
Chemistry & Biology

Article
Metabolically Stabilized Derivatives
of Phosphatidylinositol 4-Phosphate:
Synthesis and Applications
Ju He,1,7 Joanna Gajewiak,2,7 Jordan L. Scott,3,4,7 Denghuang Gong,5 Muzaffar Ali,1 Michael D. Best,5

Glenn D. Prestwich,2 Robert V. Stahelin,3,4,6 and Tatiana G. Kutateladze1,*
1Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
2Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT 84108, USA
3Department of Chemistry and Biochemistry
4The Walther Center for Cancer Research

University of Notre Dame, Notre Dame, IN 46556, USA
5Department of Chemistry, University of Tennessee, Knoxville, TN 37996, USA
6Department of Biochemistry and Molecular Biology, Indiana University School of Medicine-South Bend, South Bend, IN 46617, USA
7These authors contributed equally to this work

*Correspondence: tatiana.kutateladze@ucdenver.edu

DOI 10.1016/j.chembiol.2011.07.022
SUMMARY

Phosphatidylinositol 4-phosphate (PtdIns(4)P) lipid
is an essential component of eukaryotic membranes
and a marker of the Golgi complex. Here, we devel-
oped metabolically stabilized (ms) analogs of
PtdIns(4)P and the inositol 1,4-bisphosphate (IP2)
head group derivative and demonstrated that these
compounds can substitute the natural lipid fully re-
taining its physiological activities. The methylene-
phosphonate (MP) and phosphorothioate (PT)
analogs of PtdIns(4)P and the aminohexyl (AH)-IP2

probe are recognized by the PtdIns(4)P-specific
PH domain of four phosphate adaptor protein 1
(FAPP1). Binding of FAPP1 to the PtdIns(4)P deriva-
tives stimulates insertion of the PH domain into the
lipid layers and induces tubulation of membranes.
Both ms analogs and IP2 probes could be invaluable
for identifying protein effectors and characterizing
PtdIns(4)P-dependent signaling cascades within
the trans-Golgi network (TGN).
INTRODUCTION

Phosphatidylinositol 4-phosphate (PtdIns(4)P) is a monophos-

phorylated derivative of the phosphatidylinositol (PtdIns) lipid

and an essential component of eukaryotic membranes. Among

the seven phosphorylated isoforms of PtdIns, known as phos-

phoinositides (PIs), PtdIns(4)P is the most abundant and

comprises �0.05% of all phospholipids in mammalian cells

(Lemmon, 2008; Martin, 1998). It is found in highest concentra-

tions in membranes of the trans-Golgi network (TGN) and is

commonly viewed as a marker of the Golgi complex. PtdIns(4)P

is generated in the outer leaflet of the Golgi membranes via

phosphorylation of the inositol head group of PtdIns at the C4
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position by a set of PI 4-kinases, including PI4KIIa, PI4KIIb,

and PI4KIIIb (D’Angelo et al., 2008). It can be further phosphory-

lated to the bisphosphorylated isoform PtdIns(4,5)P2 through the

action of PI 5-kinases or hydrolyzed back to PtdIns by a Sac1

phosphatase. For a long time PtdIns(4)P was thought to be

merely a precursor of PtdIns(4,5)P2; however, in the last decade

numerous studies have shown that PtdIns(4)P itself functions as

a signaling molecule with its monophosphorylated head group

serving as a docking site for protein effectors.

PtdIns(4)P is recognized in the TGN by two families of effec-

tors. One family is comprised of soluble lipid-transfer proteins,

such as four phosphate adaptor protein 1 and 2 (FAPP1 and

FAPP2), oxysterol-binding protein (OSBP), and ceramide trans-

fer protein (CERT). Each of these effectors contains a PtdIns(4)

P-specific pleckstrin homology (PH) domain that binds to the

lipid head group, recruiting the host protein to the Golgi

membranes. The recent reports reveal that selective interaction

with PtdIns(4)P is required for subcellular localization, activation,

and function of the effectors (D’Angelo et al., 2008). For example

secretory transport from the Golgi to the plasma membrane is

mediated by FAPPs. The FAPP proteins regulate the formation

and fission of post-Golgi vesicles, and these activities depend

on the association of the PH domain with PtdIns(4)P (Godi

et al., 2004). Likewise, recognition of PtdIns(4)P by the adaptor

and coat complexes, which comprise another family of the

protein effectors, is essential for TGN-to-endosome trafficking

and the formation of clathrin-coated vesicles (Godi et al.,

2004). The fundamental role of PtdIns(4)P in signaling, mem-

brane trafficking, and protein sorting necessitates the develop-

ment of synthetic analogs of this lipid that can be used in

biochemical, structural, and functional assays to advance our

understanding of the biological processes occurring at the Golgi

membranes.

