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Expedient synthesis of 1,2,3-triazole-fused tetracyclic
compounds by intramolecular Huisgen (‘click’) reactions
on carbohydrate-derived azido-alkynes
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Abstract—An efficient, practical and convenient synthesis of 1,2,3-triazole-fused tetracyclic compounds was achieved by intra-
molecular 1,3-dipolar cycloaddition of carbohydrate-derived azido-alkynes.
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Several compounds of the 1,2,3-triazole class possess a
broad spectrum of biological properties including anti-
HIV,'* anti-allergic,'® anti-bacterial,'® herbicidal and
fungicidal activity.'? 1,2,3-Triazoles are synthesized by
1,3-dipolar cycloaddition of the corresponding azide
and alkyne, a procedure known as the Huisgen reac-
tion.? Furthermore, 1,2,3-triazole formation is a highly
efficient reaction without any significant side products
and is currently referred to as a ‘click reaction’. The sig-
nificant biological profiles of 1,2,3-triazoles coupled
with our interest in synthesizing chiral, oxygen-rich
chemical libraries prompted us to develop a synthetic
protocol that would enable the synthesis of a chiral,
fused, polycyclic 1,2,3-triazole class of compounds. To-
wards this end, we considered performing the 1,3-dipo-
lar cycloaddition reactions on carbohydrate-derived
azido-alkynes in an intramolecular fashion. In this let-
ter, we reveal an effective integration of click chemistry
onto carbohydrate substrates in order to synthesize
1,2,3-triazole-fused tetracyclic compounds in high
yields.

Carbohydrate-derived azido substrates for intramolecu-
lar click reactions were synthesized by an Sy2 displace-
ment of the corresponding tosylates with NaN3 (Scheme
1). Accordingly, xylofuranosyl diol 1* was treated with
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Scheme 1. Reagents and conditions: (a) p-TsCl, py., 0°C-rt, 10 h,
91%; (b) NaN;, DMF, 90 °C, 8 h, 95%; (c) NaH, propargyl bromide,
DMF, 0 °C-rt, 2 h, 93%; (d) toluene, 100 °C, 2 h, 95%.

p-TsCl in the presence of pyridine for 10 h at 0 °C fol-
lowed by treatment with sodium azide at 90 °C in
DMF to afford the required 5-deoxyazidoxylofurano-
side in 86% overall yield. The remaining hydroxyl group
was converted into a propargyl ether using sodium
hydride and propargyl bromide to afford the required
azido-alkyne 2.

In the '"H NMR spectrum of the azido-alkyne 2, reso-
nances corresponding to the alkyne CH were identified
at 0 2.48 (t, J = 2.3 Hz) ppm and the C-5 methylene pro-
tons as a multiplet at 6 3.51 ppm. The 1,3-dipolar cyclo-
addition reaction was carried out under reagent-free
conditions by heating a toluene solution of the azido-
alkyne 2 at 100 °C for 2 h.> The resultant tetracyclic
1,2,3-triazole 3 precipitated as a white solid on cooling
to room temperature.

The "H NMR spectrum of 3 revealed an olefinic proton
at 0 7.49 ppm as a singlet and the anomeric proton at ¢
5.77 (d, J=3.9 Hz) ppm; the high resolution NMR
spectrum proved that the 1,3-dipolar cycloaddition
had occurred in a regioselective manner. In the
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Scheme 2. Reagents and conditions: (a) MsCl, Et;N, CH,Cly, rt, 2.5 h;
(b) NaN3;, DMF, 90 °C, 6 h, N,.

13C NMR spectrum, resonances characteristic of two
olefinic carbons were present at é 134.8 and 132.1 ppm
with the rest of the spectrum in complete agreement with
the assigned structure. During our studies, the forma-
tion of compound 3 was reported by Tripathi et al. start-
ing from 1,2-O-isopropylidene 3-O-allyl glucofuranose

H(131

(Scheme 2).6 Figure 1. ORTEP diagram of compound 3.
Table 1.
S. No. Substrate Product Time (h) Yield (%)
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3 2 90
4 6 80
5 5 78
6 5 75
7 6.5 87
8 6 91
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Scheme 3. Reagents and conditions: (a) p-TsCl, py., 0 °C-rt, 15 h, 86%; (b) NaN3;, DMF, 120 °C, 8 h, 92%; (c) p-TsCl, py., 100 °C, 6 h, 75%; (d) (i)
NaOMe, MeOH, rt, 0.5 h, 96%; (ii) NaH, propargyl Br, DMF, 0 °C-rt, 2 h, 87%; (e) C¢HsCHj3, 100 °C, 6 h; (f) TBDMSCI, im., DMF, 1 h, 84%.

This interesting observation was rationalized by assum-
ing that the initial triazoline possibly had the trans ring
fusion and was therefore oxidized by atmospheric oxy-
gen. However, the spectral data of triazole 3 derived
from propargyl ether 2 did not correlate with Tripathi
et al. data.®

Compound 3 was crystallized by slow evaporation from
light petroleum (60-80 °C) and dichloromethane, and
was subjected to X-ray structure determination. Gratify-
ingly, the crystallographic analysis proved the structural
authenticity of the tetracyclic triazole 3 beyond any
doubt (Fig. 1).%7 The bond lengths between C7,C8
and N17,N18 were found to be 1.363 and 1.324 A,
respectively, confirming the presence of double bonds
in the fused 1,2,3-triazole moiety.” It is interesting to
note that the same set of reactions carried out on ara-
bino- and ribo-derived azido-alkynes 10 and 12 also
resulted in the formation of 1,2,3-triazole-fused tetra-
cyclic compounds 11 and 13. In addition, the versatility
of the current protocol was demonstrated using a range
of substrates comprising gluco-, allo-, xylo-,
ribo- and arabino- derived azido-alkynes as depicted in
Table 1.

