Alkenylation with Acetanilide 1a^a

entry	oxidant	additive (mol %)	yield
1	$Cu(OAc)_2 \cdot H_2O$	KPF ₆ (10)	$-^{b}$
2	$Cu(OAc)_2 \cdot H_2O$	_	$2\%^c$
3	$Cu(OAc)_2 \cdot H_2O$	$AgSbF_{6}(10)$	54%
4	$Cu(OAc)_2 \cdot H_2O$	KPF_6 (10)	87%
5	$Cu(OAc)_2 \cdot H_2O$	$KPF_{6}(5.0)$	80%
6	$Cu(OAc)_2 \cdot H_2O$	$KPF_{6}(10)$	$77\%^d$
7	$Cu(OAc)_2 \cdot H_2O$	$KPF_{6}(10)$	$54\%^e$
8	$Cu(OAc)_2 \cdot H_2O$	$KPF_{6}(10)$	$48\%^{c,d,f}$
	(10 mol %)		
9	Ag_2CO_3	$KPF_{6}(10)$	_
10	AgOAc	$\mathrm{KPF}_6\left(10\right)$	$40\%^c$

 a Reaction conditions: **1a** (0.50 mmol), **2a** (0.75 mmol), [RuCl₂(p-cymene)]₂ (2.5 mol %), additive (10 mol %), oxidant (0.5 mmol), H₂O (2.0 mL), 120 °C, 20 h, under N₂, isolated yields. b Without [RuCl₂(p-cymene)]₂. c GC conversion. d 100 °C. e t -AmOH (2.0 mL). f Under air.

At the outset of our studies, we optimized reaction conditions for the oxidative alkenylation of acetanilide **1a** with alkene **2a** (Table 1). In the absence of an additive, only trace amounts of the desired product **3aa** were formed (entries 1 and 2). Yet, high catalytic efficiency was ensured by a complex generated *in situ* from [RuCl₂(*p*-cymene)]₂ and cocatalytic amounts of KPF₆ (entries 3–6), reaction conditions previously established for the generation of

cationic ruthenium(II) complexes.¹¹ Water proved to be the solvent of choice (entries 4 and 7), and an aerobic oxidative alkenylation with cocatalytic amounts of Cu- $(OAc)_2 \cdot H_2O$ was viable, albeit with reduced efficacy (entry 8). The use of silver(I) salts as terminal oxidants provided less satisfactory results but indicated a strong dependence of the catalyst's performance on the presence of acetates¹² (entries 9 and 10).

With an optimized catalytic system in hand, we explored its scope in the intermolecular oxidative alkenylation of anilides 1 (Scheme 1). Thus, the catalytic C–H bond functionalization in water allowed for the efficient conversion of *para*-substituted substrates 1b–d and parent anilide 1e *via* chemoselective monoalkenylations.

Scheme 1. Oxidative Alkenylations with Anilides 1

Intramolecular competition experiments with *meta*-substituted anilides 1 site selectively delivered the products 3 through alkenylation in position C-6, likely due to steric interactions (Scheme 2). Notably, this reactivity pattern was not observed when using *meta*-fluoro-substituted anilide 1i, as was previously noted for ruthenium-catalyzed C-H bond functionalization with organic electrophiles.¹³

Interestingly, intermolecular competition experiments revealed electron-rich anilides 1 to be preferentially functionalized (Scheme 3), 14 which is in good agreement with an electrophilic activation manifold.

Additionally, the cationic ruthenium(II) complex led to $\it ortho$ -selective H/D exchange on anilide $\it 1j$, when employing D₂O as the solvent (Scheme 4), thereby indicating a reversible cycloruthenation event.

However, the chemoselectivity was found to be significantly altered when using *N*-benzoyl anilines **1k** and **1l** as the substrates, solely leading to C—H bond alkenylation at the benzamide moiety (Scheme 5).

Org. Lett., Vol. 14, No. 3, **2012**

⁽⁷⁾ Ricci, A., Ed. Amino Group Chemistry; Wiley-VCH: Weinheim, 2008.

⁽⁸⁾ For recent reviews on transition-metal-catalyzed coupling reactions in or on water, see: (a) Simon, M.-O.; Li, C.-J. *Chem. Soc. Rev.* **2011**, DOI: 10.1039/C1CS15222J. (b) Li, C.-J. *Acc. Chem. Res.* **2010**, *43*, 581–590. (c) Lipshutz, B. H.; Abela, A. R.; Boskovic, Z. V.; Nishikata, T.; Duplais, C.; Krasovskiy, A. *Top. Catal.* **2010**, *53*, 985–990. (d) Butler, R. N.; Coyne, A. G. *Chem. Rev.* **2010**, *110*, 6302–6337 and references cited therein.