In this study we developed metabolically stabilized (ms) ana-

logs of PtdIns(4)P and an inositol 1,4-bisphosphate (Ins(1,4)P2

or IP2) head group derivative suitable for outfitting with a reporter

tag and demonstrated that these compounds can substitute the

natural lipid in peripheral protein recruitment and membrane
lsevier Ltd All rights reserved
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Figure 1. Synthesis of the ms PtdIns(4)P-MP, 8a
(R = C7H15) and 8b (R = C15H31), and PtdIns(4)P-

PT, 15a (R = C7H15) and 15b (R = C15H31), Analogs

of PtdIns(4)P

Top panel shows reagents and conditions: (A) CH3ONa,

CH3OH, 88%; (B) TfOCH2PO(OMe)2, BuLi, THF, 50%; (C)

TBAF$H2O, THF, 95%; (D) 6a, (R = C7H15) or 6b, (R =

C15H31), 1H-tetrazole, t-BuOOH, CH2Cl2, 88%–89%; (E)

Et3N, BSTFA, CH3CN; (F) TMSBr, CH2Cl2, 0�C-rt; (G)

CH3OH, rt; (H) DOWEX [Na+] ion exchange resin, H2O,

92%–95%.

Bottom panel illustrates reagents and conditions: (A)

TBAF$H2O, THF, 83%; (B) TESCl, imidazole, CH2Cl2,

85%; (C) DIBHAL-H, CH2Cl2, �78�C, 92%; (D) bis(2-cya-

noethyl)diisopropyl phosphoramidite, 1H-tetrazole,

CH3CN, rt, then phenylacetyl disulfide, rt, 65%; (E) NH4F,

CH3OH, rt, 85%; (F) 6a (or 6b), 1H-tetrazole, t-BuOOH,

CH2Cl2, 67%–87%; (G) Et3N, BSTFA, CH3CN; (H) TMSBr,

CH2Cl2, 0�C-rt; (I) CH3OH, rt; (J) DOWEX [Na+] ion

exchange resin, H2O, 80%–90%.
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deformation. The advantage of applying the ms analogs in

molecular and cell biology experiments is in their intrinsic ability

to resist dephosphorylation by PI 4-phosphatases. Thus, the

signaling pathway involving activity of Sac1 can be separated

from the biological processes associated with binding of protein

effectors to PtdIns(4)P. Bothms analogs and IP2 probes could be

invaluable for identifying novel protein effectors and character-

izing and monitoring PtdIns(4)P-dependent signaling events at

the TGN.

RESULTS AND DISCUSSION

TotalSynthesisof thePtdIns(4)P-Methylenephosphonate
and PtdIns(4)P-Phosphorothioate Analogs
One of the major limitations in the use of natural or synthetic PIs

for monitoring time-dependent phenomena in biochemical and

biological applications is that they undergo rapid hydrolysis by

phosphatases. To overcome this problem, we have designed

metabolically stable analogs of PtdIns(4)P that are resistant to

dephosphorylation. We replaced the 4-phosphate group in the

inositol ring of the lipid with the alkoxymethylenephosphonate
Chemistry & Biology 18, 1312–1319, October 28,
(MP) and phosphorothioate (PT) moieties, elim-

inating or reducing phosphate hydrolysis. To

prepare the PtdIns(4)P-MP and PtdIns(4)P-PT

analogs (Figure 1), we first employed the protec-

tion scheme developed by Kubiak and Bruzik

(2003). The 1-position of myo-inositol (1) was

silylated with the tert-butyldiphenylsilyl (TBDPS)

group to give intermediate 2, in which the

planned 4-MP position was protected as a

benzoate (Bz) derivative, and all remaining

hydroxyl groups were protected as methoxy-

methyl (MOM)-ethers. To prepare the PtdIns(4)

P-MP analogs (Figure 1, top panel), the

Bz group was then removed to provide the

1-O-(tert-butyldiphenylsilyl)-2,3,5,6-O-tetrakis-

(methoxymethylene)-myo-inositol (3). Installa-

tion of the MP group started with the synthesis
of dimethyl phosphonomethyltriflate (Hamilton and Roberts,

1999; Phillion and Andrew, 1986), which was coupled with

compound 3 using n-BuLi (Minutolo et al., 2004). The TBDPS

group was removed by treating intermediate 4 with Bu4NF$H2O,

and compound 5 was produced in high yield (95%). Prior to the

coupling step, two 2-cyanoethyl phosphoramidites 6a and 6b

were prepared from 1,2-O-isopropylidene-sn-glycerol in five

steps. Then, in the presence of 1H-tetrazole, alcohol 5 was

coupled with the phosphoramidite (Gajewiak et al., 2006; Huang

et al., 2007), followed by themild oxidation with t-BuOOH to yield

fully protected intermediates 7a and 7b. Finally, the removal of

the cyanoethyl groups with triethylamine and bis(trimethylsilyl)

trifluoroacetamide (BSTFA) followed by removal of the MOM

and the methyl ester groups with TMSBr afforded the C8-

PtdIns(4)-MP and C16-PtdIns(4)-MP (8a and 8b, respectively).