We next synthesized 1,2,3-triazoles fused to hexofurano-
syl-derived seven- and eight-membered rings (Scheme 3).
Accordingly, the 3-O-acetyl derivative 4 was converted
into the azido-alkyne 5 in four steps. The primary alco-
hol of compound 4% was converted into the correspond-
ing toluene p-sulfonate using p-TsCl, reacted with NaN;
at 120 °C for 8 h and treated with p-TsCl to obtain an
azido-tosylate that was subsequently converted to the
required azido-alkyne 5. The ‘click’ reaction was effected
by heating a toluene solution of azido-alkyne 5 to
100 °C in toluene for 6 h to yield the triazole-fused tetra-
cyclic compound 6.7 In another set of reactions, the
primary hydroxyl group was protected as its zert-butyl-
dimethylsilyl ether and the secondary hydroxyl group
was converted to the azido-alkyne 8 using the aforemen-
tioned reagents and the click reaction was carried out to
provide the triazole 9.%1°

These reactions were performed on the allo-series 14 and
16 to obtain triazoles 15 and 17. The glucopyranosylaz-
ido-alkyne 18 was also converted into the corresponding
tricyclic compound 19 successfully.® In all cases, the

formation of 1,2,3-triazole-fused tetracyclic compounds
was found to be high yielding and in most of the sub-
strates the resulting product precipitated from the reac-
tion mixture.” Products were isolated either by filtration
from the reaction mixture for solids (3, 6, 11, 13, 17 and
19) or by conventional silica gel column chromatogra-
phy for gummy products (9 and 15).>°

In conclusion, we have investigated ‘click’ chemistry
using carbohydrates in an intramolecular fashion under
reagent-free conditions. Our further efforts will be dedi-
cated towards understanding biological profiles and
developing a diversity oriented synthetic pathway. The
results from these endeavours will be disclosed in the
future.
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C, 52.17%; H, 5.97%; N, 16.59%. Found: C, 51.97%; H,
5.46%; N, 16.67%.
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(2s, 6H), 2.47 (s, 3H), 4.00 (m, 1H), 4.18 (m, 1H), 4.26 (dd,
1H,J=2.9,8.2Hz),4.54 (d, |H, J = 14.7 Hz), 4.62 (d, 1H,
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J=147Hz), 5.11 (d, 1H, J=3.0Hz), 591 (d, IH,
J=3.8Hz), 7.39 (d, 2H, J=8.0 Hz), 7.53 (s, 1H), 7.82
(d, 2H, J=8.0 Hz); >*C NMR [CDCl;, 50 MHz]: 21.7,
26.1, 26.5, 48.2, 61.7, 69.8, 78.9, 81.3, 82.8, 104.9, 112.8,
127.8, 130.1, 133.1, 145.6; IR (cm™"): 1726, 1597, 1454,
1377, mp 149 °C. CHNS Anal. Calcd for C;9H,3N50S as
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J=2.1 Hz), 4.39-4.65 (m, 4H), 4.70-4.95 (m, 3H), 5.72 (d,
1H, J = 3.6 Hz), 7.61 (s, 1 H); '*C NMR [CDCl,, 75 MHz]:
05.4,5.6,18.2,20.6,25.6,25.8, 26.0, 26.6, 59.2, 60.0, 72.6,
83.7, 85.0, 104.3, 111.8, 131.9, 135.1; IR (cm™Y): 1722,
1462, 1375. CHNS Anal. Caled for C,;gH3;N3Os5Si as C,
54.38%; H, 7.86%; N, 10.57%. Found: C, 54.16%; H,
7.48%; N, 10.33%.

Compound 11: 'H NMR [CDCl;, 300 MHz]: 6 1.43, 1.60
(2s, 6H), 3.56 (ddd, 1H, J = 10.8, 9.0, 2.9 Hz), 3.95 (dd, 1H,
J=9.0, 44 Hz), 436 (dd, 1H, J=13.2, 10.8 Hz), 4.51 (d,
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J=149Hz), 5.31 (dd, 1H, J=13.4,2.9 Hz), 5.75 (d, 1H,
J=4.9Hz), 7.56 (s, 1H); >*C NMR [CDCls, 50 MHz]: &
27.8,28.1,52.3,62.8, 74.6, 85.5, 93.2, 103.6, 115.79, 133.5,
136.2; IR (cm™Y): 1521, 1215; mp 214 °C. CHNS Anal.
Calcd for C;1H5N304 as C, 52.17%; H, 5.97%; N, 16.59%.
Found: C, 52.00%; H, 5.99%; N, 16.61%.

Compound 13: '"H NMR [CDCls, 200 MHz]: § 1.34, 1.52
(2s, 6H), 3.71 (dd, 1H, J=8.59, 4.26 Hz), 4.00 (ddd, 1H,
J=333, 878, [11.51Hz), 423 (dd, 1H, J=10.90,
13.32 Hz), 4.54 (d, 1H, J=15.14Hz), 480 (t, 1H,
J=424Hz), 5.14 (d, 1H, J=15.10Hz), 5.31 (dd, 1H,
J=2.73,13.02 Hz), 5.82 (d, 1H, J = 3.52 Hz), 7.59 (s, 1H);
13C NMR [CDCls, 75 MHz]: 4 26.0, 26.2, 51.6, 62.9, 72.1,
78.5, 87.7, 103.4, 114.0, 133.9, 135.48; IR (cm™'): 1465,
1377; mp 186 °C. CHNS Anal. Caled for C;;H sN;04 as
C, 52.17%; H, 5.97%; N, 16.59%. Found: C, 52.44%; H,
5.90%; N, 16.34%.
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