DOI: 10.1002/ejoc.201100859

Synthesis and Biological Evaluation of 4'-C,3'-O-Propylene-Linked Bicyclic Nucleosides

Wilfried Hatton,^[a] Julie Hunault,^[a] Maxim Egorov,^[a] Christophe Len,^[b] Muriel Pipelier,^[a] Virginie Blot,^[a] Virginie Silvestre,^[a] Valérie Fargeas,^[a] Adjou Ané,^[c] Tami McBrayer,^[d] Mervi Detorio,^[d] Jong-Hyun Cho,^[d] Nathalie Bourgougnon,^[e] Didier Dubreuil,^[a] Raymond F. Schinazi,^[d] and Jacques Lebreton*^[a]

Keywords: Medicinal chemistry / Antiviral agents / Nucleosides / Metathesis / Glycosylation / Nitrogen heterocycles

A set of pyrimidine nucleosides fused with a 4'-C,3'-O-propylene bridge was successfully synthesised in 12 steps from 1,2:5,6-di-O-isopropylidene- α -D-glucofuranose, an inexpensive starting material, based on a ring-closing metathesis

Introduction

There has been a continuing interest in the synthesis of modified nucleosides as potent antiviral and antitumor agents, and a plethora of compounds has been evaluated over the years.^[11] In this context, various bridged nucleosides, in which the carbohydrate conformation is restricted or locked by the introduction of an additional link on the carbohydrate moiety, have been reported.^[2] Some of these carbohydrate-modified nucleosides have also been incorporated into oligonucleotides to increase resistance toward enzymatic degradation and to form stable duplexes with complementary DNA and RNA strands.^[3] All these modified nucleosides have been designed to optimise their recognition by their target enzymes or oligonucleotide strands based on a preorganisation of the sugar moiety to an appropriate conformation. Among the large number of modi-

[a] Université de Nantes, CNRS, Laboratoire CEISAM-UMR 6230, Faculté des Sciences et des Techniques, 2 rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France Fax: +33-2-51125562

E-mail: Jacques.Lebreton@univ-nantes.fr

- [b] Université de Technologie de Compiègne, Ecole Supérieure de Chimie Organique Minérale, EA 4297, Transformations Intégrées de la Matière Renouvelable, 1 allée du Réseau Jean-Marie Buckmaster, 60200 Compiègne,
- France [c] Laboratoire de Chimie Organique, UFR SSMT, Université de
- Cocody 22, BP 582, Abidjan 22, Cote d'Ivoire
- [d] Center for AIDS Research, Department of Pediatrics, Emory University School of Medicine/Veterans Affair Medical Center, Decatur, Georgia 30033, USA
- [e] Université de Bretagne-Sud Laboratoire de Biotechnologie et Chimie Marines, Campus de Tohannic, 56017 Vannes. France
- Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/ejoc.201100859.

coupling. Antiviral and cytotoxicity activities of the targeted modified nucleosides, as well as their phosphoramidate prodrugs, are described.

(RCM) reaction followed by Vorbrüggen-type nucleobase

fied nucleosides, various restricted analogues on the sugar ring, with a bridge of different sizes containing one oxygen atom, have been evaluated for their biological activities.

In the antisense field, the most intriguing examples are the 2'-0,4'-C-methylene-bridged nucleic acids (named locked nucleic acids, or LNA,^[4] now commercially available) and ENA^[5] (2'-0,4'-C-ethylene-bridged nucleic acids) as outlined in Figure 1. It is worth pointing out that LNA are conformationally restricted RNA mimics, with an Ntype sugar pucker that is present exclusively in A-form duplexes. LNA display a markedly increased duplex stability with complementary RNA and a greater nuclease resistance compared to native DNA. In addition, some bicyclic nucleoside analogues containing a fused oxirane (1),^[6] oxetane (2)^[7] and tetrahydrofuran (3–4^[8] and 5)^[9] rings (Figure 1) have been reported to exhibit anti-HIV activity.

Figure 1. Structures of LNA, ENA and nucleoside derivatives 1-5 (T = thymin-1-yl, C = cytosin-1-yl, B = pyrimidin-1-yl and purin-9-yl).

7390

Besides LNA and ENA, some oxygenated bicyclic nucleosides, such as 6,^[10] 7,^[11] 8,^[12] 9^[13] and 10^{14} (Figure 2), have been incorporated into oligonucleotides and evaluated for antisense application. To the best of our knowledge, since our previous work^[15] on the synthesis of the 4'-*C*,3'-*O*-propylene-bridged nucleosides 11 and 12 starting from thymidine (Scheme 1), no effort to prepare such bicyclic nucleosides has been described in the literature, with the exception of a publication by Morita et al.^[14]

Figure 2. Selected oxygenated bicyclic nucleoside derivatives 6-10 incorporated into oligonucleosides (T = thymin-1-yl, B = pyrimidin-1-yl and purin-9-yl and A = adenin-9-yl).

Scheme 1. Structure of 3'-O,4'-C-propylene-bridged nucleosides 11 and 12 in the 2'-deoxyribose series.

Figure 3. Targeted bicyclic nucleosides 13-18.

Results and Discussion

Chemical Synthesis

For the synthesis of the 4'-C-,3'-O-bridged nucleosides **13–18**, a convergent strategy was used in which the modified glycosyl donor **20** was synthesised from the inexpensive 1,2:5,6-di-O-isopropylidene- α -D-glucofuranose and then coupled to the nucleobase, leading to the targeted D-*ribo* analogues. This strategy was designed based on the retrosynthetic analysis involving a ring-closing metathesis (RCM)^[16] reaction as the key step (Scheme 2). RCM is a useful method in organic chemistry for the synthesis of different nucleoside analogues that have restricted conformations, such as bicyclonucleosides^[2f] and cyclonucleosides.^[2g]

These authors reported the biological evaluation of 2',5'oligoadenylate-5'-triphosphate analogues containing 4'-C,3'-O-bridged adenosine as potent RNase L agonists, but without any information about the preparation of the bicyclic nucleoside derivative **10**.

As a continuation of our interest in the preparation of new nucleoside analogues, we herein report full details related to the synthesis of bicyclic nucleosides 13–18 (Figure 3) in the D-ribose series containing natural pyrimidine nucleobases (thymine, uracil and cytosine) and present their biological evaluation. Scheme 2. Retrosynthetic scheme.

As the entry on the D-*ribo* derivatives, we envisaged that the chiral compound **20** could serve as the common glycosyl donor to reach our target nucleosides, as outlined in Scheme 3. The precursor of our key glycosyl donor **20** was synthesised via the diene **19** according to a known sequence described for the 3-*O*-benzyl derivative.^[17] In our case, the choice to use diacetoneglucose as the starting material led

FULL PAPER

us to invert the absolute configuration of the carbon atom in position 3 [(S) to (R)] to have the D-allose configuration. Then the oxidative cleavage of the diol in position 5,6 would furnish the pentose analogue in similar configuration with that of the natural nucleoside. The chiral starting material **21** was prepared on a large scale in 4 steps from a glucose derivative following known procedures.^[18] Oxidative cleavage of the diol **21** by treatment with NaIO₄ in a mixture of dioxane and water furnished the aldehyde **22**. Without isolation, treatment of the aldehyde **22** with excess formaldehyde and sodium hydroxide afforded the corresponding aldol, which was then trapped by reduction with sodium borohydride to yield the desired diol **23**.^[19] According to previously reported examples, the less hindered 5' β -hydroxy group of diol **23** was stereoselectively protected as a silyl ether in 64% yield.^[11b,17] The structure of **24** was confirmed by NOE correlation between the methylene bearing the free hydroxy function and the methyl of the isopropylidene group oriented toward the *endo* face of the bicyclic system (see Supporting Information).^[17a] Next, Swern oxidation of

Scheme 3. Reagents and conditions: (a) see ref.^[18], 4 steps, 50% overall yield. (b) NaIO₄, H₂O/dioxane (1:1), 0 °C, 30 min. (c) HCHO aq., NaOH aq., room temp., dioxane, 6 h, then NaBH₄, room temp., 30 min., 51% yield for the three steps. (d) TBDPSCI, Et₃N, CH₂Cl₂, 0 °C then r.t., overnight, 64%. (e) CICOCOCI, DMSO, DIPEA, CH₂Cl₂, -78 °C. (f) Ph₃P=CH₂, THF, -78 °C, room temp., 3 h, 45% for the two steps. (g) Grubbs' catalyst second generation, CH₂Cl₂, room temp., 16 h, 97%. (h) AcOH, Ac₂O, cat. H₂SO₄, room temp., 3 h, 77%. (i) Uracil, BSA, TMSOTf, CH₃CN, 0 °C then r.t., 12 h, for **26** 73%, for **30** same conditions with cytosine, 77%. (j) Thymine, HMDS, TMSCI, TMSOTf, DCE, -35 °C, then r.t., 24 h, 76%. (k) K₂CO₃, MeOH, room temp., for **27**, 3 h, 88%; for **29**, 3 h, 79%; for **31**, 2 h, 85%. (l) TBAF, THF, room temp., for **13**, 4 h, 95%; for **14**, 4 h, 95%; for **15**, 4 h, 76%. (m) 1 atm. H₂, 10% Pd/C, EtOH, r.t. for **16**, 24 h, 93%; for **17**, 24 h, 87%; for **18**, 24 h, 79%.

Scheme 4. Reagents and conditions: (a) compound **32**, *N*-methylimidazole, THF, -78 °C, 2 h, then r.t., 12 h, 65%. (b) 1,4-cyclohexadiene, Pd/C, EtOH, room temp., 3 h, 98%. (c) *tert*-BuMgCl, THF, 30 min, -78 °C, then compound **32**, -78 °C, 2 h, then r.t., 12 h, 48%. (d) 1 atm. H₂, Pd/C, EtOH, room temp., 3 h, 94%.

the remaining primary alcohol of **24** gave the corresponding aldehyde, which was treated with methylenetriphenylphosphorane to afford the diene **19** in 45% overall yield for the two-step sequence. The subsequent RCM reaction performed with the second generation Grubbs' catalyst at room temperature in dichloromethane on compound **19** led to the desired cyclised intermediate **25** in high yield.

