Low-Temperature Synthesis of Nanocrystalline α -Si₃N₄ Powders by the Reaction of Mg₂Si with NH₄Cl

Yunle Gu, Luyang Chen, and Yitai Qian[†]

Structure Research Laboratory, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, Peoples Republic of China

Nanocrystalline α -Si₃N₄ powders have been prepared with a yield of 93% by the reaction of Mg₂Si with NH₄Cl in the temperature range of 450° to 600°C in an autoclave. X-ray diffraction patterns of the products can be indexed as the α -Si₃N₄ with the lattice constants a = 7.770 and c = 5.627 Å. X-ray photoelectron spectroscopy analysis indicates that the composition of the α -Si₃N₄ samples has a Si:N ratio of 0.756. Transmission electron microscopy images show that the α -Si₃N₄ crystallites prepared at 450°, 500°, and 550°C are particles of about 20, 40, and 70 nm in average, respectively.

I. Introduction

 S_{ILICON} nitride (Si_3N_4) is a very important material for hightemperature applications due to its attractive properties. Such properties include thermal and chemical stability, high strength, stiffness, and good wear, creep and corrosion resistance.¹

Traditionally, Si₃N₄ powders were prepared by carbothermal reduction of silica in the temperature range of 1500° to 1550°C² or by nitridation of silicon powders in nitrogen in temperatures ranging from 1200° to 1400°C.3 Some other reactions also developed to prepare Si₃N₄ include: the reaction of SiCl₄ with NH₃ to form ultrafine Si₃N₄ powders;⁴ the gas-phase ammonolysis of SiH₄ in 500°-1100°C to produce amorphous silicon nitride powders of 50-200 nm;⁵ and the pyrolysis of an organic precursor, which was prepared by hydrolyzing a mixture of phenyltrimethoxysilane and tetraethoxysilane in 500°-600°C under nitrogen followed by annealing in 1450°-1550°C to form crystalline Si₃N₄ powders.⁶ F. Hofer et al. prepared mixtures of oxynitride and nitride of silicon by the reaction of $CaSi_2$ with NH₄Cl.⁷ α -Si₃N₄ fibers were prepared by ammonolysis of FeSi at 1370°C,8 and Si_3N_4 mixtures of both α and β phases were produced by the nitridation of high-silicon ferrosilicon in nitrogen at temperatures ranging from 1300°-1500°C.9 In earlier research, we prepared nanocrystalline Si₃N₄ through a novel reaction of excessive SiCl₄ with NaN₃ heated at 670°C for 30 min in an autoclave.¹⁰ As the reaction is strongly exothermic (calculated $\Delta H^{\circ} = -920$ kcal·mol⁻¹), the product, a mixture of α - and β -Si₃N₄, may actually be formed due to instantaneously high local temperature.

In this paper, we report a reaction of Mg_2Si with NH_4Cl in the temperature range of 450° – 600^\circC in an autoclave under a pressure

Fig. 1. XRD patterns of the products prepared by reacting Mg_2Si with NH_4Cl for 10 h in an autoclave at (a) 450°, (b) 500°, (c) 550°, and (d) 600°C.

Table I.	The X-ray Diffraction Spectrum of th	6
As-prej	pared α-Si ₃ N ₄ Compared with that of	
	JCPDS# 83-0700	

	Experi	Experimental		# 83-0700
No.	20	d (Å)	hkl	d (Å)
1	13.200	6.7013	100	6.7246
2	20.611	4.3056	101	4.3157
3	22.920	3.8768	110	3.8825
4	26.472	3.3641	200	3.3626
5	31.005	2.8818	201	2.8863
6	31.840	2.8081	002	2.8137
7	34.572	2.5923	102	2.5956
8	35.32	2.5392	<u>21</u> 0	2.5416
9	38.872	2.3148	$\bar{2}\bar{1}1$	2.3163
10	39.556	2.2763	112	2.2783
11	40.194	2.2416	300	2.2415
12	41.881	2.1552	202	2.1578
13	43.428	2.0819	301	2.0824
14	46.914	1.9350	220	1.9412
15	48.182	1.8870	212	1.8861
16	48.911	1.8606	310	1.8650
17	50.538	1.8044	103	1.8068
18	51.586	1.7702	311	1.7703
19	56.091	1.6382	203	1.6381
20	57.641	1.5978	222	1.5978
21	61.539	1.5056	213	1.5093
22	62.239	1.4904	321	1.4878
23	64.716	1.4392	303	1.4385
24	65.642	1.4211	$\bar{4}\bar{1}1$	1.4199
25	66.430	1.4061	004	1.4068
26	69.419	1.3527	$\overline{3}\overline{2}2$	1.3527

