

N-Heterocyclic Carbene Catalyzed 1,6-Conjugate Addition of Me₃Si-CN to *para*-Quinone Methides and Fuchsones: Access to α -Arylated Nitriles

Prithwish Goswami, Gurdeep Singh, and Ramasamy Vijaya Anand*®

Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, S. A. S. Nagar, Manauli (PO), Punjab - 140306, India

Supporting Information

ABSTRACT: An organocatalytic approach toward α -arylated nitriles using *N*-heterocyclic carbene (NHC) as a catalyst is described. This protocol comprises an NHC catalyzed activation of Me₃Si-CN followed by 1,6-conjugate addition of cyanide to *para*-quinone methides (*p*-QMs) and fuchsones leading to α -diaryl- and α -triaryl nitriles in good to excellent yields.

 α -Aryl nitriles have emerged as an essential architectural motif, often found in many pharmaceuticals and biologically active natural molecules.¹ Specifically, many of the α -diaryl and α -triaryl nitriles possess interesting biological and therapeutic properties (Figure 1). For example, darotropium bromide (1) has been

Figure 1. Some biologically significant α -arylated nitriles.

recognized as a very potent mAchR antagonist.^{2a} Other α -diaryl nitrile based drugs such as diphenoxylate (2)^{2b} and piritramide (3)^{2c} are being used for the treatment of diarrhea and postoperative pain, respectively. α -Triaryl nitrile derivative 4 shows remarkable inhibition activity toward the growth of protozoa.^{2d} Besides the therapeutic importance, the nitrile moiety has also been utilized as an important building block for the synthesis of aldehydes, carboxylic acids, amides, amines, and *N*-containing heterocycles.³ Furthermore, nitriles are extensively employed as a key precursor for the synthesis of valuable drugs.⁴ Owing to the significance of α -aryl nitriles, considerable effort has been made for their syntheses through different approaches.

The conventional method for the synthesis of α -aryl nitriles involves a nucleophilic substitution of benzyl halides with alkali

metal or ammonium cyanides⁵ and dehydration of aldoximes/ amides.⁶ Alternatively, α -aryl nitriles could be accessed through a Lewis acid catalyzed addition of trimethylsilyl cyanide (Me₃Si-CN) to diarylcarbinols and their derivatives.⁷ In the recent past, another fascinating strategy entailing a transition metal catalyzed coupling of benzyl cyanides with an appropriate aryl coupling partner has been realized.⁸ Besides, some metal-free approaches have been recognized for the synthesis of α -aryl nitriles.⁹ In general, most of the hitherto known methods involve either the use of expensive metal catalysts or harsh reaction conditions. Therefore, developing a mild and efficient strategy for the synthesis of α -arylated nitriles, especially, under metal-free organocatalytic conditions is highly desired.

Over the past two decades, N-heterocyclic carbene (NHC) catalysis has emerged as a unique tool for C-C and Cheteroatom bond forming reactions.¹⁰ Apart from the Umpolung reactivity toward carbonyl compounds, NHCs have been demonstrated to activate silicon nucleophiles through the formation of a hypervalent silicon-NHC complex.¹¹ In line with this concept, many C–C bond forming transformations and polymerization reactions have been reconnoitered.¹² In fact, NHC catalyzed cyanation of aldehydes and imines using Me₃Si-CN as a nucleophile has been reported.¹³ However, surprisingly, NHC catalyzed conjugate addition of Me₃Si-CN to enone or dienone systems has not been reported to date, although there are a few reports available for metal catalyzed 1,4-conjugate cyanation to enone systems.¹⁴ In fact, only one example is reported for the 1,6-conjugate addition HCN to puupehenone, which is a dienone system.¹⁵ In our continuing program on the development of NHC catalyzed transformations,¹⁶ we sought to employ the NHC catalyzed silicon activation concept for the synthesis of α -arylated nitriles through 1,6-conjugate addition of Me₃Si-CN to *para*-quinone methides (*p*-QMs) [Figure 2]. While

Received: February 20, 2017

Figure 2. Our hypothesis for the synthesis of α -arylated nitriles.

the chemistry of *p*-QMs has been investigated by many research groups¹⁷ including our group,¹⁸ this particular NHC catalyzed vinylogous conjugate cyanation reaction of *p*-QMs using Me₃Si-CN as a cyanide source has not been examined to date, which prompted us to investigate this transformation in a detailed manner.