Successive hydrolysis of the acetonide group of compound 25 and acetylation of the resulting diol with acidic treatment in a one-pot reaction delivered the diacetate 20 as an anomeric mixture. It should be noted that the two anomers have been separated on silica gel chromatography for NMR analysis. At this point, from this key intermediate 20 as an α , β -anomeric mixture, the desired β -nucleoside analogues could be efficiently obtained in around 75% yield after purification by stereoselective coupling in the presence of TMSOTf with the silvlated pyrimidines formed in situ following the method of Vorbrüggen.^[20] The attack of the nucleobase from the favourable β -face is due to anchimeric assistance by neighbouring group participation of the 2'-O-Ac to give only the β -anomer. From 26, 28 and 30, subsequent methanolysis and cleavage of the TBDPS group with TBAF afforded the first bicyclic nucleosides 13, 14 and 15, respectively, and the hydrogenation of the double bond of the compounds so obtained gave the saturated analogues 16–18 in around 60% yield for the three steps. In our hands, standard hydrogenation of 13 [1 atm. H₂ (balloon) 10% Pd/ C, EtOH, room temp., 24 h] furnished the target uridine analogue 16 without the unwanted reduction of the C5-C6 uracil double bond.^[17b,21b-21d] Nevertheless, some reports in the literature^[21a] mention the hydrogenation of the uracil nucleobase under these later conditions, which could depend on the quality of Pd/C. Also, the use of transfer hydrogenation conditions prevents this potential side reaction (vide infra).

In addition to this work, the aryl phosphoramidate derivatives of 13, 15, 16 and 18 were prepared according to reported methodology^[22] to evaluate the importance of the rate-limiting monophosphorylation step on the antiviral activity (Scheme 4). It should be also pointed out that the resulting less polar aryl phosphoramidites prodrugs 33-36 may more efficiently cross the plasma membrane. The masking groups are then cleaved by chemical or enzymatic hydrolysis to liberate the charged phosphates inside the cell. Starting from nucleoside analogue 13, the phosphoramidate 33 was prepared by addition of compound 32 in the presence of N-methylimidazole. The later compound 33 was then subjected to hydrogenation by catalytic hydrogen transfer to minimize reduction of the double bound of the uracil base,^[23] affording the pronucleotide **34** in 65% yield for the two steps. Starting from nucleoside analogue 15, the phosphoramidate 35 was obtained following the Uchigawa procedure^[24] in the presence of *tert*-butylmagnesium chloride in 48% yield. Then, classical hydrogenation of nucleotide analogue 35 furnished the target pronucleotide 36 in 94% yield. All of the phosphoramidate derivatives 33-36 were obtained as diastereometric mixtures ($R_{\rm P}:S_{\rm P} = 1:1$), as measured by ¹H and ³¹P NMR spectra.

Conformational Analysis of Nucleosides 13 and 16

We performed the conformational analysis of both dihydro- and tetrahydro-2*H*-pyrano-fused uridines **13** and **16** to study their ribofuranose sugar conformations. In both cases, our proton NMR studies (Bruker 500 MHz Avance III spectrometer) in D₂O from 283 to 323 K showed no variation of the $J_{1',2'}$ values: 8.45 ± 0.15 Hz and 8.25 ± 0.15 Hz for **13** and **16**, respectively. These results indicated unambiguously that their ribofuranose ring puck-

FULL PAPER

ering was restricted in the *S*-type conformation by the 3'-O,4'-*C*-bridge, which is the appropriate conformation for phosphorylation.^[9,25]

Biological Evaluation

All final nucleoside analogs and phosphoramidates were tested against HIV-1 (strain LAI) in an assay using human peripheral blood mononuclear (PBM) cells and demonstrated no significant activity (median effective concentration, $EC_{50} > 100 \,\mu\text{M}$) when compared with 3'-azido-3'-deoxythymidine (AZT, zidovudine) which had an EC₅₀ value of 0.004 µM.^[26] These compounds were also evaluated for their potential toxic effects on uninfected phytohaemagglutinin-stimulated human PBM cells, and also in lymphoblastoid CEM cells as well as anchored Vero (African green monkey kidney) cells: no cytotoxicity up to 100 µm was detected for any of the compounds.^[27] Although none of these 3'-0,4'-C-propylene-bridged nucleosides presented any cytotoxicity, they had no anti-HIV activity when tested up to 100 µM. Therefore, we also evaluated the compounds for activity against HCV, an RNA virus, using a well defined Huh-7 replicon assay system.^[28] Unfortunately, none of the compounds were effective, but they were also not cytotoxic toward Huh-7 cells, whereas the positive control 2'-C-methylcytidine had significant antiviral activity (EC₅₀ = $3 \mu M$). Concerning the aryl phosphoramidate derivatives of 13, 15, 16 and 18, the biological data showed no appreciable differences in antiviral potency compared to their parent structures against HIV-1 or HCV. All final nucleoside analogues and phosphoramidates were tested against Herpes simplex virus type 1 (HSV-1) by cell viability.^[29,30] After 3 days of treatment, microscopically visible alteration of normal Vero cell morphology was observed and viability assay showed destruction of cell layer. For those compounds, the 50% cytotoxic concentration (CC_{50}) fell within the range of 0.49 to 3.0 µm. The cytosine analogues 15 and 18 showed the lowest toxicity (3.0 and 2.2 µM respectively), compared with Acyclovir [Zovirax[®], 2-amino-9-(propoxymethyl)-1H-purin-6(9H)-one], which has a CC₅₀ above 4.4 µm. No anti-HSV activity was observed for any of the final nucleoside analogues 13-18 nor phosphoramidates 33-36. The lack of recognition of the corresponding 5'-triphosphate of these bicyclic nucleosides by viral polymerases or lack of conversion to the triphophates by cellular kinases are the most likely explanations for the lack of antiviral activity.

Conclusions

In summary, we have prepared a set of novel pyrimidine ribonucleosides fused with a 4'-C,3'-O-propylene bridge in 12 steps from diacetonide- α -D-glucose using a simple and flexible synthetic route. None of the synthesised nucleoside analogues were cytotoxic, but they exhibited no significant anti-HIV or *anti*-HCV activities, suggesting that these compounds are probably not substrates for the various cellular kinases, or alternatively, their corresponding 5'-triphosphates (if they are formed) are not recognized by the viral DNA or RNA polymerases.

Experimental Section

All reactions were performed using anhydrous solvents and monitored by TLC (Kieselgel $60F_{254}$ MERCK aluminium sheet) with detection by UV light and/or with ethanolic phosphomolybdic acid solution. Flash column chromatography was performed on silica gel 60 ACC 40–63 μ M (SDS). ¹H NMR and ¹³C NMR spectra were recorded at 300 MHz and 75 MHz, respectively, with a Bruker Avance 300 MHz spectrometer. Chemical shifts (δ) are quoted in ppm, and are referenced to TMS as an internal standard. Coupling constants (*J*) are quoted in Hz. Mass spectra and HRMS spectra were recorded at the Centre Commun de Spectrométrie de Masse-Claude Bernard, University of Lyon, with a Thermo-Finnigan MAT 95 XL apparatus. Melting points (m.p.) were measured on a Stuart Scientific apparatus 7SMP3 or Kofler Heating Plate (type WME). Optical rotations were measured with a Perkin–Elmer 241 MC polarimeter.

3-O-Allyl-4-C-hydroxymethyl-1,2-O-isopropylidene-a-D-erythrofuranose (23): To a stirred solution of diol 21 (14.2 g, 54.6 mmol) in water and dioxane (1:1, 38 mL), NaIO₄ (14.0 g, 65.5 mmol, 1.2 equiv.) was added at 0 °C. After stirring for 30 min, 1.5 mL of ethylene glycol was added, and the resulting mixture was extracted with AcOEt $(3 \times 50 \text{ mL})$ and then with CH₂Cl₂. The organic layer was then dried with MgSO₄, filtered and concentrated under reduced pressure to obtain the aldehyde 22. To the crude aldehyde dissolved in dioxane (185 mL) was added an aqueous formaldehyde solution (37%, 6.0 mL) and an aqueous solution of NaOH (2 M, 27.3 mL). After stirring for 6 h at room temp., the mixture was cooled to 0 °C, and NaBH₄ (3.8 g, 99.1 mmol, 2.0 equiv.) was slowly added. The solution was stirred for 30 min at room temp., and a pyridine/acetic acid mixture (4:1, 200 mL) was added. After stirring for an additional 30 min at 0 °C, the crude mixture was concentrated under reduced pressure. Purification by chromatography on silica gel (petroleum ether/AcOEt, 30:70) afforded the diol 23 as a colourless syrup (6.6 g, 51% over two steps). Spectroscopic data of this compound were consistent with those reported by Kierzek et al., see ref.^[19]. $[a]_{D}^{25} = +78.3$ (c = 1.0, CHCl₃). IR (neat): \tilde{v} = 3429, 2975, 2930, 2880, 1644, 1456, 1386, 1377, 1106, 1055, 876 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ = 5.94–5.84 (m, 1 H, H₂C=C*H*-CH₂), 5.73 (d, *J* = 3.6 Hz, 1 H, H^{1'}), 5.28 [syst. ABMX *Y*, J = 17.1, 1.2 Hz, 1 H, H-(H)C=CH-CH₂], 5.20 [syst. ABMXY, J $= 10.5, 1.2 \text{ Hz}, 1 \text{ H}, H-(\text{H})\text{C}=\text{CH-CH}_2$, 4.63 (dd, J = 5.1, 3.6 Hz,1 H, $H^{2'}$), 4.22 (d, J = 5.1 Hz, 1 H, $H^{3'}$), 4.21 and 4.06 (syst. ABMXY, J = 12.7, 5.8 Hz, 2 H, H₂C=CH-CH₂), 3.92 and 3.60 (syst. AB, J = 12.0 Hz, 2 H, $H^{5'\alpha}$), 3.83 and 3.78 (syst. AB, J =5.8 Hz, 2 H, H^{5'β}), 1.57 {s, 3 H, [C(CH₃)-CH₃(endo)]}, 1.29 {s, 3 H, [C(CH₃)-CH₃(exo)]} ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 134.0 (H₂C=CH-), 118.3 (H₂C=CH-), 113.5 [2×O-C(O)CH₃], 104.3 (C^{1'}), 86.2 (C^{4'}), 78.5 (C^{2'}), 78.2 (C^{3'}), 71.9 (O-CH₂-CH=CH₂), 64.0, 63.1 (2×CH₂-OH), 26.5 [C(CH₃)-CH₃(endo)], 25.8 [C(CH₃)-CH₃(exo)] ppm.