The synthesis of the 4-PT analogs of PtdIns(4)P is shown in

the bottom panel of Figure 1. The 4-benzoyl-1-TBDPS-2,3,5,6-

tetrakis(MOM)-inositol (compound 2) was treated with TBAF to

remove the 1-TBDPS ether and replace it with the triethylsilyl

ether (TES). After debenzoylation of (10) with diisobutyl

aluminum hydride (DIBAL-H), the PT group was introduced at
2011 ª2011 Elsevier Ltd All rights reserved 1313



Figure 2. PtdIns(4)P-MP and PtdIns(4)P-PT Are Recognized by the

FAPP1 PH Domain

(A) The SDS-PAGE gel showing the partitioning of GST-fusion FAPP1 PH

between supernatant (S) and the pellet (P). SUVs contain either C16-PtdIns(4)P,

C16-PtdIns(4)P-MP, 8b or C16-PtdIns(4)P-PT, 15b.

(B) Binding affinities of the wild-type and mutant FAPP1 PH domain were

measured by SPR (a) and NMR (b).

(C and D) Representative SPR sensorgrams obtained in 10 mM HEPES (pH

7.4) containing 160 mM KCl (C) and binding isotherms (D) were used to

calculate Kd values for the interaction with PtdIns(4)P-MP, 8b and PtdIns(4)P-

PT, 15b. Because FAPP1 PH domain-PI interaction is dependent on the ion

strength of the buffer and pH (He et al., 2011), for proper comparison, binding

to the unmodified and modified lipid and IP compounds throughout the study

was investigated under similar conditions (described in detail in Experimental

Procedures).
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the 4-position through the reaction with bis(2-cyanoethoxy)-

(diisopropylamino)-phosphine in the presence of 1H-tetrazole,

followed by treating with phenylacetyl disulfide. Removal of the

TES with the weakly acidic reagent NH4F in methanol gave the

advanced intermediate 13, which was then coupled with phos-

phoramidites 6a and 6b as above to produce the protected

phospholipids 14a and 14b. Removal of the protective groups

yielded C8-PtdIns(4)-PT (15a) and C16-PtdIns(4)-PT (15b).

PtdIns(4)P-MP and PtdIns(4)P-PT Analogs Are Potent
Ligands of the FAPP1 PH Domain
To determine whether the ms analogs of PtdIns(4)P are recog-

nized by a protein effector, we tested the lipids by liposome-

binding assays using the PH domain of FAPP1 that was shown
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to bind PtdIns(4)P (Figure 2A) (Dowler et al., 2000; Godi et al.,

2004; Lenoir et al., 2010). The GST-fusion FAPP1 PH domain

was incubated with small unilamellar vesicles (SUVs) composed

of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC),

1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE),

1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoserine (POPS), and

either dipalmitoyl (C16)-PtdIns(4)P, C16-PtdIns(4)P-MP, or C16-

PtdIns(4)P-PT. Following centrifugation the distribution of the

PH domain between the supernatant and pelleted fractions was

examined. As expected, in the absence of PIs, GST-FAPP1 PH

was found primarily in the soluble fraction; however, half of the

protein associated with SUVs containing unmodified C16-

PtdIns(4)P, corroborating the findings that FAPP1 is specific for

PtdIns(4)P (Dowler et al., 2000). When C16-PtdIns(4)P-MP or

C16-PtdIns(4)P-PT lipids were incorporated in the vesicles,

almost all GST-FAPP1 PH was pelleted with SUVs, indicating

that the protein binds to the synthetic analogs stronger than it

binds to the unmodified lipid.