L. Klein-contributing editor

Manuscript No. 10226. Received May 18, 2003; approved August 12, 2003. This work was supported by the Key Project of National Fundamental Research and the National Science Research Foundation of China.

^{*}Member, American Ceramic Society. †Author to whom correspondence should be addressed: e-mail: ytqian@ustc.

^{&#}x27;Author to whom correspondence should be addressed: e-mail: ytqian@ustc. edu.cn.

Fig. 2. TEM images and selected area electron diffraction (SAED) patterns of the α -Si₃N₄ samples prepared at (a and b) 450°, (c) 500° and (d) 550°C.

of about 30–40 MPa. Preparation of nanocrystalline $\alpha\text{-}Si_3N_4$ powders are based on the reaction as follows:

$$3 \text{ Mg}_2\text{Si} + 12 \text{ NH}_4\text{Cl} \xrightarrow{450-600 \text{ °C}} \text{alpha-Si}_3\text{N}_4 + 6 \text{ MgCl}_2$$

 $+ 8 \text{ NH}_3 + 12 \text{ H}_2$ (1)

II. Experimental Procedure

In a typical process, 26.08 mmol of Mg₂Si (99.5%, stock # 12837 Alfa Aesar, Ward Hill, MA, USA) and 0.1047 to 0.1122 mol of NH₄Cl (99.5%, analytical pure grade, Shanghai Chemical Reagent Corp., Shanghai, P. R. China) were mixed and placed in an autoclave with a glass-tube liner. The autoclave of

Fig. 3. XPS spectra of the as-prepared α -Si₃N₄ powders.

about 75 mL in capacity was sealed under an argon atmosphere and maintained at 450°, 500°, 550°, and 600°C (\pm 5°C) for 10 h. The autoclave was cooled to room temperature naturally. The products were collected and washed with distilled water several times to remove MgCl₂ and remaining NH₄Cl. The final products were dried in vacuum at 70°C for 12 h and white powder products were obtained.

III. Results and Discussion

The X-ray diffraction (XRD) patterns were recorded on an X-ray diffractometer (XRD)(D/MAX- γ A, Rigaku, Japan) with Cu K α radiation (wavelength $\lambda = 1.54178$ E). Figure 1 shows the XRD patterns of the as-prepared products at 350°–600°C. As shown in Table I, all the 26 peaks can be indexed as the hexagonal cell of α -Si₃N₄, with lattice constants of a = 7.770 and c = 5.627 Å (The rms error is 3.153×10^{-4} , calculated by the least squares fitting method), in good agreement with a = 7.765 and c = 5.627 Å (JCPDS card# 83–0700). No evidence of β -Si₃N₄, cubic-Si₃N₄, and impurities were observed. As reaction temperatures decrease from 600° to 450°C, the diffraction peaks broaden, indicating the crystalline particles of the products become smaller.

The morphology of the α -Si₃N₄ powders was investigated by transmission electron microscopy (TEM) (H-800, Hitachi, Japan), which was taken with a Hitachi H-800 transmission electron microscope. Figure 3 shows the typical TEM images and selected area electron diffraction (SAED) patterns of the samples prepared at 450°, 500°, and 550°C for 10 h. The products have particle morphology. The α -Si₃N₄ crystallites prepared in 450° (Fig. 3(a) and (b)), 500° (Fig. 3(c)), 550° (Fig. 3(d)), and 600°C (not published) are about 20, 40, 70, and 90 nm in average, respectively. As shown in Fig. 3(b), the diffraction rings from inner to outer, at d-spacings of 6.70, 4.29, 2.90, 2.60, 2.54, and 2.30 Å, match α -Si₃N₄ (100), (101), (201), (102), (210) and (-2–11) planes, in good agreement with the XRD results.