3-O-Allyl-5-*tert*-butyldiphenylsilyl-4-C-hydroxymethyl-1,2-O-isopropylidene- α -D-erythrofuranose (24): Diol 23 (6.6 g, 25.4 mmol) was dissolved in dry CH₂Cl₂ (150 mL), and then Et₃N (11.3 mL, 93.9 mmol, 3.7 equiv.) and *tert*-butyldiphenylsilylchloride (19.7 mL, 76.2 mmol, 3.0 equiv.) were added at 0 °C. After stirring overnight at room temp., a saturated aqueous solution of NaHCO₃ was added, and the aqueous layer was extracted three times with CH₂Cl₂. The organic layers were combined, dried with MgSO₄,

filtered and concentrated under reduced pressure. After purification by chromatography on silica gel (petroleum ether/AcOEt, 90:10), the monoprotected alcohol 24 was obtained as white crystals (8.3 g, 64%); m.p. 67–69 °C. IR (KBr): $\tilde{v} = 3500, 3133, 2987,$ 2952, 2857, 1471, 1429, 1385, 1136, 1007 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ = 7.68–7.65 (m, 4 H, H^{Ar}), 7.43–7.38 (m, 6 H, H^{Ar}), 5.99–5.86 (syst. ABMXY, 1 H, H₂C=CH-CH₂), 5.83 (d, J = 3.3 Hz, 1 H, H^{1'}), 5.30 [syst. ABMX Y, J = 17.1, 1.5 Hz, 1 H, H-(H)C=CH-CH₂], 5.24 [syst. ABMXY, J = 10.3, 1.5 Hz, 1 H, H-(H)C=CH-CH₂], 4.70 (dd, J = 5.1, 3.8 Hz, 1 H, H^{2'}), 4.43 (d, J =5.1 Hz, 1 H, $H^{3'}$), 4.22 and 4.02 (syst. *ABMXY*, J = 12.6, 5.4, 1.5 Hz, 2 H, H₂C=CH-CH₂), 3.84 and 3.78 (syst. AB, J = 11.9 Hz, 2 H, -CH₂OH), 3.82 and 3.75 (syst. AB, J = 9.0 Hz, 2 H, H^{5'}), 1.64 {s, 3 H, [C(CH₃)-CH₃(endo)]}, 1.37 {s, 3 H, [C(CH₃)-CH₃(exo)]}, 1.06 (s, 9 H, *t*Bu) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 135.6 (CH^{Ar}), 134.1 (H₂C=CH-), 133.3, 133.0 (C^{Ar}-Si), 129.8, 127.7 (CH^{Ar}) , 118.2 (H₂C=CH-), 113.7 [2×O-C(O)CH₃], 104.4 (C^{1'}), 87.3 (C^{4'}), 79.2 (C^{2'}), 78.1 (C^{3'}), 71.9 (O-CH₂-CH=CH₂), 65.5 (CH₂-O-Si), 63.2 (CH₂-OH), 26.8 [(CH₃)₃C-Si], 26.7 [C(CH₃)-CH₃(endo)], 26.3 [C(CH₃)-CH₃(exo)], 19.3 [(CH₃)₃C-Si] ppm.

3-O-Allyl-5-(tert-butyldiphenylsilyl)-1,2-O-isopropylidene-4-C-vinylα-D-erythrofuranose (19): To a solution of oxalyl chloride (2.9 mL, 33.1 mmol, 2.0 equiv.) in anhydrous CH₂Cl₂ (70 mL) at -78 °C was added a solution of dry DMSO (3.9 mL, 10.3 mmol, 3.3 equiv.) in anhydrous CH₂Cl₂ (35 mL). After stirring for 20 min at -78 °C, alcohol 24 (8.3 g, 16.5 mmol) in anhydrous CH_2Cl_2 (35 mL) was added dropwise. The reaction mixture was stirred for 30 min at -78 °C, Et₃N (12.4 mL, 102.5 mmol, 6.2 equiv.) was added, and the reaction was warmed to room temp. before being cooled to 0 °C for addition of H₂O. After extraction with CH₂Cl₂, the organic layer was washed with H₂O and brine, dried with MgSO₄, filtered and concentrated under reduced pressure. The aldehyde (8.2 g) was then used crude for the next reaction. To a suspension of triphenylphosphonium bromide (23.6 g, 66.1 mmol, 4.0 equiv.) in dry THF (300 mL) at 0 °C was added nBuLi (1.6 м in hexanes, 23.8 mL, 59.5 mmol, 3.6 equiv.). After stirring for 5 min at 0 °C and 1 h at room temp., the reaction mixture was cooled to -78 °C. A solution of the previous crude aldehyde (8.2 g, 16.5 mmol) in dry THF (200 mL) was added dropwise. The reaction was stirred for 30 min at -78 °C then for 2 h at 0 °C and finally for 1 h at room temperature before being cooled to 0 °C for the addition of a saturated aqueous solution of NH₄Cl. After extraction with CH₂Cl₂, the combined organic layers were washed with brine, dried with $MgSO_4$, filtered and concentrated under reduced pressure. The crude residue was purified by chromatography on silica gel (petroleum ether/AcOEt, 95:5), and the unsaturated compound 19 was obtained as a colourless oil (3.7 g, 45% over two steps). $[a]_{D}^{25} = -1.0$ $(c = 1.0, \text{CHCl}_3)$. IR (neat): $\tilde{v} = 2980, 2858, 1472, 1428, 1265, 1250,$ 1113, 1028 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ = 7.75–7.66 (m, 4 H, H^{Ar}), 7.45–7.35 (m, 6 H, H^{Ar}), 6.14 (syst. ABX, J = 17.3, 11.0 Hz, 1 H, HC=CH₂ vinyl), 6.08–5.94 (m, 1 H, H₂C=CH-CH₂ allyl), 5.85 (d, J = 3.8 Hz, 1 H, H^{1'}), 5.45 [syst. ABX, J = 17.3, 1.8 Hz, 1 H, HC=C(H)-*H* vinyl], 5.35 [syst. ABMX *Y*, *J* = 17.3, 1.4, 1.1 Hz, 1 H, H-(H)C=CH-CH₂ allyl], 5.25–5.22 [m, 1 H, H-(H)-C=CH-CH₂ allyl], 5.18 [syst. ABX, J = 11.0, 1.8 Hz, 1 H, H-C=C(H)-H vinyl], 4.72 (dd, J = 4.9, 3.8 Hz, 1 H, H^{2'}), 4.48 (d, J =4.9 Hz, 1 H, H^{3'}), 4.30–4.12 (m, 2 H, H₂C=CH-CH₂ allyl), 3.57 (s, 2 H, H^{5'}), 1.54 {s, 3 H, [C(CH₃)-CH₃(endo)]}, 1.38 {s, 3 H, [C(CH₃)-CH₃(exo)]}, 1.05 (s, 9 H, tBu) ppm. ¹³C NMR (75 MHz, CDCl₃): $\delta = 135.7, 135.5$ (CH^{Ar}), 134.8 (H₂C=CH- vinyl), 133.9 (H₂C=CH- allyl), 133.5, 133.0 (C^{Ar}-Si), 129.7, 127.7 (CH^{Ar}), 117.9 $(H_2C=CH- allyl), 116.2 (H_2C=CH- vinyl), 113.5 [2 \times O-C(O)CH_3],$ 103.9 (C^{1'}), 87.1 (C^{4'}), 79.5 (C^{2'}), 77.0 (C^{3'}), 72.0 (O-CH₂-

CH=CH₂), 66.3 (*C*H₂-O-Si), 26.8 [(*C*H₃)₃C-Si], 26.2 [C(CH₃)-*C*H₃(*endo*)], 25.8 [C(CH₃)-*C*H₃(*exo*)], 19.3 [(CH₃)₃*C*-Si] ppm.

(35)-3,7-Anhydro-5,6-dideoxy-1,2-O-(1-methylethylidene)-4-{[(tertbutyldiphenylsilyl)oxy]methyl}-β-L-*threo*-hept-5-enofuranose (25): To a solution of compound 19 (3.7 g, 7.5 mmol) in dry CH_2Cl_2 (850 mL) was added Grubbs' type-II catalyst (670 mg, 0.75 mmol, 0.1 equiv.). The reaction mixture was stirred for 16 h at room temp., and then the solvent was evaporated. The crude residue was purified by chromatography on silica gel (petroleum ether/AcOEt, 95:5) to give the bicyclic compound 25 as a brown oil (3.4 g, 97%). $[a]_{D}^{25} = -3.1$ (c = 1.0, CHCl₃). IR (neat): $\tilde{v} = 2931, 2857, 1428, 1381,$ 1372, 1113, 1018 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ = 7.63–7.72 (m, 4 H, H^{Ar}), 7.35–7.45 (m, 6 H, H^{Ar}), 5.97 (d, J = 4.3 Hz, 1 H, $H^{1'}$), 6.00–5.93 (m, 1 H, $H_2C=CH-CH_2$), 5.73 [syst. ABMX, J =10.6, 2.2 Hz, 1 H, H-(H)C=CH-CH₂], 4.94 (dd, J = 5.9, 4.3 Hz, 1 H, $H^{2'}$), 4.50 and 4.04 (syst. *ABMX*, J = 16.4, 3.0, 2.2 Hz, 2 H, HC=CH-CH₂), 4.39 (d, J = 5.9 Hz, 1 H, H^{3'}), 3.65 and 3.43 (syst. AB, J = 10.8 Hz, 2 H, H^{5'}), 1.54 {s, 3 H, [C(CH₃)-CH₃(endo)]}, 1.38 {s, 3 H, [C(CH₃)-CH₃(exo)]}, 1.05 (s, 9 H, tBu) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 135.7 (CH^{Ar}), 133.0, 132.8 (C^{Ar}-Si), 129.8 (CH^{Ar}, HC=CH-CH₂), 127.8 (CH^{Ar}), 124.3 (HC=CH-CH₂), 114.1 [O-C(O)(CH₃)₂], 105.4 (C^{1'}), 82.2 (C^{2'}), 80.2 (C^{4'}), 74.4 (C^{3'}), 68.1 (C^{5'}), 63.8 (HC=CH-CH₂-O), 27.2 [C(CH₃)-CH₃], 26.8 [(CH₃)₃-C-Si], 26.4 [C(CH₃)-CH₃], 19.2 [(CH₃)₃C-Si] ppm.