Binding affinities of the FAPP1 PH domain for the ms analogs

were measured by surface plasmon resonance (SPR) in 10 mM

HEPES (pH 7.4) containing 160 mM KCl (Figure 2). In these

experiments the active surface was coated with POPC/POPE/

C16-PtdIns(4)P-MP or POPC/POPE/C16-PtdIns(4)P-PT lipo-

somes, and the control surface was coated with POPC/POPE

liposomes. The FAPP1 PH domain was injected at varying

concentrations, and the equilibrium response (Req) was reached

in each reaction (Figure 2C). The Req values were subsequently

used to generate binding isotherms (Figure 2D). As summarized

in Figure 2B, the ms analogs were bound by the FAPP1 PH

domainmore strongly (Kd values = 250 and 390 nM) than unmod-

ified C16-PtdIns(4)P (Kd = 460 nM). Thus, the synthetic deriva-

tives of PtdIns(4)P can substitute the natural lipid retaining its

ability to associate with protein effectors.

The PtdIns(4)P-PT Analog Occupies the Binding Site
for the Natural Lipid
To assess if the modification of the lipid head group alters the

binding mechanism, we investigated interaction between the

FAPP1 PH domain and PtdIns(4)P-PT by NMR spectroscopy

(Figure 3). The 1H,15N heteronuclear single quantum coherence

(HSQC) spectra of uniformly 15N-labeled FAPP1 PH were

collected as a water-soluble dioctanoyl (C8) form of PtdIns(4)P-

PT was added stepwise (Figure 3A). Substantial chemical shift

changes induced in the PH domain by the analog confirmed

direct interaction. We identified the C8-PtdIns(4)P-PT-binding

site of FAPP1 PH through resonance perturbation analysis. The

largest changes were observed for the K7, W8, Q16, F20, S28,

Y29, G42-A47, C49, L63-I65, E68, Q69, and F71 residues of

the PH domain. These residues formed a contiguous patch on

the PH domain surface, outlining the pocket where C8-

PtdIns(4)P-PT is bound (Figure 3C). The recently determined

structure of this domain shows that it folds into a seven-stranded

b-barrel capped by an a helix at one edge with the opposite

edge, formed by the b4 and b7 strands and three loops, remain-

ing open (He et al., 2011; Lenoir et al., 2010). Many residues

located in the b4 and b7 strands and some residues of the b1,

b2, b3, and b6 strands were the most perturbed due to binding

to C8-PtdIns(4)P-PT, implying that the open edge of the b-barrel

comprises the binding site for the lipid analog.
lsevier Ltd All rights reserved



Figure 3. The PtdIns(4)P-PT-Binding Site of the

FAPP1 PH Domain

(A, D, and F) Superimposed 1H,15N HSQC spectra of
15N-labeled FAPP1 PH collected as C8-PtdIns(4)P-PT

(C8-PI4P-PT), 15a (A) C8-PtdIns(4)P (D), or C4-PtdIns(4)P

(F) was titrated in. The spectra are color coded according

to the concentration of the lipid.

(B and E) The histograms show normalized chemical shift

changes induced in the backbone amides of the PH

domain by C8-PtdIns(4)P-PT, 15a and C8-PtdIns(4)P.

(C) Residues that display significant chemical shift change

in (B) are labeled on the FAPP1 PH domain surface and

colored red, orange, and yellow for large, medium, and

small changes, respectively.

(G) Differences in NMR resonance perturbations in the

FAPP1 PH domain upon binding to C8-PtdIns(4)P-PT, 15a

and C8-PtdIns(4)P.

(H) Overlay of the crystal structure of the ligand-free

FAPP1 PH domain (3RCP) with that of the PtdIns(3,4,5)P3-

bound GRP1 PH domain (1FGY). For clarity, in the GRP1

complex, only PtdIns(3,4,5)P3 is shown as a stick

model and colored yellow. The 4-phosphate group of

PtdIns(3,4,5)P3 is in purple.
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We compared chemical shift changes induced in the PH

domain upon addition of the PT analog and unmodified C8-

PtdIns(4)P. Generally, similar in directions and the magnitude

resonance perturbations (Figures 3A and 3D) and comparable

binding affinities (Figure 2B) suggested that the PT group does

not compromise this interaction, and the binding mode is

conserved. In contrast, association of the FAPP1 PH domain

with a short-chain, dibutanoyl (C4)-PtdIns(4)P lipid was 9-fold
Chemistry & Biology 18, 1312–1319, October 28,
weaker, indicating that the hydrophobic con-

tacts involving the acyl chains of PtdIns(4)P

are essential (Figure 2B).

