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ABSTRACT: A metal-free access to 2-iodo-1,3-
disubstituted indolizines has been developed. The 
proposed synthesis is relatively simple and 
efficient and involves the iodine-triggered 5-
endo-trig cyclization of 2-pyridylallene 
precursors. While it can be conducted on a gram 
scale, the preparation of the precursors is 
straightforward and does not always require 
intermediate purifications. The obtained 2-
iodoindolizines can be further functionalized 
through cross coupling reactions. 
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INTRODUCTION

Indolizines are key motifs in organic chemistry present in a 
myriad of biologically active compounds1 and used as precursors 
of valuable organic materials.2 In the latter case, tuning of the 
properties can be achieved via variation of the substituents of the 
two rings. Logically, this has elicited a strong attention in 
developing new synthetic pathways to these compounds. 
Originally synthetized by Scholtz3 and Chichibabin4 at the 
beginning of the XXth century through condensation reactions, 
new methods, essentially dipolar cycloaddition and 
cycloisomerization reactions have been developed since then, 
giving access to a plethora of polysubstituted indolizine rings5 as 
well as indolizines bearing a halogen at position 2.6 Although 
there is a growing interest in accessing 1,2,3-trisubstituted 
indolizines,7 to the best of our knowledge, only Kim and coll. 
have proposed a method to synthetize 1,3-disubstituted 2-
iodoindolizines from propargylic acetates.8,9 The position 2 being 
iodinated, it should allow post-functionalization through 
commonly used transition metal cross-coupling reactions or a 
radical pathway. Also, a brief literature survey shows that 
pyridylallenes are valuable intermediates for the synthesis of 
indolizines via 5-endo-trig cyclisation reaction under electrophilic 
activation.10,11

In 2015, our group has reported on the cyclization of 2-
pyridylallenes using dimethyl sulfide gold (I) chloride as -Lewis 
acid to provide a new family of gold complexes (Scheme 1).12 

Also relevant to our project, Michelet and Toullec described in 
2016 the synthesis of 2-iodoindenes by activation of arylallenes 
using N-iodosuccinimide (NIS) as iodonium source.13 We 
surmised that if the cyclization of 2-pyridylallenes can also be 
triggered by such electrophiles, the resulting indoliziniums could 
evolve towards the formation of 2-iodo-1,3-disubstituted 

indolizines after elimination of one of the groups present on the 
newly formed quaternary carbon center (Scheme 1). 

Scheme 1. Electrophile-induced cyclization reactions of 
arylallenes

RESULT AND DISCUSSION

The retrosynthetic analysis led us to consider the C3-N4 
disconnection: we reasoned that the key cyclization/elimination 
sequence of B would provide indolizine A (Scheme 2). The 
required tetrasubstituted allenic precursors B of indolizines A 
would be readily accessed from propargylic acetate C via SN2’ 
type reaction. The latter can be obtained through a 1,2-
addition/acetylation sequence from 2-pyridyl ketone and alkyne 
derivatives D.
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Scheme 2. Retrosynthetic analysis for the synthesis of 
1,2,3-trisubstituted indolizines

Following this strategy, nine propargylic acetates were obtained 
(1a-i) in high yields over two steps (Scheme 3). 

Scheme 3. Synthesis of propargylic acetates 1

Propargylic acetates 1 were then converted into tetrasubstituted 
allenes 2 bearing a tert-butyl group at the C3 position using the 
tert-butylcyanocuprate reagent following Krause’s procedure14 
(Scheme 4). This reaction quickly showed high efficiency on 
propargylic acetate 1a since a quantitative yield was observed for 
the formation of 2a. It was then extended to the other propargylic 
acetates 1b-i to obtain the corresponding seven tetrasubstituted 
allenes 2a-i even when R1 are a hydrogen or a methyl instead of a 
phenyl group. We found out that the temperature needed to be 
carefully controlled to obtain the desired products. While 2f, 2h 
and 2i were obtained in excellent yield, the reaction showed less 
efficiency on other substrates, especially from 1d and 1e. 
Moreover, each of these allenes and intermediates were found to 
be perfectly stable under bench conditions and no purification was 
required until the final allene compound was obtained. 

Scheme 4. Synthesis of 2-pyridylallenes 2

Next, we investigated the cyclisation reaction, starting initially 
with NIS as an electrophilic iodine source. When conducted at 
room temperature, a significant quantity of starting material 
remained untouched after two hours with no evolution of the 
reaction. Increasing the temperature to 60°C led to the full 
conversion of 2-pyridylallene 2a to afford the desired 2-
iodoindolizine 3a along with the succinimide adduct 4. 
Iodoindolizine 3a results as expected from the loss of the tert-
butyl group on the cyclic indolizinium intermediate 6 (Scheme 5), 
itself originating from the cyclization of iodonium 5. The 
formation of 4 could be rationalized by considering the N-addition 
of the succinimidate on the activated α position of the 
iodopyridinium 6 to give adduct 7. The latter would rearomatize 
after oxidation to 815 and -adduct 4 is generated via 9. Another 
pathway transiting via an iodopyridinium, generated by iodination 
of the pyridine nitrogen, and -addition was discarded since 
model 2-vinylpyridine remained intact in the reaction conditions. 
This suggests that the preliminary activation of the allene as in 5 
is required for the addition of the succinimidate.16 The formation 
of 3a validated our strategy and we then pursued on the 
optimization of the reaction conditions in order to suppress the 
formation of the undesired product 4.
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Scheme 5. Cyclization of 2a using NIS