1,2-Di-O-acetyl-3,7-anhydro-5,6-dideoxy-4-{[(tert-butyldiphenylsilyl)oxy]methyl}-α/β-L-lyxo-hept-5-enofuranose (20): To a solution of the bicyclic compound 25 (3.4 g, 7.3 mmol) in acetic acid (95 mL) was added acetic anhydride (10.2 mL, 87.5 mmol, 12.0 equiv.) and a concentrated solution of H_2SO_4 (95 µL, 14 µmol, 0.002 equiv.). After stirring for 3 h at room temp., an aqueous saturated solution of NaHCO₃ was added, and the aqueous layer was extracted with CH₂Cl₂. The organic layer was dried with MgSO₄, filtered and concentrated under reduced pressure. The crude residue was purified by chromatography on silica gel (petroleum ether/AcOEt, 80:20) to give anomer β -20 as a colourless oil (1.7 g, 46%) and anomer α -20 as a colourless oil (1.2 g, 31%). **β-Anomer:** $[a]_D^{25} = +67.0$ (c = 1.0, CHCl₃). ¹H NMR (300 MHz, CDCl₃): δ = 7.74–7.66 (m, 4 H, H^{Ar}), 7.46–7.36 (m, 6 H, H^{Ar}), 6.51 (d, J = 5.1 Hz, 1 H, H^{1'}), 6.15–6.08 (syst. ABMX, J = 10.4, 4.3, 1.6 Hz, 1 H, HC=CH-CH₂), 5.70–5.66 (m, 2 H, $HC=CH-CH_2$, $H^{2'}$), 4.38 (d, J = 5.0 Hz, 1 H, $H^{3'}$), 4.28 and 3.90 (syst. ABMX, J = 16.4, 4.3, 2.0 Hz, 2 H, HC=CH-CH₂), 3.59 and 3.38 (syst. AB, J = 11.0 Hz, 2 H, H^{5'}), 2.19, 2.11 [s, 3 H, O-C(=O)-CH₃], 1.10 (s, 9 H, tBu) ppm. ¹³C NMR (75 MHz, $CDCl_3$): $\delta = 170.6, 170.0 [2 \times O-C(=O)-CH_3], 135.6, 132.7 (CH^{Ar}),$ 132.3 (CAr), 130.8 (HC=CH-CH₂), 129.9, 127.8 (CHAr), 124.7 $(HC=CH-CH_2)$, 94.5 $(C^{1'})$, 81.5 $(C^{4'})$, 74.3 $(C^{3'})$, 72.6 $(C^{2'})$, 68.0 $(C^{5'})$, 62.8 (HC=CH-CH₂), 26.8 [(CH₃)₃C-Si], 21.4, 20.7 [2×O-C(=O)-CH₃], 19.1 [(CH₃)₃C-Si] ppm. α -Anomer: $[a]_D^{25} = -59.0$ (c = 1.0, CHCl₃). ¹H NMR (300 MHz, CDCl₃): δ = 7.74–7.66 (m, 4 H, H^{Ar}), 7.46–7.36 (m, 6 H, H^{Ar}), 6.38 (d, J = 5.4 Hz, 1 H, $H^{1'}$), 6.08 (syst. ABMX, J = 10.4, 4.3, 1.5 Hz, 1 H, HC=CH-CH₂), 5.64 (syst. ABMX, J = 10.4, 2.0 Hz, 1 H, HC=CH-CH₂), 5.60 (dd, J = 5.3, 5.0 Hz, 1 H, H^{2'}), 4.50 and 4.04 (syst. *AB*MX, *J* = 16.4, 4.3, 2.0 Hz, 2 H, HC=CH-CH₂), 4.40 (d, J = 5.0 Hz, 1 H, H^{3'}), 3.66 and 3.43 (syst. AB, J = 11.0 Hz, 2 H, H^{5'}), 2.18, 2.00 [s, 3 H, O-C(=O)-CH₃], 1.10 (s, 9 H, tBu) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 170.7, 170.1 [2×O-C(=O)-CH₃], 135.6 (CH^{Ar}), 132.6 (C^{Ar}), 130.0 (HC=CH-CH₂) 129.9, 127.8 (CH^{Ar}), 124.1 (HC=CH-CH₂), 99.2 $(C^{1'})$, 82.0 $(C^{4'})$, 80.2 $(C^{3'})$, 75.2 $(C^{2'})$, 67.6 $(C^{5'})$, 63.0 (HC=CH- CH_2), 26.7 [(CH_3)₃C-Si], 21.0 [2×O-C(=O)- CH_3], 19.2 [(CH_3)₃C-Si] ppm.

Uridine Derivative 26: To a suspension of uracil (203 mg, 0.37 mmol, 1.5 equiv.) in freshly distilled CH₃CN (3 mL) was

added BSA [N,O-bis(trimethylsilyl)acetamide] (185 µL, 0.75 mmol, 3.0 equiv.). The mixture was stirred for 20 min at room temp., and a solution of glycoside 20 (116 mg, 0.25 mmol, 1 equiv.) in freshly distilled CH₃CN (2 mL) was added. After cooling to 0 °C, TMSOTf (46 µL, 0.25 mmol) was added, and the reaction was stirred at room temp. overnight. After dilution with CH₂Cl₂, an aqueous saturated solution of NaHCO3 was added. The aqueous layer was extracted three times with CH₂Cl₂, and then the organic layers were recombined, dried with Na2SO4, filtered and concentrated under reduced pressure. The crude mixture was purified by chromatography on silica gel (petroleum ether/AcOEt, 60:40) to afford compound 26 (181 mg, 73%) as a white solid; m.p. 61-62 °C. $[a]_{D}^{25} = +46.5 \ (c = 1.0, \text{ CHCl}_3).$ ¹H NMR (300 MHz, CDCl₃): $\delta =$ 9.20 (s, 1 H, NH), 7.79 [d, J = 8.1 Hz, 1 H, N-(H)C=CH], 7.70-7.63 (m, 4 H, H^{Ar}), 7.47–7.38 (m, 6 H, H^{Ar}), 6.46 (d, J = 8.4 Hz 1 H, $H^{1'}$), 6.13 (syst ABMX, J = 10.3, 4.7, 1.6 Hz, 1 H, HC=CH-CH₂), 5.58–5.49 (m, 2 H, HC=CH-CH₂, H^{2'}), 5.37 [d, J = 8.1 Hz, 1 H, N-(H)C=CH, 4.35 (d, J = 4.8 Hz, 1 H, H^{3'}), 4.23 [syst. ABMX, J = 16.4, 4.7, 1.2 Hz, 1 H, HC=CH-C(H)-H], 3.88–3.81 [m, 1 H, HC=CH-C(H)-H], 3.83 and 3.50 (syst. AB, J = 11.3 Hz, 2 H, H^{5'}), 2.16 [s, 3 H, H₃C-C(=O)], 1.13 (s, 9 H, tBu) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 170.3, 163.0, 150.6 (C=O), 140.0 [N-(H)C=CH], 135.7, 135.3 (CH^{Ar}), 131.6 (HC=CH-CH₂), 130.3, 130.2 (CAr-Si), 128.1, 127.8 (CHAr), 123.2 (HC=CH-CH₂), 102.9 [N-(H)C=CH], 84.1 (C^{1'}), 79.6 (C^{4'}), 75.2 (C^{3'}), 74.6 (C^{2'}), 68.5 (C^{5'}), 62.6 (HC=CH-CH₂), 27.0 [(CH₃)₃C-Si], 20.6 [O-C(=O)-CH₃], 19.3 [(CH₃)₃C-Si] ppm. HRMS (CI): calcd. for $C_{30}H_{35}N_2O_7Si [M + H]^+$ 563.2214; found 563.2214.

Uridine Derivative 27: Compound 26 (181 mg, 0.32 mmol) was dissolved in MeOH (14 mL), and K₂CO₃ (126 mg, 0.96 mmol, 3 equiv.) was added. After stirring for 3 h at room temp., an aqueous solution of HCl (1 N) was added until neutral pH, and then the solvent was evaporated under reduced pressure. The crude mixture was purified by chromatography on silica gel (petroleum ether/ AcOEt, 50:50) to obtain alcohol 27 (147 mg, 88%) as a white solid; m.p. 90–91 °C. $[a]_{D}^{25} = +51.4$ (c = 1.0, CHCl₃). ¹H NMR (300 MHz, $CDCl_3$): $\delta = 9.58$ (br. s, 1 H, NH), 7.73 [d, J = 8.1 Hz, 1 H, N-(H)-C=CH], 7.65–7.59 (m, 4 H, H^{Ar}), 7.47–7.38 (m, 6 H, H^{Ar}), 6.17 (d, J = 8.4 Hz, 1 H, H^{1'}), 6.12 (syst ABMX, J = 10.5, 3.9 Hz, 1 H, HC=CH-CH₂), 5.57 (d, J = 10.5 Hz, 1 H, HC=CH-CH₂), 5.42 [dd, *J* = 8.1, 1.5 Hz, 1 H, N-(H)C=C*H*], 4.54 (dd, *J* = 8.4, 4.8 Hz, 1 H, H^{2'}), 4.28 and 3.94 (syst. ABMX, J = 16.5, 3.9 Hz, 2 H, HC=CH- CH_2), 4.07 (d, J = 4.8 Hz, 1 H, $H^{3'}$), 3.79 and 3.47 (syst. AB, J =11.1 Hz, 2 H, H^{5'}), 1.10 (s, 9 H, tBu) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 163.2, 151.1 (C=O), 140.0 [N-(H)C=CH], 135.6, 135.2, 130.2, 128.0 (CH^{Ar}), 135.3, 131.6 (C^{Ar}-Si), 123.7 (HC=CH-CH₂), 102.8 [N-(H)C=CH], 86.9 (C^{1'}), 79.0 (C^{4'}), 76.1 (C^{3'}), 75.3 (C^{2'}), 68.3 (C^{5'}), 62.7 (HC=CH-CH₂), 27.0 [(CH₃)₃C-Si], 19.2 [(CH₃)₃C-Si] ppm. HRMS (CI): calcd. for $C_{28}H_{33}N_2O_6Si [M + H]^+ 521.2108$; found 521.2109.