Because the PT analog contains a PT group

in place of a phosphate, we sought to identify

the binding pocket for the 4-phosphate group

in the complex. Despite numerous attempts

to cocrystallize the FAPP1 PH domain bound

to either unmodified PtdIns(4)P or the lipid

analogs, we were unable to obtain crystals of

the complex. We note that currently no single

structure of any protein bound to PtdIns(4)P is

available, and therefore, how this lipid is coordi-

nated by an effector remains unknown. A careful

comparison of patterns of the chemical shift

changes induced by the unmodified lipid and

the analog provided some details on the 4-

phosphate group position. Residues located

on the side of the b-barrel that is further away

from the long b1-b2 loop were perturbed to

a greater extent by the analog (Figures 3G and

3H). This suggests that the 4-phosphate group

is positioned in the interior of the b-barrel and

oriented away from the b1-b2 loop, in a manner

similar to that of how a trisphosphorylated PI,
PtdIns(3,4,5)P3, is bound by the PH domain of GRP1 (Ferguson

et al., 2000; Lietzke et al., 2000).

Total Synthesis of the IP2-Aminohexyl Probe
Another limitation of the use of natural and/or unmodified lipids is

the difficulty in visualizing and tracing them in biological studies.

We designed and tested a hybrid probe of the PtdIns(4)P

head group that carries an aminoalkyl chain in place of the
2011 ª2011 Elsevier Ltd All rights reserved 1315



Figure 4. Synthesis of the IP2-AH, 23 Probe

The reagents and conditions are: (K) BOMCl, DIEA, DCE, reflux, 24 hr, 57%; (L) DIBAL-H, CH2Cl2, �78�C, 1.5 hr, 91%; (M) (BnO)2PN(Ipr)2, 1H-tetrazole, CH2Cl2,

CH3CN, room temperature, 18 hr, thenm-CPBA, �60�C, 1 hr, 91%; (N)TBAF, DMF, room temperature, 12 hr, 86%; (O) 21, 1H-tetrazole, CH2Cl2, CH3CN, room

temperature, 18 hr, then m-CPBA, �60�C, 1 hr, 73%; (P) H2, Pd(OH) 2, room temperature, 3 days, 100%.
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diacylglycerol moiety of the lipid and is water soluble. This probe

canbe furthermodified through thecoupling toafluorescent, bio-

tinylated, or photoaffinity tag, which is necessary for the detec-

tion and characterization of the PtdIns(4)P-related processes.

The soluble aminohexyl (AH) IP2 probe (23) was synthesized as

shown in Figure 4 (Gong et al., 2009). To protect the 4-position,

intermediate 16 was first produced in four steps from myo-

inositol using the camphor resolution protocol (Kubiak and Bru-

zik, 2003). The other four hydroxyl groups were subsequently

protected with benzyloxymethyl (BOM) moieties to produce 17.

The benzoyl group at the 4-position was then removed to yield

18, and phosphotriester 19 was generated via phosphoramidite

chemistry. Deprotection of the silyl group at the 1-position to 20

followed by coupling with phosphoramidite reagent 21 yielded

fully protected intermediate 22, which was quantitatively depro-

tected via hydrogenolysis to produce IP2-AH (23).

The Aminoalkyl Group in IP2-AH Does Not Alter Binding
We examined whether the binding properties of Ins(1,4)P2 are

affected by the presence of the AH group in the IP2-AH probe.

We recorded 1H,15N HSQC spectra of the 15N-labeled FAPP1

PH domain while titrating IP2-AH or unmodified Ins(1,4)P2 into

the NMR sample (Figure 5). A similar pattern of chemical shift

changes upon addition of either compound demonstrated that

IP2-AH and Ins(1,4)P2 are bound in the same way. The Kd values,

measured by NMR, revealed that the FAPP1 PH domain equally

associates with IP2-AH and Ins(1,4)P2, exhibiting a 20mMaffinity

(Figure 5G). Thus, the aminoalkyl moiety of IP2-AH does not have

a significant effect on binding, and this probe can effectively

substitute for Ins(1,4)P2. The low affinity of the PH domain to

the unmodified or modified inositol head group in comparison

with the affinity to the intact PtdIns(4)P lipid indicated that a size-

able hydrophobic component is necessary for strong interaction.

We note that although the observed resonance perturbations

were generally less pronounced than those seen due to binding

to PtdIns(4)P, the binding site for an isolated head group of the

lipid remains unchanged and is positioned at the open edge of

the b-barrel (Figures 5C and 5F).
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PtdIns(4)P-MP, PtdIns(4)P-PT, and IP2-AH Retain
Activities of the Natural Lipid
The b1-b2 loop of the FAPP1 PH domain was shown to insert into

