Contents lists available at ScienceDirect

Bioorganic & Medicinal Chemistry Letters

journal homepage: www.elsevier.com/locate/bmcl

Synthesis and SAR study of tricyclic sulfones as γ -secretase inhibitors: C-6 and C-8 positions

Jing Su^{*}, Haiqun Tang, Brian A. McKittrick, Ruo Xu, John W. Clader, William J. Greenlee, Lynn Hyde, Lili Zhang

Merck Research Laboratory, 2015 Galloping Hill Road, Kenilworth, NJ 07033, USA

ARTICLE INFO

Article history: Received 3 March 2011 Revised 23 March 2011 Accepted 24 March 2011 Available online 5 April 2011

Keywords: γ-Secretase inhibitor Tricyclic sulfones Alzheimer's disease

ABSTRACT

SAR exploration at C-6 and C-8 positions of the tricyclic sulfone series was carried out. Several functional groups were found to be well tolerated at C-6 and C-8 positions. Selective combination of C-6 and C-8 modification resulted in new tricyclic sulfone analogs with efficacy in in vivo mouse $A\beta_{40}$ lowering model.

© 2011 Elsevier Ltd. All rights reserved.

Alzheimer's disease (AD), a progressive neurodegenerative disorder, is estimated to affect more than 5 million Americans and 15 million people worldwide.¹ These figures will likely continue to rise in the future and there is an urgent need for a treatment of the disease. One hallmark of AD pathology is the presence of extracellular plaques composed of β -amyloid peptides (A β), a 38– 42 amino acid fragment generated by the sequential cleavage of amyloid precursor protein (APP) by β - and γ -secretases. The accumulation of $A\beta_{42}$, the longer form $A\beta$, is believed to lead to aggregation, plaque deposition and neurotoxicity.² In a recent paper from Merck, a series of tricyclic sulfones were discovered as potent γ -secretase inhibitors.³ A SAR study was carried out at the C-8 position in the C ring and compounds 1a and 1b (Fig. 1) were identified with excellent overall profiles. In this Letter, we wish to report the synthesis and SAR studies at both C-6 and C-8 positions of such a tricyclic core.

The synthesis of C-6 analogs is outlined in Scheme 1. The β -keto ester **3** was converted to the vinyl triflate **4** in 90% yield.^{4,5} The Suzuki coupling of **4** afforded the desired product **5** in 65–70% yield. After the conversion of this ester to the alcohol **6**, an intramolecular cyclization⁶ went smoothly to afford the desired tricyclic core **7** in 50% yield in two steps, which was then quantitatively converted to the epoxide **8** by MCPBA oxidation. Following a literature procedure,⁷ the regioselective epoxide ring opening by 4-chlorothiophenol gave rise to a 5:2 mixture of the *cis* and *trans* adducts and the desired *cis* alcohol **9** was isolated in 63% yield.⁸ After O-alkylation with ethyl bromoacetate and ester reduction, the primary alcohol was converted to the corresponding mesylate **11**. This intermediate was treated with alkyl mercaptans to afford sulfides such as **12** which could be further oxidized to sulfones such as **13** and **15**. The mesylate could also be treated with potassium thioacetate followed by hydrolysis, oxidation⁹ and amine quenching sequentially to provide the sulfonamides **17** and **18**. Alternatively, the mesylate could be easily converted to amines **19–21** or reverse sulfonamides **22** and **23** using standard conditions

The C-8 modification was carried out as shown in Scheme 2. Once the tetrasubstituted epoxide **24** was synthesized according to Scheme 1,¹⁰ the *cis* and *trans* adducts **25a/b** were separated and subsequently converted to the ketone analogs **27a/b**. Further reduction of the ketone **27a** provided diols **28** and **29**.

Compounds with both C-6 and C-8 modification were prepared according to Scheme 3. Following the same route shown in Scheme

Figure 1. Tricyclic sulfones as γ -secretase inhibitors.

^{*} Corresponding author. Tel.: +1 908 740 7489; fax: +1 908 740 7164. *E-mail address:* jing.su2@Merck.com (J. Su).

⁰⁹⁶⁰⁻⁸⁹⁴X/\$ - see front matter @ 2011 Elsevier Ltd. All rights reserved. doi:10.1016/j.bmcl.2011.03.094

1, the C-6 side chain was installed and the sulfone group was introduced. Deprotection of the ketal group provided the ketone analogs **36** and **39**, which, could be further reduced to the alcohol analogs **37** and **40**. A sulfonamide analog **41** was also synthesized using the synthetic route for compound **22** (Scheme 1). To synthesize C-8 sulfonamide analogs **43–46**, the C-8 alcohol **28** was first converted to the azide via the mesylate intermediate, followed by reduction to afford the primary amine **42**. Compound **42** was then converted to the corresponding targets **43** to **46**.