Uridine Derivative 13: Alcohol **27** (147 mg, 0.28 mmol) was dissolved in THF (4 mL), and a solution of TBAF (1 M in THF, 565 μ L, 0.56 mmol, 2 equiv.) was added. The mixture was stirred for 4 h at room temp. and then concentrated under reduced pressure. Purification of the crude mixture by chromatography on silica gel (AcOEt/MeOH, 70:30) afforded nucleoside analogue **13** contaminated with a small amount of TBAF-derived materials (83 mg, 95%) as a white powder; m.p. 197–198 °C. $[a]_{D}^{25}$ = +70.8 (*c* = 1.0, MeOH). ¹H NMR (300 MHz, CD₃OD): δ = 8.10 [d, *J* = 8.1 Hz, 1 H, N-(*H*)C=CH], 6.23 (syst. AB*M*X, *J* = 10.5, 4.8, 1.8 Hz, 1 H, HC=C*H*-CH₂), 6.11 (d, *J* = 8.1 Hz, 1 H, H^{1'}), 5.75 [d, *J* = 8.1 Hz, 1 H, *H*C=CH-CH₂), 4.62 (dd, *J* = 8.1, 4.8 Hz, 1 H, H^{2'}), 4.27 and 3.99

(syst. *AB*MX, *J* = 16.2, 4.8, 1.8 Hz, 2 H, HC=CH-CH₂), 4.01 (d, *J* = 4.8 Hz, 1 H, H^{3'}), 3.60 and 3.49 (syst AB, *J* = 11.7 Hz, 2 H, H^{5'}) ppm. ¹³C NMR (75 MHz, CD₃OD): δ = 168.1, 152.8 (C=O), 142.9 [N-(H)C=CH], 132.5 (HC=CH-CH₂), 125.2 (HC=CH-CH₂), 103.4 [N-(H)C=CH], 88.4 (C^{1'}), 80.9 (C^{4'}), 78.5 (C^{3'}), 75.3 (C^{2'}), 67.4 (C^{5'}), 63.8 (HC=CH-CH₂) ppm. HRMS (CI): calcd. for C₁₂H₁₅N₂O₆ [M + H]⁺ 283.0930; found 283.0931.

Uridine Derivative 16: To a solution of nucleoside analogue 14 (83 mg, 0.38 mmol) in EtOH (17 mL) was added Pd/C 10% (17 mg). After 24 h of stirring at room temp. under H₂ atmosphere (balloon), the reaction mixture was filtered through Celite and concentrated under reduced pressure. The crude residue was purified by chromatography on silica gel (AcOEt and AcOEt/MeOH, 70:30) to give the diol 16 as a white powder (75 mg, 93%); m.p. 224-225 °C. $[a]_{D}^{25} = -39.8$ (c = 1.0, MeOH). ¹H NMR (300 MHz, $[D_6]$ -DMSO): δ = 11.27 (s, 1 H, NH), 8.02 [d, J = 8.1 Hz, 1 H, N-(H)-C=CH], 6.02 (d, J = 8.4 Hz, 1 H, H^{1'}), 5.67 [d, J = 8.1 Hz, 1 H, N-(H)C=CH], 5.35 (t, J = 1.2 Hz, 1 H, CH₂-OH), 5.15 (d, J =7.5 Hz, 1 H, CH-OH), 4.57–4.50 (m, 1 H, H^{2'}), 3.90–3.86 (m, 1 H, CH₂-CH₂-O), 3.83 (d, J = 3.9 Hz, 1 H, H^{3'}), 3.39–3.37 (m, 2 H, $H^{5'}$), 3.30–3.27 (m, 1 H, CH₂-CH₂-O), 1.59–1.51 [m, 4 H, H₂C-CH₂-O, H₂C-(CH₂)₂-O] ppm. ¹³C NMR (75 MHz, [D₆]DMSO): δ = 162.9, 151.1 (C=O), 141.0 [N-(H)C=CH], 102.0 [N-(H)C=CH], 86.8 (C1'), 81.6 (C4'), 76.4 (C3'), 73.2 (C2'), 66.4 (C5'), 63.7 (CH2-CH2-O), 28.1 (CH2-CH2-O), 20.5 [CH2-(CH2)2-O] ppm. HRMS (CI): calcd. for $C_{12}H_{17}N_2O_6 [M + H]^+$ 285.1087; found 285.1088.

Thymidine Derivative 28: To a suspension of thymine (475 mg, 3.8 mmol, 2.1 equiv.) in dry HMDS (50 mL) was added trimethylsilyl chloride (7.5 mL, 59.0 mmol, 33.0 equiv.). The reaction mixture was heated under reflux overnight and then concentrated under reduced pressure. The crude mixture was diluted with dry 1,2dichloroethane (5 mL) and a solution of compound 20 (935 mg, 1.8 mmol) in dry 1,2-dichloroethane (10 mL) was added. The reaction mixture was cooled to -35 °C and TMSOTf (720 μ L, 4.0 mmol, 2.0 equiv.) was added dropwise. After 24 h of stirring at room temp., an aqueous saturated solution of NaHCO3 was added, and the resulting mixture was stirred for 40 min at room temp. After extraction with CH₂Cl₂, the organic layers were dried with MgSO₄, filtered and concentrated under reduced pressure. The crude residue was purified by chromatography on silica gel (petroleum ether/AcOEt, 40:60) to give the thymidine derivative 28 as a white solid (790 mg, 76%); m.p. 82–83 °C. $[a]_D^{25} = +103.3$ (c = 1.0, CHCl₃). IR (KBr): $\tilde{v} = 3360, 2874, 1700, 1458, 1129, 1060 \text{ cm}^{-1}$. ¹H NMR (300 MHz, CDCl₃): δ = 8.90 (br. s, 1 H, NH), 7.72–7.66 (m, 4 H, H^{Ar}), 7.53 (s, 1 H, HC=C^{thy}), 7.47-7.37 (m, 6 H, H^{Ar}), 6.40 (d, J = 8.6 Hz, 1 H, H^{1'}), 6.18–6.10 (syst. ABMX, J = 10.3, 3.8 Hz, 1 H, HC=CH-CH₂), 5.61-5.51 (m, 2 H, H^{2'}, HC=CH-CH₂), 4.40 (d, J = 4.9 Hz, 1 H, H^{3'}), 4.23 [syst. ABMX, J = 16.3, 4.7 Hz, 1 H, HC=CH-C(H)-H], 3.91-3.82 [m, 1 H, HC=CH-C(H)-H], 3.86 and 3.50 (syst. AB, J = 11.2 Hz, 2 H, H^{5'}), 2.16 [s, 3 H, O-C(=O)-CH₃], 1.68 (s, 3 H, CH₃^{thy}), 1.11 (s, 9 H, tBu) ppm. 13 C NMR (75 MHz, CDCl₃): $\delta = 170.6$ [O-*C*(=O)-CH₃], 163.6, 150.7 (C=O), 135.6 (CH^{Ar}), 135.3 (CH^{thy}), 131.8, 132.6 (C^{Ar}), 131.5 (HC=CH-CH₂), 128.1, 130.2, 130.3 (CH^{Ar}), 123.4 (HC=CH-CH₂), 111.8 (C^{thy}), 83.7 (C^{1'}), 79.3 (C^{4'}), 75.0 (C^{3'}), 74.3 (C^{2'}), 62.6 (C^{5'}), 60.4 (HC=CH-CH₂), 27.1 [(CH₃)₃C-Si], 20.7 [O-C(=O)-CH₃], 19.4 [(CH₃)₃C-Si], 11.7 (CH₃^{thy}) ppm. HRMS (CI): calcd. for $C_{31}H_{37}N_2O_7Si [M + H]^+ 577.2371$; found 577.2370.

Thymidine Derivative 29: To a solution of thymidine derivative **28** (380 mg, 0.7 mmol) in MeOH (30 mL) was added K_2CO_3 (288 mg, 2.1 mmol, 3.2 equiv.). After stirring for 3 h at room temp., the reaction mixture was neutralised with an aqueous solution of HCl (1 M)

until neutral pH, and then concentrated under reduced pressure. The crude residue was purified by chromatography on silica gel (petroleum ether/AcOEt, 60:40) to give the alcohol 29 as a white solid (278 mg, 79%); m.p. 89–90 °C. $[a]_D^{25} = +106.4$ (c = 1.0, CHCl₃). ¹H NMR (300 MHz, CDCl₃): δ = 8.21 (br. s, 1 H, NH), 7.66-7.63 (m, 4 H, H^{Ar}), 7.49-7.39 (m, 7 H, HC=C^{thy}, H^{Ar}), 6.17-6.10 (m, 2 H, $H^{1'}$, HC=CH-CH₂), 5.58 (syst. ABMX, J = 10.2 Hz, 1 H, HC=CH-CH₂), 4.58 (m, 1 H, H^{2'}), 4.25 and 3.95 (syst. *AB*MX, *J* = 16.4, 4.5 Hz, 1 H, HC=CH-CH₂), 4.11 (d, *J* = 5.0 Hz, 1 H, H^{3'}), 3.83 and 3.50 (syst. AB, J = 11.0 Hz, 2 H, H^{5'}), 3.02 (d, J = 11.0 Hz, 1 H, OH, 1.52 (s, 3 H, CH₃^{thy}), 1.11 (s, 9 H, tBu) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 163.2, 150.8 (C=O), 135.6 (CH^{Ar}), 135.4 (HC=C^{thy}), 135.3, 132.6, 131.9 (C^{Ar}), 131.1 (HC=*C*H-CH₂), 130.4, 130.3, 128.1 (CH^{Ar}), 124.0 (H*C*=CH-CH₂), 111.6 (C^{thy}), 86.7 (C^{1'}), 78.8 (C^{4'}), 75.9 (C^{3'}), 74.8 (C^{2'}), 68.4 (CH₂-O-Si), 62.7 (H-C=CH-CH₂), 27.1 [(CH₃)₃C-Si], 19.4 [(CH₃)₃C-Si], 11.8 (CH3^{thy}) ppm. HRMS (CI): calcd. for C29H35N2O6Si [M + H]⁺ 534.2264; found 535.2263.