The preliminary optimization studies were conducted on $5a^{17a}$ using Me₃Si-CN (6) as a cyanide source and a wide range of NHC-CO₂ adducts (8-14) as precatalysts (Table 1). It is well

"Reaction conditions: All reactions were carried out with 5a (0.062 mmol), 6 (0.081 mmol) in solvent (0.5 mL). Yields reported are isolated yields.

documented in the literature that generation of the NHC–CO₂ adduct is reversible in solution at ambient conditions; thus, it could be effectively used as an NHC precursor.¹⁹ Moreover, one can perform the reaction under neutral conditions, as no external base is required to generate the free NHC. The results of the optimization studies are shown in Table 1. Our initial attempt in the presence of precatalyst 8 was disappointing, as no product was observed when we conducted the experiment in CH_2Cl_2 at room temperature (entry 1). Changing the solvent from CH_2Cl_2 to THF did not help, as 7a was observed only in trace amounts (entry 2). To our delight, when Et_2O was used as a solvent, 7a

could be isolated in 27% yield (entry 3). Further screening was performed in a variety of solvents (entries 4–10), and 1,4dioxane was found to be the best solvent, as the expected product 7**a** was isolated in 97% yield in just 1 h under these conditions (entry 10).²⁰ The optimization studies were then extended using other imidazolium based NHC precatalysts (9–12) in 1,4dioxane (entries 11–14). However, the yield of 7**a** was found to be lower in all those cases when compared to that of entry 10. Surprisingly, thiazolium (13) and triazolium (14) based NHC precatalysts were found to be ineffective to drive this transformation (entries 15 and 16). No product formation was observed in the absence of the NHC precatalyst, which clearly indicates that NHC is actually acting as a catalyst for this transformation (entry 17).

Having optimized the reaction conditions successfully, the scope and limitation of the reaction were investigated using a wide range of p-QMs (**5b**-**z**), and the results can be found in Scheme 1. It is noteworthy to mention that most of the p-QMs

^{*a*}Reaction conditions: All reactions were carried out with 20 mg scale of 5(b-z) in 0.5 mL of solvent. Yields reported are isolated yields.

utilized for this transformation underwent smooth conversion to their respective α -diaryl nitriles in excellent yields, irrespective of the electronic nature of the substituents present in the aryl moiety of *p*-QMs. For example, *p*-QMs **5b**-**p** (bearing electronrich and halo substituted aryls) as well as **5q**-**s** (bearing electronpoor aryls) afforded the products **5b**-**s** in 88–95% yields within a short period of time (45 min–1.5 h). Sterically hindered *p*-QMs (**5t**-**v**) also reacted efficiently to afford the successive products in excellent yields (7**t**-**v**). In the cases of *p*-QMs derived from fluorene-2-carboxaldehyde (**5w**) and biphenyl-4carboxaldehyde (5x), the desired products 7w and 7x were obtained in 93% and 91% isolated yields, respectively. *p*-QMs (5y and 5z), derived from 2,6-dimethylphenol and 2,6-diisopropylphenol, respectively, were also found to be well suited for this transformation and gave the products 7y and 7z in good yields (82% and 78% correspondingly).

The successful implementation of *p*-QMs as electrophiles prompted us to explore fuchsones as an 1,6-acceptor (Scheme 2).

Scheme 2. Substrate Scope with Different Fuchsones^{*a,b*} R1 8 (15 mol %) Me₂Si-CN 1.4-dioxane. rt 15a-6 16a-f R¹ = ^tBu or Me; R² = H, Cl; R³ = H, alkyl, OR etc t_B t_{B1} ^tBu CN E OMe 16c, 12 h, 82% 16b. 12 h. 89% 16a. 12 h. 85% ^tBu ^tΒι 16d. 18 h. 73%¹ 16e. 12 h. 83% 16f. 12 h. 87%

"Reaction conditions: All reactions were carried out with 20 mg of 15(a-f) in 0.5 mL of solvent. ^bReaction was carried out at 80 °C. Yields reported are isolated yields.

Potentially, this method will allow us to prepare α -triaryl nitriles, which otherwise are very difficult to access through the reported general methods. When a model reaction was performed with fuchsone 15a²¹ under optimized conditions (i.e., with 10 mol % of 8), the reaction was found to be sluggish and the product 16a was obtained only in 48% yield. This observation is obvious, as the sixth position of fuchsones is sterically more hindered when compared to that of p-QMs, which apparently makes 15a less reactive toward Me₃Si-CN. However, increasing the catalyst loading to 15 mol % and also increasing the reaction time (12 h) helped in improving the yield of 16a to 85%. So, further substrate scope studies were performed with 15 mol % of 8, and the results are shown in Scheme 2. Most of the fuchsones (15b-e), derived from corresponding aryl ketones and 2,6-di(tert-butyl)phenol, were reacted with Me₃Si-CN under the modified reaction conditions and provided the subsequent products (16b-e) in good yields (73-89%). In the case of fuchsone 15f, derived from 2,6-dimethylphenol and benzophenone, the corresponding product 16f was isolated in 87% yield after 12 h.