PtdIns(4)P-containing membranes and membrane-mimetics

causing deformation of the lipid layer (He et al., 2011; Lenoir

et al., 2010). To determine whether the biological activities are

preserved for the PtdIns(4)P derivatives, we tested C16-

PtdIns(4)P-MP, C16-PtdIns(4)P-PT, and IP2-AH in monolayer

penetration and membrane tubulation assays. As shown in Fig-

ure 6, the FAPP1 PH domain was unable to significantly pene-

trate a POPC/POPE (80:20) monolayer in the absence of

PtdIns(4)P (surface pressure [pc] was �24 mN/m). However,

when 5%C16-PtdIns(4)P-MP or C16-PtdIns(4)P-PT was incorpo-

rated in the lipid monolayer (or IP2-AHwas injected together with

FAPP1), the pc values increased to �33, 34, and 32 mN/m,

respectively, indicating that binding to the PtdIns(4)P derivatives

induces robust insertion of the PH domain into the monolayer.

The strong dependence of insertion on the association with the

analogs was substantiated by the fact that the R18A mutant of

FAPP1 PH that lost its ability to bind C16-PtdIns(4)P-MP and

C16-PtdIns(4)P-PT in SPR experiments (Figure 2B) was also

incapable of penetration (Figure 6). Because the incorporation

of 5% C16-PtdIns(4)P increases the pc value to 33 mN/m (He

et al., 2011), we concluded that thems analogs and the IP2 probe

do not compromise the penetrating ability of the FAPP1 effector.

We next explored if the derivatives of PtdIns(4)P stimulate

membrane tubulation (Figure 7). The POPC/POPE (80:20),

POPC/POPE/C16-PtdIns(4)P (75:20:5), POPC/POPE/C16-

PtdIns(4)P-MP (75:20:5), and POPC/POPE/C16-PtdIns(4)P-PT

(75:20:5) membrane sheets were generated and treated with

the lipophilic dye FM 2-10 to facilitate imaging using a confocal

microscope. In agreement with previous observations, injecting

FAPP1 PH to the POPC/POPE sheets did not cause detectable

changes in the bilayer morphology (data not shown). In contrast,

addition of the protein to the C16-PtdIns(4)P-, C16-PtdIns(4)P-

MP-, or C16-PtdIns(4)P-PT-containing sheets rapidly induced

tubulation of the membrane. Tubulation was also induced

by injecting the PH domain preincubated with IP2-AH. The
lsevier Ltd All rights reserved



Figure 5. The IP2-AH-Binding Site of the FAPP1 PH Domain

(A and D) Superimposed 1H,15N HSQC spectra of 15N-labeled FAPP1 PH collected during titration with IP2-AH, 23 (A) or IP2 (D). The spectra are color coded

according to the concentration of the ligand (inset).

(B and E) The histograms show normalized chemical shift changes induced in the backbone amides of the PH domain by IP2-AH, 23 (B) or IP2 (E).

(C and F) Residues that display significant chemical shift change in (B) and (E) are labeled on the FAPP1 PH domain surface and colored red, orange, and yellow

for large, medium, and small changes, respectively.

(G) Binding affinities of FAPP1 PH measured by NMR.
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deformation of all tested membrane sheets was abolished when

the R18A mutant of FAPP1 PH impaired in PtdIns(4)P binding

was used, underscoring the critical role of the PH-PtdIns(4)P

interaction for the biological activities of FAPP1.

SIGNIFICANCE

In this study we report the synthesis and biochemical and

functional characterization of derivatives of the PtdIns(4)P

lipid. We demonstrate that metabolically stabilized analogs

of PtdIns(4)P and the inositol 1,4-bisphosphate head group

retain the natural lipid binding and membrane tubulation

properties and, therefore, can replace PtdIns(4)P in bio-

logical and biochemical applications. These synthetic
Figure 6. PtdIns(4)P-MP, 8b, PtdIns(4)P-PT, 15b, and IP2-AH, 23, Induc
(A and B) Insertion of the FAPP1 PH domain into a POPC/POPE (80:20) monol

squares), and a POPC/POPE/PtdIns(4)P-PT (75:20:5) monolayer (open triangles)

(C) Insertion of FAPP1 PH, preincubated with IP2-AH, into a POPC/POPEmonolay

triangles in (A)–(C). All measurements were performed using the subphase 10 m
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PtdIns(4)P-mimicking compounds could be instrumental

for examining the cell processes occurring within the TGN

and identifying protein effectors specific for PtdIns(4)P.