Thymidine Derivative 14: To a solution of alcohol 29 (200 mg, 0.37 mmol) in dry THF (5 mL) was added TBAF (1 M in THF, 750 µL, 0.75 mmol, 2 equiv.). After 4 h of stirring at room temp., the reaction mixture was concentrated under reduced pressure. The crude mixture was purified by chromatography on silica gel (Ac-OEt/MeOH, 85:15) to give the diol 14 as a white solid contaminated with a small amount of TBAF-derived materials (110 mg, 95%); m.p. 210–211 °C. $[a]_D^{25} = +69.5$ (c = 1.0, MeOH). IR (KBr): $\tilde{v} = 3465, \ 3257, \ 2925, \ 1724, \ 1658, \ 1477, \ 1368, \ 1259, \ 1129, \ 1060,$ 1040 cm⁻¹. ¹H NMR (300 MHz, CD₃OD): δ = 7.82 (s, 1 H, CH^{thy}), 6.12 (syst. ABMX, J = 10.0, 5.0, 1.0 Hz, 1 H, HC=CH-CH₂), 6.00 $(d, J = 8.4 \text{ Hz}, 1 \text{ H}, \text{H}^{1'}), 5.57 \text{ (syst. ABM}X, J = 10.0 \text{ Hz}, 1 \text{ H},$ $HC=CH-CH_2$, 4.54 (dd, J = 5.8 Hz, 1 H, $H^{2'}$), 4.16 and 3.87 (syst. *AB*MX, *J* = 16.3, 4.6 Hz, 1 H, C=CH-CH₂-H), 3.95 (d, *J* = 5.0 Hz, 1 H, $H^{3'}$), 3.52 and 3.37 (syst. AB, J = 11.0, 7.0 Hz, 2 H, $H^{5'}$) 1.8 (s, 3 H, CH₃^{thy}) ppm. ¹³C NMR (75 MHz, CD₃OD): δ = 166.3, 153.1 (C=O), 138.5 (CH^{thy}), 132.4 (HC=CH-CH₂), 125.3 (HC=CH-CH₂), 112.1 (C^{thy}), 88.3 (C^{1'}), 80.7 (C^{4'}), 78.4 (C^{3'}), 75.0 (C^{2'}), 67.5 (H-C=CH-CH₂), 63.9 (C^{5'}), 12.5 (CH₃^{thy}) ppm. HRMS (CI): calcd. for $C_{13}H_{17}N_2O_6 [M + H]^+$ 297.1087; found 297.1087.

Thymidine Derivative 17: To a solution of diol 14 (110 mg, 0.37 mmol) in MeOH (20 mL) was added Pd/C 10% (26 mg). After 24 h of stirring at room temp. under H_2 atmosphere (balloon), the reaction mixture was filtered through Celite and concentrated under reduced pressure. The crude residue was purified by chromatography on silica gel (AcOEt and AcOEt/MeOH, 95:5) to give the diol 17 as a white powder (95 mg, 87%); m.p. 123–124 °C. $[a]_{D}^{25}$ = -40.7 (c = 1.0, CD₃OD). IR (KBr): $\tilde{v} = 3429$, 3064, 2928, 1696, 1473, 1283, 1074 cm⁻¹. ¹H NMR (300 MHz, CD₃OD): δ = 8.00 (s, 1 H, CH^{thy}), 6.13 (d, J = 8.0 Hz, 1 H, H^{1'}), 4.73–4.69 (m, 1 H, $H^{2'}$), 3.95–3.92 (m, 1 H, CH₂-CH₂-O), 3.91 (d, J = 4.2 Hz, 1 H, $H^{3'}$), 3.52 (syst. *AB*, *J* = 11.7 Hz, 2 H, $H^{5'}$), 3.38–3.27 (m, 1 H, CH₂-CH₂-O), 1.90 (s, 3 H, CH₃^{thy}), 1.80–1.75 {m, 2 H, [HC(H)-CH₂-O, HC(*H*)-(CH₂)₂-O]}, 1.64–1.54 {m, 2 H, [HC(*H*)-CH₂-O, HC(*H*)-(CH₂)₂-O]} ppm. ¹³C NMR (75 MHz, MeOD): δ = 166.3, 153.2 (C=O), 138.8 (CH^{thy}), 111.8 (C^{thy}), 89.5 (C^{1'}), 83.6 (C^{4'}), 78.3 (C^{3'}), 75.6 (C^{2'}), 68.5 (C^{5'}), 65.7 (CH₂-CH₂-O), 29.6, 22.0 [CH₂-(CH₂)₂-O, CH₂-CH₂-O], 12.5 (CH₃^{thy}) ppm. HRMS (CI): calcd. for $C_{13}H_{19}N_2O_6 [M + H]^+$ 299.1243; found 299.1241.

Cytidine Derivative 30: To a suspension of cytosine (36 mg, 0.33 mmol, 1.5 equiv.) in freshly distilled CH₃CN (2.5 mL) was added BSA (163 μ L, 0.67 mmol, 3 equiv.). The mixture was stirred for 30 min at room temp., and a solution of glycoside **20** (102 mg, 0.22 mmol) in freshly distilled CH₃CN (1.5 mL) was added. After

cooling to 0 °C, TMSOTf (40 µL, 0.22 mmol) was added, and the reaction mixture was stirred at room temp. overnight. After dilution with CH₂Cl₂, an aqueous saturated solution of NaHCO₃ was added. The aqueous layer was extracted three times with CH₂Cl₂, and then the organic layers were recombined, dried with Na₂SO₄, filtered and concentrated under reduced pressure. The crude residue was purified by chromatography on silica gel (CHCl₃/ MeOH, 97:3) to afford compound **30** as a white solid (95 mg, 77%); m.p. 69–70 °C. $[a]_D^{25} = +70.7$ (c = 1.0, CHCl₃). ¹H NMR (300 MHz, $CDCl_3$): $\delta = 7.73$ [d, J = 7.5 Hz, 1 H, N-(H)C=CH], 7.66–7.60 (m, 4 H, H^{Ar}), 7.42–7.34 (m, 6 H, H^{Ar}), 6.49 (d, J = 8.4 Hz, 1 H, H^{1'}), 6.34, 6.24 (br. s, 2 H, NH₂), 6.10 (syst ABMX, J = 10.5, 4.5 Hz, 1 H, HC=CH-CH₂), 5.56–5.43 [m, 3 H, N-(H)C=CH, H^{2'}, HC=CH-CH₂], 4.30 (d, J = 5.1 Hz, 1 H, H^{3'}), 4.16 [syst. ABMX, J = 16.8, 4.5 Hz, 1 H, HC=CH-C(H)-H], 3.82-3.76 [m, 1 H, HC=CH-C(H)-H], 3.75 and 3.43 (syst. AB, J = 11.1 Hz, 2 H, $H^{5'}$), 2.07 [s, 3 H, O-C(=O)-CH₃], 1.07 (s, 9 H, tBu) ppm. ¹³C NMR (75 MHz, $CDCl_3$): $\delta = 170.2$ ($CH_3C=O$), 165.6, 156.0 (C=N and C=O), 140.9 [N-(H)C=CH], 135.6, 135.3 (CHAr), 132.3, 131.6 (CAr), 131.3 (HC=CH-CH₂), 130.1–129.8, 123.5 (CH^{Ar}), 113.9 (HC=CH-CH₂), 95.6 [N-(H)C=CH], 84.2 (C^{1'}), 78.9 (C^{4'}), 75.1 (C^{3'}), 75.0 (C^{2'}), 68.2 (C^{5'}), 62.5 (HC=CH-CH₂), 26.9 [(CH₃)₃C-Si], 20.6 [O-C(=O)-CH₃], 19.1 [(CH₃)₃C-Si] ppm. HRMS (CI): calcd. for C₃₀H₃₆N₃O₆Si [M + H]⁺ 562.2373; found 562.2374.

Cytidine Derivative 31: Compound 30 (135 mg, 0.24 mmol) was dissolved in MeOH (10 mL), and K₂CO₃ (100 mg, 0.72 mmol, 3 equiv.) was added. After stirring for 2 h at room temp., an aqueous solution of HCl (1 N) was added until neutral pH, and then the solvent was evaporated under reduced pressure. The crude mixture was purified by chromatography on silica gel (CHCl₃/MeOH, 95:5) to obtain alcohol 31 as a white solid (107 mg, 85%); m.p. 82-83 °C. $[a]_{D}^{25} = +53.9$ (c = 1.0, CHCl₃). ¹H NMR (300 MHz, CDCl₃): δ = 7.71 [d, J = 7.2 Hz, 1 H, N-(H)C=CH], 7.60–7.57 (m, 4 H, H^{Ar}), 7.45–7.34 (m, 6 H, H^{Ar}), 6.21 (m, 4 H, H^{1'}, HC=CH-CH₂, NH₂), 5.62–5.57 [m, 2 H, N-(H)C=CH, HC=CH-CH₂], 4.46 (dd, J = 7.5, 5.1 Hz, 1 H, H^{2'}), 4.25 and 3.90 (syst. *ABMX*, J =16.5, 4.5 Hz, 2 H, HC=CH-CH₂), 4.07 (d, J = 5.1 Hz, 1 H, H^{3'}), 3.68 and 3.46 (syst. AB, J = 11.1 Hz, 2 H, H^{5'}), 1.03 (s, 9 H, tBu) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 165.7, 157.0 (C=N and C=O), 140.8 [N-(H)C=CH], 135.5, 135.4 (CH^{Ar}), 132.3, 132.0 (CAr), 131.4 (HC=CH-CH₂), 130.1, 127.9 (CHAr), 123.9 (HC=CH-CH₂), 95.0 [N-(H)C=CH], 89.1 (C^{1'}), 79.8 (C^{4'}), 76.8 (C^{3'}), 76.5 (C^{2'}), 67.9 (C^{5'}), 62.9 (HC=C-CH₂), 26.9 [(CH₃)₃C-Si], 19.1 [(CH₃)₃-C-Si] ppm. HRMS (CI): calcd. for $C_{28}H_{33}N_3O_5Si$ [M + H]⁺ 520.2268; found 520.2266.

Cytidine Derivative 15: Alcohol 31 (107 mg, 0.33 mmol) was dissolved in THF (4 mL), and a solution of TBAF 1 M in THF (654 µL, 0.66 mmol, 2 equiv.) was added. The mixture was stirred for 4 h at room temp., and then concentrated under reduced pressure. Purification of the crude mixture by chromatography on silica gel (AcOEt/MeOH, 80:20) afforded nucleoside analogue 15 as a white powder (70 mg, 76%); m.p. 159–160 °C. $[a]_{D}^{25} = +89.1$ (c = 1.0, MeOH). ¹H NMR (300 MHz, CD₃OD): δ = 7.99 [d, J = 7.5 Hz, 1 H, N-(H)C=CH], 6.23 (syst. ABMX, J = 10.2, 4.5,1.5 Hz, 1 H, HC=CH-CH₂), 6.10 (d, J = 8.4 Hz, 1 H, H^{1'}), 5.94 [d, J = 7.5 Hz, 1 H, N-(H)C=CH], 5.69 (syst. ABMX, J = 10.2, 2.4, 1.5 Hz, $HC=CH-CH_2$), 5.68 (dd, J = 8.4, 4.8 Hz, 1 H, $H^{2'}$), 4.27 and 4.00 (syst. ABMX, J = 16.2, 4.5, 1.5 Hz, 2 H, HC=CH- CH_2), 4.06 (d, J = 4.8 Hz, 1 H, $H^{3'}$), 3.61 and 3.47 (syst. AB, J =11.7 Hz, 2 H, H^{5'}) ppm. ¹³C NMR (75 MHz, CD₃OD): δ = 167.5, 158.9 (C=N and C=O), 143.9 [N-(H)C=CH], 132.4 (HC=CH-CH₂), 125.3 (HC=CH-CH₂), 96.8 [N-(H)C=CH], 90.2 ($C^{1'}$), 80.8 $(C^{4'})$, 78.5 $(C^{3'})$, 75.5 $(C^{2'})$, 67.5 $(C^{5'})$, 61.6 $(HC=C-CH_2)$ ppm.