⁽⁹⁾ For examples of ruthenium-catalyzed C—H bond functionalizations with water: (a) Ackermann, L.; Hofmann, N.; Vicente, R. Org. Lett. 2011, 13, 1875—1877. (b) Arockiam, P. B.; Fischmeister, C.; Bruneau, C.; Dixneuf, P. H. Angew. Chem., Int. Ed. 2010, 49, 6629—6632. (c) Ackermann, L. Org. Lett. 2005, 7, 3123—3125. (d) Ackermann, L. Chem. Commun. 2010, 46, 4866—4877.

⁽¹⁰⁾ For very recent examples of oxidative alkenylations with benzamides in *organic solvents*, see refs 6a,6e.

^{(11) (}a) Bennett, M. A.; Smith, A. K. J. Chem. Soc., Dalton Trans. **1974**, 233–241. (b) Fernández, S.; Pfeffer, M.; Ritleng, V.; Sirlin, C. Organometallics **1999**, 18, 2390–2394. (c) Ackermann, L.; Vicente, R. Top. Curr. Chem. **2010**, 292, 211–229.

⁽¹²⁾ Ackermann, L. Chem. Rev. 2011, 111, 1315-1345.

^{(13) (}a) Ackermann, L.; Vicente, R.; Althammer, A. *Org. Lett.* **2008**, *10*, 2299–2302. (b) Ackermann, L.; Vicente, R.; Potukuchi, H. K.; Pirovano, V. *Org. Lett.* **2010**, *12*, 5032–5035. (c) See also ref 9a.

⁽¹⁴⁾ For detailed information see the Supporting Information.

Scheme 2. Alkenylations with Meta-Substituted Substrates 1

Scheme 3. Intermolecular Competition Experiment

Scheme 4. Ruthenium-Catalyzed H/D Exchange in D₂O

For the oxidative alkenylations of benzamides 1 the previously optimized reaction conditions (*vide supra*) were found to be superior as compared to numerous variations of the solvent (DMF, NMP, MeCN, *ortho*-xylene, *t*-AmOH), the oxidant (CuBr₂, Ag₂CO₃, AgOAc), or the cocatalytic additive (PPh₃, NH₄PF₆, NaBF₄, NH₄BF₄, NaBPh₄, BARF, NH₄OTf). ¹⁴

Importantly, the cationic ruthenium(II) complex was broadly applicable and enabled the conversion of differently substituted benzamides 1 by chemoselective monoalkenylations (Scheme 6). The site selectivity within intramolecular competition experiments with *meta*-substituted benzamides 1u-1w was largely governed by steric interactions. However, *meta*-fluoro-substituted arene 1x was functionalized at its C-2 position. *N*-Pentafluorophenyl benzamide (4) was a viable substrate as well and delivered lactams 5 and 6 *via* a

Scheme 5. Intramolecular Competition Experiment

Scheme 6. Oxidative C-H Bond Alkenylation of Benzamides

Scheme 7. Oxidative Alkenylation of Benzamide 4

reaction sequence consisting of oxidative alkenylation and intramolecular aza-Michael addition (Scheme 7).

730 Org. Lett., Vol. 14, No. 3, 2012

Scheme 8. Oxidative Alkenylation of Heteroaromatic Substrates

Further, direct C–H bond functionalization of heteroaromatic¹⁵ amides **7**, **9**, and **12a**–**c** occurred with high catalytic efficacy and excellent site selectivity (Scheme 8).

As to the catalyst's working mode, intermolecular competition experiments indicated electron-deficient benzamides 1 to be converted with higher relative reaction

Scheme 9. Direct Alkenylation with Labeled Substrate [D]₁-1m

rates.¹⁴ Mechanistic studies with isotopically labeled substrate [D]₁-1m indicated the cycloruthenation to be irreversible, with an intramolecular kinetic isotope effect¹⁶ of $k_{\rm H}/k_{\rm D} \approx 5.4$ (Scheme 9).

In summary, we have reported on the first ruthenium-catalyzed oxidative alkenylations of anilides. Detailed optimization studies revealed a cationic ruthenium(II) complex to be the catalyst of choice in water as a green solvent. The cationic catalyst also set the stage for efficient twofold C-H bond alkenylations with various benzamides. Mechanistically, the two transformations were found to display different rate-limiting steps, with an irreversible C-H bond metalation in cross-dehydrogenative alkenylations of benzamides. Further studies on ruthenium-catalyzed oxidative C-H bond functionalizations are ongoing in our laboratories and will be reported in due course.

Acknowledgment. Support by the DFG and the Chinese Scholarship Council (fellowship to L.W.) is gratefully acknowledged.

Supporting Information Available. Experimental procedures, characterization data, and ¹H and ¹³C NMR spectra for new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

Org. Lett., Vol. 14, No. 3, 2012

⁽¹⁵⁾ For ruthenium-catalyzed direct arylations of heteroarenes with aryl halides, see: Ackermann, L.; Lygin, A. V. *Org. Lett.* **2011**, *13*, 3332–3335

⁽¹⁶⁾ Gómez-Gallego, M.; Sierra, M. A. Chem. Rev. 2011, 111, 4857-4963.

The authors declare no competing financial interest.