Furthermore, the ms analogs are resistant to hydrolysis

and, thus, can be used as a tool to distinguish between the

signaling pathways involving activity of PI 4-phosphateses

and the cellular processes associated with binding of

protein effectors to PtdIns(4)P.
EXPERIMENTAL PROCEDURES

Synthesis of MP and PT Analogs of PtdIns(4)P

The complete experimental details for the synthesis and characterization of

PtdIns(4)P-MP 8a (R = C7H15) and 8b (R = C15H31) and PtdIns(4)P-PT 15a
e Membrane Penetration by the FAPP1 PH Domain

ayer (open circles), a POPC/POPE/PtdIns(4)P-MP (75:20:5) monolayer (open

.

er (open squares). The data on R18A FAPP1 PH are shown as filled squares and

M HEPES (pH 7.4) containing 160 mM KCl.
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Figure 7. Binding of the FAPP1 PH Domain to PtdIns(4)P-MP, 8b,
PtdIns(4)P-PT, 15b, and IP2-AH, 23, Stimulates Membrane Tubu-

lation

Membrane sheets, POPC/POPE/PtdIns(4)P (75:20:5) (A), POPC/POPE/

PtdIns(4)P-MP (75:20:5) (B), POPC/POPE/PtdIns(4)P-PT (75:20:5) (C), and

POPC/POPE (80:20) in the presence of IP2-AH (D), labeled with FM 2-10 dye

are shown before or after addition of 1 mg/ml FAPP1 PH or the R18Amutant in

10 mM HEPES (pH 7.4) containing 160 mM KCl. Images shown were taken

after 5 min incubation with the protein on a Zeiss LSM 710 confocal micro-

scope using a 633 oil objective. Scale bars, 50 mM.
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(R = C7H15) and 15b (R = C15H31) are provided in the Supplemental Experi-

mental Procedures available online.

Protein Expression and Purification

A DNA fragment encoding human FAPP1 PH (aa 1–99) was cloned into a pET-

28a vector (He et al., 2011). The unlabeled and 15N-labeled wild-type and

mutatedproteinswereexpressed inE.coliRosetta (DE3) pLysS inLBorminimal

media supplemented with 15NH4Cl. Bacteria were harvested by centrifugation

after induction with isopropyl-1-thio-b-D-galactopyranoside (IPTG) (0.1 mM)

at room temperature for 6 hr. The cells were lysed by sonication in lysis buffer

(50mMHEPES [pH7.6], 300mMNaCl,5mMb-mercaptoethanol, 10%glycerol,

and a protease inhibitor cocktail). The His-tagged proteins were purified on

a Talon resin column, and the His tag was cleaved with Thrombin. The proteins

were further purified by size exclusion chromatography on a Superdex� 75

column in either Bis-Tris orHEPES andconcentrated inMillipore concentrators.

The GST-FAPP1 PH domain was expressed in E. coli BL21(DE3) cells and

purified on a glutathione Sepharose column as described (He et al., 2011).

PCR Mutagenesis

Site-directed mutagenesis of the FAPP1 PH domain was performed using

a QuikChange Site-Directed Mutagenesis Kit (Stratagene). The sequence of

the R18A mutant was confirmed by DNA sequencing.
1318 Chemistry & Biology 18, 1312–1319, October 28, 2011 ª2011 E
Liposome-Binding Assay

The liposome-binding assays were performed as described (He et al., 2009).

Briefly, solutions of POPC, POPE, and POPS, containing either C16-PtdIns(4)P,

C16-PtdIns(4)P-MP, C16-PtdIns(4)P-PT (50:20:15:15), or no PI, were dissolved

in CHCl3:MeOH:H2O (65:25:4) and dried under vacuum. The lipids were resus-

pended in 800 ml of 20 mMMOPS, 100 mM KCl (pH 7.0), and passed 19 times

through an extruder with a 1 mm membrane. Liposomes were collected

by centrifugation at 25,000 3 g for 20 min and finally resuspended in 95 ml

of buffer by vortexing. Liposomes were incubated with 10 ml of 1.7 mg/ml

GST-FAPP1 PH domain for 1 hr at room temperature and then collected again

by centrifugation. The liposome pellets were separated from supernatant and

resuspended in 100 ml of buffer. The pelleted and supernatant fractions were

analyzed by SDS-PAGE.

