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sultuluuy: The photoadduct B of 2-methylfuran and propionyloxyacetaldehyde was transformed in a one-pot 

reaction to Iw. which gave oxetanocin and its epimer & as dc8cribed5. 

Oxetanocht I& a novel nucleoside isolated from BaciZZus megazerium NK 844218 by Shimada et al?, has 

been shown to inhibit the infectivity of human immunodeficiency vims3. Total syntheses of oxetanocin have 

been &scribed by Niitsuma et aL4, Nishiyama et aL5 and Norbeck and Q~LD&, who took as swthtg points 

cis-2-buten-l&diol, glucose and adenosine mspectively. We qort a very short synthesis of key in- 

m which have been transformed to oxetanocin 2 and its anomer & by Nishiyama et aL5 using the classical 

VorbrUggen methodology’. The synthesis relies on the well-known tegio and stereoselectivity of the 

photoaddition of furans with aklehydes8*9, which provide8 oxetanes with the substituents at C-3 and C-4 in a 
transarrangement. 

Irradiation of benxaldehyde and furaa gave photoadduct 5 which upon ozonolysis and dimethyl sulfide 

reduction provided aldehyde formate 3. Attempts to selectively educe OT ace&list model compound 3 failed in 

our hands. Since we had noticed that 2-benzoyloxy and 2-acetoxy oxetanes were considerably mom stable than 
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the cartsponding 2-fomlyloxy oxetanesto , we next proce&d to qnthe&e 2. Jrmdiadon of 2-phenylfurau and 
aldehyde 4a_ obtained by ozonolysis of l-O-benzoyl-3-methyl-Zbutcn-191, did not give a cycloadduct 
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&R=Ph 

&R=Rt 

6~R=Snl3u~ 

6b_R=Ph 

6c- R =pNQ-Ph 

7a_X=H,R=C!Hs 

&X=pNOa,R=CHs 

However, when using tributyl(2-fury1)staunane as the furau component as described by Schteibe@. photoaddm 

& was isolated in lO-15% (50-55%)14 yield. Palladium catalyzed arylation using iodobenzme or 

pbmuonitrobenxeue transfm $g to & and $9 in 85% and 91% yield, respectively. Oxonolysis of & and & 

in CH&!la at -78pC, followed by reduction with dimethyl sulfide and teduction of the aldehyde function with 

sodhm borohydride on ahuuina gel, gave after acylation, stable triacyloxy oxetmes 2 and B in 33% and 25% 

yield, respectively. Allof 

N-benxoyldisilyhuMn&h=thylsilyl 

l~dichloroethaue. 

these anomeric tmxoates wem stable to mixtures of 

uifhtorotnethanesulfonate or SnQ, for up to 48 h in mfluxing 

RCOO 0 

ti 

0 

/ 

&R=Ph 

&,R=Et 

Rm-7x14 Rm9 OCOR 

sR=Ph mR=Ph, R’=Ph 

$$,R=Et m.R=Ph, R’=CHa 

&R=Ph, R’=C!OOC!Hs 

lOdOdR=Et, R’=COOCHa 

We next investigated the photoaddition of 2-methylfttran with bettmyloxyacetaldehyde. kmdiation of a 
benzem solution of 2-mthylfuran and & gave a mixture of regioisomers % and s which could be isolated by 

flash chromatography (RtOAc/peuoleum ether/NRta) 13. In the absence of NRts, & decomposed and the desired 

photo&&t hl* was isolated in 25-30% (45~JO%)14 yield. In a one-pot reaction, 9a was tramfosuxd to B-9 

by the following sequence: A methylene chloride solution of 9 (10 mmolar) was oxonixed at -78Y!, and the 

omnide reduced with dimethyl sulfide (10 eq., -78OC + 23OC, 18 h). Addition of NaR& ou ale gel (2.5 

eq., 23oC, 18 h), followed by fihration and acylation of the alcohol function (1oa: PhCOCl, NEt3, DMAP; JO& 

&O. pyridhte, DMAP; 1oc Mtocococ1, NRt3, DMAP) gave l&l*. B and & in 30%-55% yield. As 

described by Nishiyaux$ et al., reaction of 1oa with N-benxoyl-disilyladenine and S&l,, gave epioxetanociu & 
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astheonlyisolatedpmductin7O%yiekl. Similatresultswenobcainedwhenacetatt~wasusedasthe 

carbohydrate component Applying the Vorbrtiggen coupling to methyl oxslate m gave u and & in a 19 

ratioin7O%yield. 