The composition of the as-prepared α -Si₃N₄ powders was studied by X-ray photoelectron spectroscopy (XPS) (ESCALAB MKII, VG Scientific, U.K.), which was recorded on a VGES-CALAB MKII X-ray photoelectron spectrometer with a nonmonochromatized Mg K α X-rays ($h_{\gamma} = 1253.6$ eV) as the excitation source. As shown in Fig. 2, the binding energy of Si2*p* and N*Is* are 101.70 and 397.75 eV, respectively, which are in good agreement with those of Si₃N₄ (101.7–102.34 eV and 397.4–397.9 eV, respectively^{11,12,13,14,15}). The quantification of the peaks gives a Si:N ratio of 0.756, which is close to that of Si₃N₄ (0.750). In addition to silicon and nitrogen, no other peaks were observed in the wide-scan XPS spectrum except a small amount of carbon (reference mark) and oxygen, with binding energies of CIs and OIs at 284.26 and 531.95 eV, respectively, in which oxygen is from surface adsorption.¹⁶

According to the free energy calculations, the reaction between Mg_2Si and NH_4Cl to form α -Si₃N₄, $MgCl_2$, NH_3 , and hydrogen gases is thermodynamically spontaneous (calculated $\Delta G^{\circ} = -400$ kcal·mol⁻¹) and mildly exothermic (calculated $\Delta H^{\circ} = -227$ kcal·mol⁻¹). A gust of gases with an ammonia smell were noticed when the autoclave was unsealed. An approximately stoichiometric amount of Mg(OH)₂ according to the amounts of Mg₂Si was obtained by treating the water used to wash products with NaOH. The maximal pressure is about 30 to 40 MPa in the temperature range of 450° to 600°C, which is estimated according to the amount of NH₃ and hydrogen treated as ideal gases. Varying the reaction temperature in the range of 450°-600°C did not significantly affect the crystallinity or the yields of Si_3N_4 (about 93%) according to the amount of Mg₂Si). In comparison, polycrystalline silicon powders were found unreacted and Si₃N₄ was not produced when excessive NH₄Cl and mixed powders of magnesium and silicon were heated at 600°C for 10 h in an autoclave. A mixture of amorphous Si₃N₄ and polycrystalline silicon was produced when CaSi₂ (Alfa Aesar, stock #14676) was heated with excessive NH₄Cl at 600°C for 10 h in an autoclave. When FeSi powders (primitive cubic phase, a = 4.415 Å, prepared by the reaction of FeCl₃ and Mg₂Si at 600°C for 12 h¹⁷) were used instead of Mg₂Si, Si₃N₄ was not produced and the FeSi remained unreacted, indicating that Mg₂Si is the key factor for preparing nanocrystalline $\alpha\mathchar`-Si_3N_4$ at the low temperature range of 450° to 600°C.

IV. Conclusions

In summary, about 20- to 90-nm α -Si₃N₄ powders have been prepared by the reaction of Mg₂Si with NH₄Cl in the temperature range of 450° to 600°C in an autoclave. XRD patterns of the products can be indexed as α -Si₃N₄ with the lattice constants of a = 7.770 and c = 5.627 Å. XPS analysis indicates that the composition of the α -Si₃N₄ samples has a Si:N ratio of 0.756. Such nanocrystalline α -Si₃N₄ powders hold great potential for improving properties of ceramic structural materials. This study demonstrates an important route to nanocrystalline α -Si₃N₄ that can be applied for industrial use in the future.

References

¹F. Rodriguezreinoso and J. Narciso, "Synthesis of SiC and Si₃N₄–An Overview," *Adv. Mater.*, **7** [2] 209–11 (1995).