SPR Measurements

The SPR experiments were carried out at 25�C in 10 mM HEPES (pH 7.4)

containing 160 mM KCl (He et al., 2008; Hom et al., 2007). POPC/POPE/

C16-PtdIns(4)P (75:20:5), POPC/POPE/C16-PtdIns(4)P-MP (75:20:5), POPC/

POPE/C16-PtdIns(4)P-PT (75:20:5), and POPC/POPE (80:20) vesicles were

spread at 5 ml/min over the active and control surfaces until 6000 resonance

unit (RU) response was achieved. Equilibrium SPR measurements were per-

formed by injecting wild-type or mutated FAPP1 PH at a flow rate of 5 ml/min

to provide sufficient time for R values of the association phase to reach

equilibrium (Req). Sensorgrams were obtained using five or more different

concentrations of the protein (within a 10-fold range of Kd values) and cor-

rected for the refractive index change by subtracting the control surface

response. The Req values were plotted versus the total protein concentration

(P0), and Kd values were determined by a nonlinear least-squares analysis of

the binding isotherms using the equation: Req = Rmax/(1 + Kd/P0). The experi-

ments were performed in triplicate for C16-PtdIns(4)P and C16-PtdIns(4)P-MP,

and in duplicate for C16-PtdIns(4)P-PT.

NMR Spectroscopy

The 1H,15N HSQC spectra of 0.1–0.2 mM 15N-labeled FAPP1 PH domain were

recorded at 25�C on a Varian INOVA 600 MHz spectrometer. Lipid and

Ins(1,4)P2 binding was characterized by monitoring chemical shift changes

in the 1H,15N HSQC spectra of the FAPP1 PH domain in 25 mM Bis-Tris,

150 mM NaCl (pH 6.5) as C4-PtdIns(4)P, C8-PtdIns(4)P, C8-PtdIns(4)P-PT,

Ins(1,4)P2, and IP2-AH were added stepwise. The normalized chemical shift

changes were calculated using the equation [(DdH)
2+(DdN/5)

2]0.5, where DdH
and DdN are 1H and 15N chemical shift changes in parts per million (ppm).

Significant changes in the resonances were judged to be greater than the

average plus 0.5, 0.8, 0.8, and 1.0 standard deviation for the titration of

C8-PtdIns(4)P-PT, C8-PtdIns(4)P, Ins(1,4)P2, and Ins(1,4)P2-AH, respectively.

Spectra were processed with NMRPipe (Delaglio et al., 1995) and analyzed

using CCPN (Vranken et al., 2005) and nmrDraw. The Kd values were calcu-

lated by a nonlinear least-squares analysis using the equation:

Dd=

Ddmax

�
ð½L�+ ½P�+KdÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð½L�+ ½P�+KdÞ2�4½P�½L�

q �

2½P�

where [L] is concentration of PtdIns(4)P or IP2, [P] is concentration of the PH

domain,Dd is the observed chemical shift change, andDdmax is the normalized

chemical shift change at saturation.

Monolayer Measurements

The insertion of FAPP1 PH into a phospholipid monolayer was investigated by

measuring the change in surface pressure (p) of the invariable surface area

upon addition of the protein (He et al., 2008; Lee et al., 2006). A lipid monolayer

containing various combinations of phospholipids was spread onto the

subphase composed of 10 mM HEPES, 160 mM KCl (pH 7.4) until the desired

initial surface pressure (p0) was reached. After stabilization of the signal

(�5min), 10 mg of FAPP1 PHwas injected into the subphase. The surface pres-

sure changeDpwas examined for 15min. To test IP2-AH,Dp of a POPC:POPE

monolayer was monitored as a mixture of FAPP1-PH preincubated for 15 min

with an equimolar amount of IP2-AH was gradually added.
lsevier Ltd All rights reserved
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Membrane Tubulation Assays

Glass coverslips (22 3 40 mm) were cleaned by sonication in 1% 73 (MP

Biomedicals). After vigorous rinses and sonication in distilled water to remove

any trace of detergent, coverslips were washed with 100% ethanol and dried

under N2. To generate membrane sheets, 1 ml lipid solution in chloroform

(10 mg/ml) was spotted on each coverslip and dried under N2 for 30 min to re-

move traces of chloroform. Lipids (POPC:POPE [80:20], POPC/POPE/C16-

PtdIns(4)P [75:20:5], POPC/POPE/C16-PtdIns(4)P-MP [75:20:5], or POPC/

POPE/C16-PtdIns(4)P-PT [75:20:5]) were prehydrated for 20–30 min in a small

chamber and then fully rehydrated by adding 20 ml of buffer (10mMHEPES [pH

7.4], 160 mM KCl, 10 mM FM 2-10). With the chamber mounted on a Zeiss

LSM710 microscope stage, 10 ml of protein solution (1 mg/ml) was injected

into the chamber. The deformation of membrane sheets into tubules was de-

tected using laser excitation at 488 nm and monitoring emission above

510 nm. To test IP2-AH, it was first preincubated for 15 min with FAPP1-PH

at an equimolar concentration, and then the mixture was injected to a POPC:

POPE membrane sheet.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures

andcanbe foundwith this articleonlineat doi:10.1016/j.chembiol.2011.07.022.
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