Other similar targets synthesized according to Schemes 1–3 are listed in Figure 2 except for compounds **32** and **33** which were reported earlier.³

All compounds were tested in the in vitro membrane $A\beta_{40}$ inhibition assay¹¹ and the biological data are shown in Table 1.¹² While analogs **12** and **14** with a C-6 alkyl sulfide group showed moderate activities (IC₅₀~170–180 nM, Table 1), their corresponding sulfone analogs **13**, **15** and **16** were 10- to 20-fold more active (e.g., **15** had IC₅₀ = 8 nM). The sulfonamide analogs **17** and **18** were about 5-fold less active than the sulfone analogs. Interestingly, the reversed methanesulfonamide analog **23** retained the strong inhibition (IC₅₀ = 26 nM) whereas another analog –NHTf **22** was 11-fold less active. The side chain at the C-6 position also tolerated a basic amine group. For example, the primary amine **19** had IC₅₀ = 12 nM while the secondary amine **20** and the tertiary amine **21** were 3-fold less active.

Comparison of compounds **27a** and **27b** demonstrated the importance of the relative stereochemistry at C-5 and C-6. While the *trans* isomer **27b** was completely inactive ($IC_{50} = 3000 \text{ nM}$), the *cis* isomer **27a** had a IC_{50} of 21 nM, comparable to its C-6 des hydroxy analog **32** ($IC_{50} = 13 \text{ nM}$). The IC_{50} values could be also influenced by substituents at the C-8 position: while installing a ketone group did not change the IC_{50} values (compounds **27a** and **32** vs **33**), the bulky ketal group was not tolerated at all (compounds **26a** vs **33**). The stereochemistry at the C-8 position could also make a difference: the *cis* diol **29** ($IC_{50} = 29 \text{ nM}$) retained the binding activity while the *trans* diol **28** had an IC_{50} of 363 nM, a 12-fold decrease.

The combination of the C-6 side chain and C-8 substituents did not have a synergistic effect on the $A\beta_{40}$ inhibition. For example, with an alkylsulfone group on the C-6 side chain, the presence of a ketone or hydroxyl group led to a 10-, 6-fold decrease, respectively (compounds **36/37** vs **13**, **39/40** vs **15**). The presence of – NHTf on the C-6 side chain along with the C-8 hydroxy group led to the loss of activity for **41** (>13-fold drop compared with **22**).

On the other hand, the combination of just a C-6 hydroxy group and a C-8 sulfonamide group was well tolerated. Among them, The NHTf **2** and the cyclopropylsulfonamide **45** had $IC_{50} <30$ nM. Increasing the pK_a of the sulfonamide NH resulted in higher IC_{50} values (compounds **43**, **44** vs **2**).¹³ Replacing the cyclopropylsulfonamide with cyclobutylsulfonamide led to a 7-fold decrease in

Scheme 3. Synthesis of tricyclic sulfones with C-6 and C-8 modification.

Figure 2. Other targets synthesized using the same synthetic route.

T-11- 0

Table 1Membrane $A\beta_{40}$ IC_{50} data

Compound	Ar	Х	R ¹ , R ²	R	$IC_{50}^{a}(nM)$	
12	4-ClPh	SEt			170	
13	4-ClPh	SO ₂ Et			15	
14	4-ClPh	SiPr			180	
15	4-ClPh	SO ₂ <i>i</i> Pr			8	
16	4-ClPh	SO ₂ Me			9	
17	4-ClPh	SO ₂ NHMe			37	
18	4-ClPh	SO ₂ NMe ₂			50	
19	4-ClPh	NH ₂			12	
20	4-ClPh	NHMe			40	
21	4-ClPh	NMe ₂			31	
22	4-ClPh	NHSO ₂ CF ₃			295	
23	4-ClPh	NHSO ₂ Me			26	
26a	4-ClPh				2900	
27a	4-ClPh				21	
27b	4-ClPh				3000	
28	4-ClPh				363	
29	4-ClPh				28	
30	4-CF ₃ Ph				53	
31	4-CF ₃ Ph				136	
32	4-ClPh				13	
33	4-ClPh				22	
35	4-ClPh	SO ₂ Et	-0CH ₂ CH ₂ O-		1300	
36	4-ClPh	SO ₂ Et	0, 0		160	
37	4-ClPh	SO ₂ Et	H, OH		87	
38	4-ClPh	SO ₂ <i>i</i> Pr	-0CH ₂ CH ₂ O-		940	
39	4-ClPh	SO ₂ <i>i</i> Pr	0, 0		130	
40	4-ClPh	SO ₂ <i>i</i> Pr	H, OH		52	
41	4-ClPh	NHSO ₂ CF ₃	H, OH		4100	
1a (chiral)	4-ClPh				27	
2	4-ClPh			CF ₃	21	
43	4-ClPh			CHF ₂	68	
44	4-ClPh			CH_2F	164	
45	4-ClPh			C_3H_5	29	
46	4-ClPh			C_4H_7	212	
47	4-CF ₃ Ph			CF_3	23	
48	4-CF ₃ Ph			C_3H_5	173	
^a Values are means of two experiments						

IdDle 2							
In vivo efficacy study	in CRND8 mouse model						

Compound	IC ₅₀ ^b (nM) membrane	${\rm IC_{50}}^{ m b}({ m nM}){ m cell}$ ${ m A}eta_{40}$, ${ m A}eta_{42}$	CRND8 $A\beta_{40}$ inh. at 3 h^c plasma, cortex (%)
1a (chiral) ^a	27	108, 46	90, 42
1b (chiral) ^a	8	9, 4	80, 58
2	21	11, 33	58, 33
45	29	3, 9	77, 71
47	23	80, 51	59, 48

^a Data from Ref. 3.