Madiation of a benzene solution of propionyloxyacetaldehyde & obtained by oxoaolysis of 

lQpropionyl-3-mthyl-Zbuten-l-al. with 2-methylfuran gave, after cohunn chromatography13, at2 in 2025% 

(35-10%)14 yield. Oxonolysis, followed by reduction and acyiation as described fa 9a_ gave al2 in 45% yield. 

It was identical in all respects with the product prepawd by Nishiyama et al?. Its conversion to a 3:l mixture of 

~lanocee&dasdescribed? 
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12. All mmpounds were characterized by LRMS, I-EMS aud ‘H, 13C, HETCOR, APT and COSY NMR. Only 

selected data are cited g: (‘H-NMR (200 MHz, C!D2Cl& 8 1.94 [dd, 3H, Me], 3.73 [dddd, lH, I&5], 4.47 

[A of ABX, lH, H6’J. 4.52 [B of ABX, lH, Ha’& 4.77 [dddd, lH, Hq, 5.01 [dd, U-I, H4], 6.31 [dd, lH, 

Hl], 7.44-8.11 [m, 5H, phenyl], JrJ = 4.4 I-Ix, J1_6 = -0.9 Hz, J~_M~ = -1.4 I-Ix, J4_s = 2.8 I-Ix, Js_,.tO = 1.4 Hx, 

Js_a = 2.2 Hz, Jaagl = 4.4 Hz, JeA.,, = 2.9 I-Ix, Jgaaet, = -12.5 Hz; ‘3c-NMR (75.4 MHZ, CD&): 8 13.91 

[CH3]. 48.12 [C5], 66.48 [C6’], 88.76 [C6], 98.91 [C4], 108.51 [Cl], 128.83, 129.88, 130.27, 133.52 

Iphenyll. 158.45 [C31, 166.44 [CO]; LRMS (CI-NH3): m/e 264 FI+NH4+, 1.70961, 247 FM+, 0.75%], 229 

MI-I+ - I$O. lOO%l; HRMS (CI-NH3): m/e c&d. for C14Hr34 FM+ - I$O], 229.0865; found, 229.0864). 

sb: (‘H-NMR (200 MHZ, CD2Ci& 8 1.15 [t, 3H, CHsCI$J, 1.92 [dd, 3I-L CH3], 2.40 [q. 2H, CH3CIEJ, 

3.59 [dddd, H-I, WI, 4.22 [A of ABX. D-I, H6’J, 4.26 [B of ABX, lH, H6’d, 4.63 [dddd. lI-I, H6], 4.97 [dd, 

1I-L H41,6.22 [dd, lH, Hll, JtJ = 4.4 I-Ix, J,, = -0.8 Hz., J4_Ms = -1.4 Hz, Jhs = 2.7 Hz, Js_Mc = 1.4 I-Ix, JsA = 
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2.8 Hz, JS4., = 4.4 Hz, Jti% = 3.2 Hz, J6sdtb = -12.4 Hz; ‘3C-NMR (75.4 MHz, CD&l& 8 9.11 

[CH$Hd, 13.70 [CH& 27.57 [CI$CH& 47.89 [C5], 65.80 [C6’], 88.57 [Cal, 98.81 [C4], 108.34 [Cl], 