FULL PAPER

HRMS (CI): calcd. for $C_{12}H_{16}N_3O_5\ [M + H]^+$ 282.1090; found 282.1090.

Cytidine Derivative 18: To a solution of nucleoside analogue 15 (70 mg, 0.25 mmol) in EtOH (14 mL) was added Pd/C 10% (14 mg). After stirring for 24 h at room temp. under H₂ atmosphere (balloon), the reaction mixture was filtered through Celite and concentrated under reduced pressure. The crude residue was purified by chromatography on silica gel (AcOEt/MeOH, 80:20) to give the diol 18 as a white powder (56 mg, 79%); m.p. 190–191 °C. $[a]_D^{25} =$ -31.4 (c = 1.0, MeOH). ¹H NMR (300 MHz, [D₆]DMSO): δ = 7.87 $[d, J = 7.5 \text{ Hz}, 1 \text{ H}, \text{ N-}(H)\text{C=CH}], 7.19, 7.11 (br. s, 2 \text{ H}, \text{ NH}_2),$ 6.04 (d, J = 8.4 Hz, 1 H, H^{1'}), 5.74 [d, J = 7.5 Hz, 1 H, N-(H)-C=CH], 5.26 (t, J = 5.4 Hz, 1 H, HO-CH^{5'}), 4.99 (d, J = 7.8 Hz, 1 H, HO-CH^{2'}), 4.50 (m, 1 H, H^{2'}), 3.89–3.87 (m, 1 H, CH₂-CH₂-O), 3.82 (d, J = 4.2 Hz, 1 H, H^{3'}), 3.41–3.23 (m, 3 H, H^{5'}, CH₂-CH2-O), 1.64-1.57 [m, 3 H, H2C-(CH2)2-O, CH2-CH2-O], 1.48-1.42 (m, 1 H, CH₂-CH₂-O) ppm. ¹³C NMR (75 MHz, [D₆]DMSO): δ = 165.3, 155.8 (C=N and C=O), 141.9 [N-(H)C=CH], 94.3 [N-(H)C=CH], 88.2 (C^{1'}), 81.2 (C^{4'}), 76.3 (C^{3'}), 73.6 (C^{2'}), 68.4 (C^{5'}), 63.7 (CH₂-CH₂-O), 28.1, 20.6 [CH₂-CH₂-O, CH₂-(CH₂)₂-O] ppm. HRMS (CI): calcd. for $C_{12}H_{18}N_3O_5$ [M + H]⁺ 284.1246; found 284.1245.

Uridine Derivative 33: To a solution of 13 (100 mg, 0.35 mmol) and 32 (130 mg, 0.44 mmol, 1.3 equiv.) in anhydrous THF (10 mL) at -78 °C was added N-methylimidazole (0.14 mL, 1.75 mmol, 5 equiv.) over 5 min under argon. After stirring for 2 h at -78 °C, the reaction was maintained for 12 h at room temp. The solvent was removed under reduced pressure and the residue was dissolved in CH_2Cl_2 (20 mL), washed with cold 0.5 M HCl (5 mL \times 2), cold water (10 mL), and brine (5 mL). The organic layer was dried with Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by flash silica gel chromatography (CH₂Cl₂/ MeOH, 20:1) to give 33 (120 mg, 65%) as a diastereomeric mixture $(R_{\rm P}/S_{\rm P} = 1:1)$. ¹H NMR (400 MHz, CD₃OD): $\delta = 8.14-7.98$ (m, 1 H), 7.33–7.24 (m, 2 H), 7.21–7.07 (m, 3 H), 6.30–6.17 (m, 2 H), 5.71-5.60 (m, 2 H), 5.39-5.23 (m, 1 H), 4.21-3.84 (m, 7 H), 3.60-3.56 (m, 1 H), 3.45-3.42 (m, 1 H), 1.36-1.34-1.15 (m, 6 H) ppm. ³¹P NMR (162 MHz, CD₃OD): δ = 4.30, 4.17 ppm. MS-ESI⁺: *m*/*z* = 538 [M + H⁺]. HRMS-ESI⁺: m/z calcd. for $C_{23}H_{29}N_3O_{10}P$ [M + H⁺] 538.1582; found 538.1585.

Uridine Derivative 34: To a solution of 33 (50 mg, 0.09 mmol) in EtOH (5 mL) was added 1,4-cyclohexadiene (0.50 mL) and 10% Pd/C (5 mg) at room temp. After stirring for 3 h at room temp., the reaction mixture was treated with Celite (1.0 g) and stirred for 30 min with the septa removed. The suspension was filtered, and the resulting solid was washed with MeOH $(3 \times 15 \text{ mL})$. The collected solution was concentrated under reduced pressure, and the residue was purified by silica gel column chromatography (CH₂Cl₂/ MeOH, 20:1) to give 34 (490 mg, 98%) as a diastereomeric mixture $(R_{\rm P}/S_{\rm P} = 1:1)$. ¹H NMR (400 MHz, CD₃OD): $\delta = 8.26-8.14$ (m, 1 H), 7.32-7.24 (m, 2 H), 7.20-7.07 (m, 3 H), 6.39-6.31 (m, 1 H), 5.69-5.58 (m, 1 H), 5.53-5.39 (m, 1 H), 4.18-3.83 (m, 6 H), 3.57-3.54 (m, 1 H), 3.49-3.45 (m, 1 H), 3.34-3.31 (m, 1 H), 1.80-1.70 (m, 2 H), 1.58–1.49 (m, 2 H), 1.34–1.17 (m, 6 H) ppm. ³¹P NMR (162 MHz, CD₃OD): δ = 4.31, 4.15 ppm. MS-ESI⁺: m/z = 540 [M + H⁺]. HRMS-ESI⁺: m/z calcd. for $C_{23}H_{31}N_3O_{10}P$ [M + H⁺] 540.1738; found 540.1742.

Cytidine Derivative 35: To a solution of **15** (80 mg, 0.285 mmol) in anhydrous THF (5 mL) at -78 °C was added *t*BuMgCl (1.0 M in THF, 0.65 mL, 0.650 mmol, 2.3 equiv.) under argon. After stirring for 30 min at -78 °C followed by 30 min at 0 °C, the solution was cooled to -78 °C, and **32** (110 mg, 0.377 mmol, 1.3 equiv.) was

added in anhydrous THF (5 mL) under argon. After stirring for 2 h at -78 °C, the reaction mixture was maintained for 12 h at room temp. The solution was treated with saturated NH₄Cl (0.2 mL) at 0 °C and then concentrated under reduced pressure. The residue was dissolved in CH₂Cl₂ (20 mL), washed with cold water (10 mL) and brine (5 mL). The organic layer was dried with Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by flash silica gel chromatography (CH₂Cl₂/MeOH, 20:1 to 10:1) to give 35 (74 mg, 0.138 mmol) in 48% yield as a diastereomeric mixture ($R_P/S_P = 1:1$). ¹H NMR (400 MHz, CD₃OD): $\delta = 7.83-7.69$ (br. s, 1 H), 7.68–7.64 (m, 1 H), 7.35–7.30 (m, 2 H), 7.22-7.12 (m, 3 H), 6.34-6.31 (m, 1 H), 6.27-6.24 (m, 1 H), 5.96-5.90 (m, 1 H), 5.85-5.65 (m, 1 H), 4.37-3.84 (m, 8 H), 3.43 (s, 1 H), 3.18 (m, 1 H), 3.10 (m, 1 H), 1.29–1.15 (m, 6 H) ppm. ³¹P NMR (162 MHz, CD₃OD): δ = 4.53, 4.37 ppm. MS-ESI⁺: m/z = 537 [M + H⁺]. HRMS-ESI⁺: m/z calcd. for $C_{23}H_{30}N_4O_9P$ [M + H⁺] 537.1741; found 537.1745.

Cytidine Derivative 36: To a solution of 35 (30 mg, 0.056 mmol) in EtOH (5 mL) was added 10% Pd/C (5 mg) at room temp. The mixture was stirred for 3 h under an H₂ atmosphere (1 atm), and then treated with Celite (1.0 g) and stirred for 30 min with the septa removed. The suspension was filtered, and the resulting solid was washed with MeOH (5×5 mL). The collected solution was concentrated under reduced pressure, and the residue was purified by silica gel column chromatography (CH₂Cl₂/MeOH, 10:1) to give 36 (28 mg, 94%) as a diastereomeric mixture ($R_P/S_P = 1:1$). ¹H NMR (400 MHz, CD₃OD): δ = 8.02–7.99 (m, 1 H), 7.37–7.33 (m, 2 H), 7.24-7.13 (m, 3 H), 6.42-6.38 (m, 1 H), 5.93-5.90 (m, 1 H), 4.14-3.83 (m, 8 H), 3.64 (m, 1 H), 3.58 (br. s, 1 H), 3.30 (m, 1 H), 1.95-1.88 (m, 1 H), 1.84-1.79 (m, 2 H), 1.59-1.50 (m, 1 H), 1.33-1.14 (m, 6 H) ppm. ³¹P NMR (162 MHz, CD₃OD): δ = 4.36, 4.31 ppm. MS-ESI⁺: m/z = 539 [M + H⁺]. HRMS-ESI⁺: m/z calcd. for $C_{23}H_{32}N_4O_9P [M + H^+] 539.1897$; found 539.1901.

Supporting Information (see footnote on the first page of this article): Copies of ¹H- and ¹³C-NMR spectra for compounds **13–18**, NOESY data for compound **24** and copies of ¹H-, ³¹P-NMR and mass spectra for compounds **33–36**.