^b Values are means of two experiments.

^c Dosed orally at 30 mg/kg.

IC₅₀ values (**46** vs **45**). While switching 4-chloropheylsulfone at C-5 to 4-trifluromethylphenylsulfone essentially did not change the IC₅₀ when the C-8 position had the NHTf group (**47** vs **2**), it did lead to a 6-fold drop when the C-8 position had the cyclopropylsulfona-mide group (**48** vs **45**).

Three compounds were selected for in vivo efficacy test in the CRND8 mouse model¹⁴ and the results are shown in Table 2 along with data for **1a/b**.³ The limited data indicated that, in general, the C-6 hydroxy analogs had similar efficacy as their C-6 dehydroxy analogs. Compound **45** inhibited plasma and cortex $A\beta_{40}$ by 77%, 71%, respectively, at 3 h after an oral dosing of 30 mg/kg.

In summary, we have synthesized a series of tricyclic sulfones to study SAR at C-6 and C-8 positions. While substituents at the C-6 position were well tolerated, the biological activity was more sensitive to those at the C-8 position. Selective combination of C-6 and C-8 modification led to compounds such as **2** and **45** that demonstrated in vivo efficacy comparable to that of our previously reported compounds **1a/b**.

Acknowledgements

We thank Drs. Duane Burnett, Michael Czarniecki, Eric Parker and John Hunter for their support and suggestion.

References and notes

2. LaFerla, F. M.; Oddo, S. Trends Mol. Med. 2005, 11, 170.

^{1.} Blennow, K.; de Leon, J.; Zetterberg, H. Lancet 2006, 368, 387.

- Xu, R.; Cole, D.; Asberom, T.; Bara, T.; Bennett, C.; Burnett, D. A.; Clader, J.; Domalski, M.; Greenlee, W. J.; Hyde, L.; Josien, H.; Li, H.; McBriar, M.; McKittrick, B. A.; McPhail, A. T.; Pissarnitski, D.; Qiang, L.; Rajagopalan, M.; Sasikumar, T.; Su, J.; Tang, H.; Wu, W.-L.; Zhang, L.; Zhao, Z. *Bioorg. Med. Chem. Lett.* **2010**, *20*, 2591.
- 4. Selles, P.; Mueller, U. Org. Lett. 2004, 6, 277.
- 5. Crisp, G. T.; Meyer, A. G. J. Org. Chem. 1992, 57, 6972.
- 6. Wallace, O.; Lauwers, K.; Dodge, J.; May, S.; Calvin, J.; Hinklin, R.; Bryant, H.;
- Shetler, P.; Adrian, M.; Geiser, A.; Sato, M.; Burris, T. J. Med. Chem. 2006, 49, 843.
 Pineschi, M.; Bertolini, F.; Haak, R. M.; Crotti, P.; Macchia, F. Chem. Comm. 2005, 400. 1426.
- 8. Only the cis isomer was further explored based on the IC_{50} data for ${\bf 27a}~(21~nM)$ and ${\bf 27b}~(3000~nM).$
- 9. Churcher, I.; Harrison, T.; Kerrad, S.; Oakley, P.; Shaw, D.; Teall, M.; Williams, S. PCT Int. Appl. 2004, WO2004031137 A1.

- 10. A detailed synthesis of compounds **24** and **45** will be submitted to *Tetrahedron Lett.*
- 11. Zhang, L.; Song, L.; Terracina, G.; Liu, Y.; Pramanik, B.; Parker, E. *Biochemistry* **2001**, *40*, 5049.
- 12. All compounds except **1a/1b** were racemic. The data in Ref. 3 indicated that the biological activity resided on one enantiomer. It was assumed therefore that the pure enantiomers would be twice as active as the racemic ones.
- 13. The pK_a of CF₃SO₂NH-*H* in DMSO measured as 9.7 and that for CH₃SO₂NH-*H* in DMSO is 17.5. Fu, Y.; Li, R-Q.; Guo, Q-X. *J. Am. Chem. Soc.* **2004**, *126*, 814.
- Hyde, L. A.; McHugh, N. A.; Chen, J.; Zhang, Q.; Manfra, D.; Nomeir, A. A.; Josien, H.; Bara, T.; Clader, J. W.; Zhang, L.; Parker, E. M.; Higgins, G. A. *J. Pharmacol. Exp. Ther.* **2006**, *319*, 1133.