158.23 [C!3], 174.04 [CO]; LRMS (CI-NH& m/e 199 l?t4H+,O.48%], 181 FM+ - H20, lOO%]; HRMS 

(CI-NHs): m/e c&d. for C&& FM+ - QO], 181.086% found, 181.0864). gj&: (IH-NMR (200 MHZ, 

CD&l& 8 2.10 [s. 3H, OAc], 3.61 [dddd, lH, I-D], 4.52 [A of ABX, lH, H4’J, 4.64 [B of ABX, 1X-I. H4’& 

4.65 [A of ABX, l& H3’J, 4.70 p of ABX, 1H, H3b], 5.05 [ddd, lH, H4], 6.58 [d, 1H. H2]. 7.31-8.19 

[m, 5H, phenyl]. Jz_3 = 6.0 Hz, J3_3’. = 6.8 Hz, J3_3*b = 7.7 Hz. Js4 = 6.2 Hz, J3’._3’b = -11.5 Hz, JWa = 4.4 

Hz, Ju*b = 3.2 Hz, Jd*I-4’b = -12.6 Hz; 13C-bTMR (75.4 MHz, cD,C&): 6 21.18 [CHsCO]. 40.49 [C3]. 61.44 

[WI, 65.85 [WI, 80.31 [C4], 96.58 [C2], 128.84, 128.90, 129.27, 129.86, 129.91, 130.42, 133.59, 134.14 

rphcnyl], 166.47 [CO of C4’ benzoateJ, 169.84 [CO of C3’ benmate], 170.98 [CH3CO]; LRMS (CI-NIQ: 

m/e 402 [M+NH4+. lW%], 385 [MH+, 6.66%], 325 [MH+ - AcOH, 58.36961; HIWS (CI-NH& de calcd. 

for Q;,H,,O, [MH+1, 385.1286; found, 385.1287). #j& (‘H-NMR (200 MHz, CDCl$: 8 1.15 [t, 3H, 

CH&H2], 2.11 [s, 3H, OAcl, 2.39 [q, W, M&H&, 3.44 [dddd, lH, I-W, 3.89 [s, 3H, MeO], 4.19 [A of 

ABX, lH, H4’J, 4.34 p of ABX, lH, H4’&, 4.55 [A of ABX, lH, H3’J, 4.60 [B of ABX, lH, IWd, 4.82 

[ddd, lH, H4], 6.46 [cl, 1H, ID], JIk = 7.5 Hz, Js3 = 5.9 Hz, J3_3’r = 7.3 Hz, J3_3.b = 7.2 Hz, J3_, = 6.2 Hz, 

J3.,+3’b = -11.6 Hz, J4-4’r = 4.3 I& Jti% = 3.3 I-b, J4’,,-4’b = -12.7 Hz; 13C-NMR (75.4 MHZ, CD&l& 8 9.05 

[CH3CH& 20.92 [CH3COl, 27.48 [U-I&H& 39.67 [C3], 53.75 m], 63.00 [C3’], 64.86 [WI, 79.62 

[C4], 95.96 [C2], 157.56, 158.00 [OCOCOOMel, 169.58 [CH3CO], 174.09 [CH,CH&O]; LRMS 

(CI-NH3): m/e 336 [M+w+, 56.80%], 259 W.H+ - AcOH, 25.77961; HRMS (CI-NH3): m/e calcd. fca 

C13H22N09 W+m+], 336.1296; found, 336.1294). 

13. The optimum conditions for the photochemical reactions were &term&d to be as follows: A mixtm of 

2-methylfuran (17.3 mJ+ 192 mmol) and the ddehyde (96 mmol) in benzene (1875 mL) was cooled to 8% 

and samrated with argon. After lh, the solution was irradiated (W Hmovia lamp equipped with a 

Vycor filter) for 7 h. Evaporation under reduced pressure, followed by flash chmnatography (petroleum 

ether-ethyl acetate-NEt3 lO:l:O.Ol v/v/v) gave only the desired photoadduct and recovered aldehyde. 

14. Yields in partnthesis opt based on recovered starting material. 
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