When 1.2 equivalents of iodine were employed as the 
electrophilic halogen source instead of NIS (Table 1), 43% yield 
of 2-iodoindolizine 3a was obtained along with the 1,3-
disubsubstituted indolizine 10 in a 80/20 ratio (Table 1, entry 1). 
This latter compound is suspected to originate from the 
cyclization reaction of 2-pyridylallene 2a promoted by hydroiodic 
acid generated in situ after the cyclization/elimination process. 
Interestingly, 3a was formed in greater proportion by decreasing 
the temperature to 60°C (entry 2). Using two equivalents of iodine 
and setting the temperature to 70°C proved to be beneficial since 
3a was obtained in 84% with only traces of indolizine 10 (entry 
3). Running the reaction in basic conditions using potassium 
carbonate as an acid scavenger allowed to avoid totally the 
formation of the undesired product 10 and afforded 3a in 
excellent yield (entry 4). This reaction turned out to be very 
convenient from a practical point of view since it could be run on 
the gram scale (see Scheme 6) and pure material was recovered 
from the simple filtration of the greenish solid formed while the 
excess of iodine was neutralized. Moreover, the structure of 2-
iodoindolizine 3a was unambiguously confirmed by X-ray 
diffraction (Figure 1).17

Table 1. Conditions optimization for the iodocyclization

Entry T°C I2 K2CO3  Yield of 3aa Yield of 10a

1 80°C 1,2 
equiv. - 43%a 18% a

2 60°C 1,2 
equiv. - 48% a 12% a

3 70°C 2 
equiv. - 84% Traces

4 70°C 2 
equiv.

2 
equiv. 92% -

a yields calculated from a mixture of 3a/10.

We then extended this iodocyclization reaction to other 2-
pyridylallenes using the optimized conditions (Scheme 6). 3-
arylindolizines 3b, 3c and 3i were obtained very efficiently from 
2b, 2c and 2i, respectively, while the yield was slightly lower 
from electrodeficient aromatic ring 2d bearing a trifluoromethyl 
group. Alkylindolizines 3f and 3g were also obtained albeit with 
moderate yield, maybe due to a lower stabilization of the cationic 
charge that is developing on 5. Also with precursors bearing an 
alkyl chain (2f and 2g), we suspect that decumulation of the allene 
takes place. We could show that the cyclization process was not 
restricted to substrates bearing a phenyl group at the allenic 
position (R1) with engaging trisubstituted allene 1h and 
methylated derivative 1i. While the expected 2-iodoindolizine 3h 
was obtained in a good yield (78%) accompanied by a side 
product (see SI), the introduction of a methyl at that position 
proved very rewarding since 3i was obtained in quantitative yield. 
We also reasoned that a TMS group could be a better leaving 
group than the tert-butyl group. Gratifyingly, when TMS-
substituted 2-pyridylallene 2e was used as substrate, tert-butyl 
substituted 2-iodoindolizine 3e was selectively obtained in 
satisfactory yield (74%).  

Figure 1. Crystal structure of compound 3a (H atoms are omitted 
for clarity).

Scheme 6. Synthesis of 2-iodoindolizines

Page 3 of 6

ACS Paragon Plus Environment

Organic Process Research & Development

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



4

This reaction gives access to 1,2,3-trisubstituted indolizines 
bearing an iodine atom at position 2 which can then be 
functionalized. Inspired by the work of Kim,8 we investigated 
further functionalization with widely employed pallado-catalyzed 
cross coupling reactions such as Sonogashira, Suzuki and Heck 
reactions using 3a as model substrate (Scheme 7). The 
Sonogashira cross coupling was conducted with phenylacetylene 
to yield 1,2,3-trisubstituted indolizine 11 in moderate yield. 
Compound 12 and 13 were synthesized using a Suzuki and a Heck 
coupling with phenylboronic acid and methylacrylate, 
respectively. NMR yields for those two coupling reactions were 
excellent while isolated yield turned out to be lower than expected 
due to possible degradation during purification which was not 
optimized.

Scheme 7. Palladium-catalyzed cross-coupling reactions of 
2-iodoindolizines

Furthermore, since fluorinated aromatic compounds show 
interesting properties in medicinal chemistry18 we extended the 
reaction using Selectfluor as an electrophilic fluorine source. In 
that case, the 2-fluoroindolizine 14 was obtained. 

Scheme 8. Synthesis of 2-fluorindolizine

In summary, we propose a new pathway to access highly 
functionalized indolizines via a 5-endo-trig cyclisation of 2-

pyridylallene precursors. An example of this cyclization was 
conducted on the gram scale with high efficiency and convenient 
purification procedure. The presence of the iodo group at the 
position 2 allows for late 2-fonctionalization steps which have 
been barely described in the literature. Three common transition 
metal-catalyzed cross-coupling reactions were given as examples 
but the iodo group should be useful for other types of 2-
substitution. An example of activation of a 2-pyridylallene with 
electrophilic fluorine to deliver a 2-fluoroindolizine was also 
performed. As an extension of this work, different azacycles-
allene cyclisations using various electrophiles are currently 
underway and should allow access to other unprecedented 
indolizine type scaffolds. 
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