²S. J. P. Durham, K. Shanker, and R. A. L. Drew, "Carbothermal Synthesis of Silicon Nitride–Effect of Reaction Conditions," *J. Am. Ceram. Soc.*, **74** [1] 31–37 (1991).

³V. Pavarajarn and S. Kimura, "Catalytic Effects of Metals on Direct Nitridation of Slicon," *J. Am. Ceram. Soc.*, **84** [8] 1669–74 (2001).

⁴H. R. Orthner, R. Brink, and P. Roth, "Synthesis of Ultrafine Silicon Nitride Powders," *Int. J. Meter. & Product Tech.*, **15** [6] 495–502 (2000).

⁵S. Sahu, S. Kavecky, and J. Szepvolgyi, "Preparation of Fine Amorphous Silicon Nitride Powder in the System SiH₄-Ar-NH₃," *J. Eur. Ceram. Soc.*, **15** [11] 1071–77 (1995).

⁶J. Y. Choi, Y. T. Moon, D. K. Kim, and C. H. Kim, "Pyrolytic Conversion of Spherical Organo-silica Powder to Silicon Nitride Under Nitrogen," *J. Am. Ceram. Soc.*, **81** [9] 2294–2300 (1998).

⁷F. Hofer, W. Veigl, and E. Hengge, "Preparation of Mixtures of Silicon Oxynitride and Silicon Nitride by the Reaction of Calcium Silicide with Ammonium Chloride," *Adv. Mater.*, 4 [7–8] 501–04 (1992).

⁸T. E. Warner and D. J. Fray, "Synthesis of Silicon Nitride Fibers from Ferrosilicon," *J. Mater. Sci. Lett.*, **19** [9] 733–34 (2000).

⁹M. V. Vlasova, V. A. Lavrenko, L. Y. Dyubova, J. G. Gonzalez-Rodriguez, and M. G. Kakasey, "Nitriding of Ferrosilicon Powders," *J. Mater. Synthesis & Processing*, **9** [3] 111–17 (2001). ¹⁰K. B. Tang, J. Q. Hu, Q. Y. Lu, Y. Xie, J. S. Zhu, and Y. T. Qian, "A Novel Low-Temperature Synthetic Route to Crystalline Si₃N₄," *Adv. Mater.*, **11** [8] 653–55 (1999).

¹¹T. Goto and T. Hirai, "ESCA Study of Amorphous CVD Si₃N₄-BN Composites," J. Mater. Sci. Lett., 7, 548–50 (1988).

¹²G. M. Ingo and N. Zacchetti, "XPS Investigation on the Growth-Mode of *a*-SiNx and Silicon and Nitrogeon Chemical Bondings," *High Temperature Sci.*, **28** 137–51 (1990).

¹³G. M. Ingo, N. Zacchetti, D. della Sala, and C. Coluzza, "X-ray Photoelectron Spectroscopy Investigation on the Chemical Structure of Amorphous Silicon Nitride $(a-\sin_x)$," J. Vac. Sci. Technol., A**7**[5] 3048 (1989).

¹⁴J. A. Taylor, G. M. Lancaster, and J. W. Rabalais, "Chemical Reactions of N₂⁺ Ion Beams with Group IV Elements and Their Oxides," *J. Electron Spectrosc. Relat. Phenom.*, **13**[3] 435–44 (1978).

¹⁵J. A. Taylor, G. M. Lancaster, A. Ignatiev, and J. W. Rabalais, "Interactions of Ion Beams with Surfaces. Reactions of Nitrogen with Silicon and Its Oxides," *J. Chem. Phys.*, **68**[4] 1776–84 (1978).

¹⁶A. Pashutski, A. Hoffman, and M. Folkman, *Surf. Sci.* 208, L91–L97, (1989).
¹⁷J. C. Fitzmaurice, A. L. Hector, I. P. Parkin, and A. T. Rowley, "Synthesis of Metal Silicide Powders by Thermolysis of Metal Chlorides with Magnesium Silicide," *Phosphorus Sulfur & Silicon & Relat. Elements*, 101 [1–4] 47–55 (1995).