Acknowledgments

This work was finacially supported by the Centre National de la Recherche Scientifique (CNRS) and the Université de Nantes. This work was also supported in part by the US National Institutes of Health (NIH), grant numbers 2P30-AI-050409, 5R37-AI-025899, 5R37-AI-041980, and the Department of Veterans Affairs (to R. F. S.). The authors wish to thank Dr Jean-Marc Escudier (Université de Toulouse, UMR-CNRS 506.8, France) for useful comments.

a) G. Gumina, G.-Y. Song, C. K. Chu, *FEMS Microbiol. Lett.* 2001, 202, 9–15; b) E. De Clercq, J. Clin. Virol. 2004, 30, 115–133; c) A. Matsuda, T. Sasaki, *Cancer Sci.* 2004, 95, 105; d) J.-P. Issa, H. M. Kantarjian, *Clin. Cancer Res.* 2009, 15, 3938–3946; e) F. Amblard, J. H. Cho, R. F. Schinazi, *Chem. Rev.* 2009, 109, 4207–4220; f) S. Broder, *Antiviral Res.* 2010, 85 (special issue on this subject).

^[2] For recent reviews in this field, see: a) C. Len, G. Mackenzie, *Tetrahedron* 2006, 62, 9085–9107; b) C. Len, D. Postel, *Curr. Org. Synth.* 2006, 3, 261–281; c) C. Mathé, C. Périgaud, *Eur. J. Org. Chem.* 2008, 1489–1505; d) C. Len, M. Mondon, J. Lebreton, *Tetrahedron* 2008, 64, 7453–7475; e) C. Z. Zhou, J. Chattopadhyaya, *Curr. Opin. Drug Discov. Devel.* 2009, 12, 876–898; f) J. Lebreton, L. Arzel, J.-M. Escudier, C. Len, *Chem. Rev.*

2010, *110*, 3371–3418, and reference cited therein; g) A. Mieczkowski, V. Roy, L. A. Agrofoglio, *Chem. Rev.* **2010**, *110*, 1828–1856.

- [3] For a recent reference on this topic, see: P. P. Seth, G. Vasquez, C. A. Allerson, A. Berdeja, H. Gaus, G. A. Kinberger, T. P. Prakash, M. T. Migawa, B. Bhat, E. E. Swayze, *J. Org. Chem.* 2010, 75, 1569–1581.
- [4] For an excellent review on this topic, see: H. Kaur, B. R. Babu, S. Maiti, *Chem. Rev.* 2007, 107, 4672–4697.
- [5] K. Morita, C. Hasegawa, M. Kaneko, S. Tsutsumi, J. Sone, T. Ishikawa, T. Imanishi, M. Koizumi, *Bioorg. Med. Chem. Lett.* 2002, *12*, 73–76; For recent work in this field, see: S. M. Abdur Rahman, S. Seki, S. Obika, H. Yoshikawa, K. Miyashita, T. Imanishi, *J. Am. Chem. Soc.* 2008, *130*, 4886–4896, and reference cited therein.
- [6] T. R. Webb, H. Mitsuya, S. Broder, J. Med. Chem. 1988, 31, 1475–1479.
- [7] C. O. Yang, W. Kurz, E. M. Engui, M. J. McRoberts, J. P. H. Verheyden, L. J. Kurz, K. A. M. Walker, *Tetrahedron Lett.* 1992, 33, 41–44.
- [8] M. J. Kim, H. O. Kim, H. D. Kim, J. H. Kim, L. S. Jeong, M. W. Chun, *Bioorg. Med. Chem. Lett.* 2003, *13*, 3499–3501.
- [9] I. Sugimoto, S. Shuto, S. Mori, S. Shigeta, A. Matsuda, *Bioorg. Med. Chem. Lett.* 1999, 9, 385–388.
- [10] P. I. Pradeepkumar, P. Cheruku, O. Plashkevych, P. Acharya, S. Gohil, J. Chattopadhyaya, J. Am. Chem. Soc. 2004, 126, 11484–11499.
- [11] a) P. Savy, R. Benhida, J.-L. Fourrey, R. Maurisse, J.-S. Sun, *Bioorg. Med. Chem. Lett.* **2000**, *10*, 2287–2289; b) S. Obika, K.-I. Morio, D. Nanbu, Y. Hari, H. Itoh, T. Imanishi, *Tetrahedron* **2002**, *58*, 3039–3049.
- [12] K. I. Shaikh, S. Kumar, L. Lundhus, A. D. Bond, P. K. Sharma, P. Nielsen, J. Org. Chem. 2009, 74, 1557–1566.
- [13] P. Nielsen, H. M. Pfundheller, C. E. Olsen, J. Wengel, J. Chem. Soc. Perkin Trans. 1 1997, 3423–3433.
- [14] K. Morita, M. Kaneko, S. Obika, T. Imanishi, Y. Kitade, *ChemMedChem* 2007, 2, 1703–1707.
- [15] M. Montembault, N. Bourgougnon, J. Lebreton, *Tetrahedron Lett.* 2002, 43, 8091–8094.
- [16] For a review on this subject, see: F. Amblard, S. P. Nolan, L. A. Agrofoglio, *Tetrahedron* 2005, 61, 7067–7080.
- [17] a) K. Nacro, J. Lee, J. J. Barchi, N. E. Lewin, P. M. Blumberg, V. E. Marquez, *Tetrahedron* **2002**, *58*, 5335–5345; b) G. Rangam, N. Z. Rudinger, H. M. Müller, A. Marx, *Synthesis* **2005**, 1467–1472; c) Y. Hari, S. Obika, R. Ohnishi, K. Eguchi, T. Osaki, H. Ohishi, T. Imanishi, *Bioorg. Med. Chem.* **2006**, *14*, 1029–1038.
- [18] O. Loiseleur, H. Schneider, G. H. Huang, R. Machaalani, P. Selles, P. Crowley, S. Hanessian, Org. Process Res. Dev. 2006, 10, 518–524 and cited literature
- [19] M. Carlucci, E. Kierzek, A. Olejnik, D. H. Turner, R. Kierzek, *Biochemistry* 2009, 48, 10882–10893.
- [20] H. Vorbrüggen, Acc. Chem. Res. 1995, 28, 509-520.

- [21] For a discussion on this point, see: a) S. Kumar, P. Kumar, P. K. Sharma, P. J. Hrdlicka, *Tetrahedron Lett.* 2008, 49, 7168– 7170. For selected articles on hydrogenation of uridine derivatives using H₂, Pd/C, in alcohols as solvents without affecting the nucleobase, see: b) M. Y. Chan, R. A. Fairhurst, S. P. Collingwood, J. Fisher, J. R. P. Arnold, R. Cosstick, I. A. O'Neil, *J. Chem. Soc. Perkin Trans. 1* 1999, 3, 315–320; c) S. Obika, T. Uneda, T. Sugimoto, D. Nanbu, T. Minami, T. Doi, T. Imanishi, *Bioorg. Med. Chem.* 2001, 9, 1001–1011; d) P. P. Seth, C. R. Allerson, A. Berdeja, A. Siwkowski, P. S. Pallan, H. Gaus, T. P. Prakash, A. T. Watt, M. Egli, E. E. Swayze, *J. Am. Chem. Soc.* 2010, 132, 14942–14950.
- [22] a) D. Cahard, C. McGuigan, J. Balzarini, *Mini-Rev. Med. Chem.* 2004, *4*, 371–382; b) C. McGuigan, J.-C. Thiery, F. Daverio, W. G. Jiang, G. Davies, M. Mason, *Bioorg. Med. Chem.* 2005, *13*, 3219–3227; c) Y. Liang, J. Narayanasamy, R. F. Schinazi, C. K. Chu, *Bioorg. Med. Chem.* 2006, *14*, 2178–2189; d) S. J. Hecker, M. D. Erion, *J. Med. Chem.* 2008, *51*, 2328–2345.
- [23] a) D. C. Johnson II, T. S. Widlanski, Org. Lett. 2004, 6, 4643– 4646; b) J. H. Cho, F. Amblard, S. J. Coats, R. F. Schinazi, Tetrahedron 2011, 67, 5487–5493.
- [24] M. Uchiyama, Y. Aso, R. Noyori, Y. Hayakawa, J. Org. Chem. 1993, 58, 373–379; See also: C. Gardelli, B. Attenni, M. Donghi, M. Meppen, B. Pacini, S. Harper, A. Di Marco, F. Fiore, C. Giuliano, V. Pucci, R. Laufer, N. Gennari, I. Marcucci, J. F. Leone, D. B. Olsen, M. MacCoss, M. Rowley, F. Narjes, J. Med. Chem. 2009, 52, 5394–54407.
- [25] a) C. Altona, M. Sundaralingam, J. Am. Chem. Soc. 1972, 94, 8205–8212; b) V. E. Marquez, A. Ezzitouni, P. Russ, M. A. Siddiqui, H. Ford Jr, R. J. Feldman, H. Mitsuya, C. George, J. J. Barchi Jr, J. Am. Chem. Soc. 1998, 120, 2780–2789.
- [26] HIV drug susceptibility assay was done as described previously, see: R. F. Schinazi, J. P. Sommadossi, V. Saalmann, D. L. Cannon, M.-W. Xie, G. C. Hart, G. A. Smith, E. F. Hahn, *Antimicrob. Agents Chemother.* **1990**, *34*, 1061–1067.
- [27] Cytotoxicity assays in PBM, CEM and Vero cells were done as described previously, see: L. J. Stuyver, S. Lostia, M. Adams, J. Mathew, B. S. Pai, J. Grier, P. Tharnish, Y. Choi, Y. Chong, H. Choo, C. K. Chu, M. J. Otto, R. F. Schinazi, *Antimicrob. Agents Chemother.* 2002, *46*, 3854–3860.
- [28] L. J. Stuyver, T. Whitaker, T. R. McBrayer, B. I. Hernandez-Santiago, S. Lostia, P. M. Tharnish, M. Ramesh, C. K. Chu, R. Jordan, J. Shi, S. Rachakonda, K. A. Watanabe, M. J. Otto, R. F. Schinazi, *Antimicrob. Agents Chemother.* 2003, 47, 244– 254.
- [29] M. Langlois, J. P. Allard, F. Nugier, M. Aymard, J. Biol. Stand. 1986, 14, 201–211.
- [30] C. McLaren, M. N. Ellis, G. A. Hunter, Antiviral Res. 1983, 3, 223–23

Received: June 14, 2011 Published Online: October 28, 2011