To further show the significance of the developed protocol, derivatization reactions of one of the α -diaryl nitriles were investigated. In an experiment, 7a was treated with 4-bromophenyl boronic acid under Pd-catalyzed oxidative conditions to give α, α' -diaryl ketone 17 in 57% yield (Scheme 3). α, α' -Diarylated carbonyl compounds are important building blocks for the synthesis of many biologically important molecules.²² In another experiment, 7a was oxidized with activated MnO₂ to afford 6-cyano-*p*-quinone methide 18 in almost quantitative yield. Similar types of cyanated *p*-QMs are

Scheme 3. Synthetic Elaborations of α -Diaryl Nitrile 7a

used as a chemical tool for assessing hemolytic anemia induced by naphthoquinones.²³ Besides, 6-cyano-*p*-quinone methide **18** was subjected to a nucleophilic addition reaction with indole to provide a leuconitrile²⁴ dye analogue **19** in 90% yield (Scheme 3).

In summary, we have demonstrated an efficient organocatalytic protocol for the synthesis of α -diaryl- and α triarylnitriles. To the best of our knowledge, this is the first example of NHC catalyzed 1,6-conjugate addition of Me₃Si-CN to a dienone system. This transformation occurs under mild conditions and is tolerant to a variety of functional groups. Further, this protocol provides an easy and straightforward access to a set of new compounds in good to excellent yields.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.orglett.7b00508.

Experimental details, ¹H, ¹³C, and ¹⁹F spectra of all new compounds (PDF)

AUTHOR INFORMATION

Corresponding Author

*E-mail: rvijayan@iisermohali.ac.in.

ORCID 🔍

Ramasamy Vijaya Anand: 0000-0001-9490-4569

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The authors gratefully acknowledge DST-SERB (EMR/2015/001759) for the financial support and IISER Mohali for the infrastructure. P.G. and G.S. thanks IISER Mohali for a research fellowship. The NMR and HRMS facilities at IISER Mohali are gratefully acknowledged.

REFERENCES

(1) (a) Fleming, F. F.; Yao, L.; Ravikumar, P. C.; Funk, L.; Shook, B. C. J. Med. Chem. 2010, 53, 7902. (b) Foot, E. A.; Leighton, B. Diabetes 1994, 43, 73.

(2) (a) Lainé, D. I.; Yan, H.; Xie, H.; Davis, R. S.; Dufour, J.; Widdowson, K. L.; Palovich, M. R.; Wan, Z.; Foley, J. J.; Schmidt, D. B.; Hunsberger, G. E.; Burman, M.; Bacon, A. M.; Webb, E. F.; Luttmann, M. A.; Salmon, M.; Sarau, H. M.; Umbrecht, S. T.; Landis, P. S.; Peck, B.
J.; Busch-Petersen, J.-B. *Bioorg. Med. Chem. Lett.* 2012, 22, 3366.
(b) Moriarty, K. J.; Rolston, D. D. K.; Kelly, M. J.; Shield, M.; Clark, M.
L. *Gut* 1985, 26, 75. (c) Kay, B. Br. J. Anaesth. 1971, 43, 1167.
(d) Boeckx, G. M.; Raeymaekers, A. H. M.; Sipido, V. Eur. Pat. Appl. EP 170316A219860205, 1986.

(3) Friedrich, K.; Wallenfels, K. *The Chemistry of the Cyano Group*; Wiley-Interscience: New York, 1970.

(4) (a) Dillon, B. R.; Roberts, D. F.; Entwistle, D. A.; Glossop, P. A.; Knight, C. J.; Laity, D. A.; James, K.; Praquin, C. F.; Strang, R. S.; Watson, C. A. L. *Org. Process Res. Dev.* **2012**, *16*, 195. (b) Mobele, B. I.; Venkatraman, S.; Smith, G.-M.; Gibb, C.; Ulysse, L. G.; Lindmark, C. A.; Shaw, S.; Marron, B.; Spear, K.; Suto, M. J. *Org. Process Res. Dev.* **2012**, *16*, 1385.

(5) Selected examples: (a) Smiley, R. A.; Arnold, C. J. Org. Chem. **1960**, 25, 257. (b) Cook, F. L.; Bowers, C. W.; Liotta, C. L. J. Org. Chem. **1974**, 39, 3416. (c) Shaw, J. E.; Hsia, D. Y.; Parries, G. S.; Sawyer, T. K. J. Org. Chem. **1978**, 43, 1017. (d) Wheeler, C.; West, K. N.; Liotta, C. L.; Eckert, C. A. Chem. Commun. **2001**, 887. (e) Kim, D. W.; Song, C. E.; Chi, D. Y. J. Org. Chem. **2003**, 68, 4281. (f) Ratani, T. S.; Bachman, S.; Fu, G. C.; Peters, J. C. J. Am. Chem. Soc. **2015**, 137, 13902.

(6) Selected examples: (a) Choi, E.; Lee, C.; Na, Y.; Chang, S. Org. Lett. 2002, 4, 2369. (b) De Luca, L. De.; Giacomelli, G.; Porcheddu, A. J. Org. Chem. 2002, 67, 6272. (c) Sharghi, H.; Sarvari, M. H. Synthesis 2003, 243. (d) Czekelius, C.; Carreira, E. M. Angew. Chem., Int. Ed. 2005, 44, 612. (e) Augustine, J. K.; Bombrun, A.; Atta, R. N. Synthett 2011, 2011, 2223. (f) Patil, U. B.; Shendage, S. S.; Nagarkar, J. M. Synthesis 2013, 45, 3295. (g) Yu, L.; Li, H.; Zhang, X.; Ye, J.; Liu, J.; Xu, Q.; Lautens, M. Org. Lett. 2014, 16, 1346. (h) Zhang, X.; Sun, J.; Ding, Y.; Yu, L. Org. Lett. 2015, 17, 5840. (i) Zhou, S.; Junge, K.; Addis, D.; Das, S.; Beller, M. Org. Lett. 2009, 11, 2461.

(7) Chen, G.; Wang, Z.; Wu, J.; Ding, K. Org. Lett. 2008, 10, 4573.

(8) Selected examples: (a) Culkin, D. A.; Hartwig, J. F. J. Am. Chem. Soc. 2002, 124, 9330. (b) You, J.; Verkade, J. G. Angew. Chem., Int. Ed. 2003, 42, 5051. (c) Löfberg, C.; Grigg, R.; Whittaker, M. A.; Keep, A.; Derrick, A. J. Org. Chem. 2006, 71, 8023. (d) He, A.; Falck, J. R. J. Am. Chem. Soc. 2010, 132, 2524. (e) Velcicky, J.; Soicke, A.; Steiner, R.; Schmalz, H.-G. J. Am. Chem. Soc. 2011, 133, 6948. (f) Grenning, A. J.; Tunge, J. A. J. Am. Chem. Soc. 2011, 133, 14785. (g) Duez, S.; Bernhardt, S.; Heppekausen, J.; Fleming, F. F.; Knochel, P. Org. Lett. 2011, 13, 1690. (h) Maji, T.; Tunge, J. A. Org. Lett. 2014, 16, 5072. (i) Nambo, M.; Yar, M.; Smith, J. D.; Crudden, C. M. Org. Lett. 2015, 17, 50.

(9) (a) Wu, G.; Deng, Y.; Wu, C.; Zhang, Y.; Wang, J. Angew. Chem., Int. Ed. 2014, 53, 10510. (b) Qian, X.; Han, J.; Wang, L. Adv. Synth. Catal. 2016, 358, 940.

(10) For selected reviews, see: (a) Enders, D.; Niemeier, O.; Henseler, A. Chem. Rev. 2007, 107, 5606. (b) Phillips, E. M.; Chan, A.; Scheidt, K. A. Aldrichimica Acta 2009, 42, 55. (c) Moore, J. L.; Rovis, T. Top. Curr. Chem. 2009, 291, 77. (d) Chiang, P. C.; Bode, J. W. TCI MAIL 2011, 149, 2. (e) Biju, A. T.; Kuhl, N.; Glorius, F. Acc. Chem. Res. 2011, 44, 1182. (f) Nair, V.; Menon, R. S.; Biju, A. T.; Sinu, C. R.; Paul, R. R.; Jose, A.; Sreekumar, V. Chem. Soc. Rev. 2011, 40, 5336. (g) Campbell, C. D.; Ling, K. B.; Smith, A. D. In N-Heterocyclic Carbenes in Transition Metal Catalysis and Organocatalysis, Vol. 32; Cazin, C. S. J., Ed.; Springer: Dortrecht, 2011; p 262. (h) Ryan, S. J.; Candish, L.; Lupton, D. W. Chem. Soc. Rev. 2013, 42, 4906. (i) Hopkinson, M. N.; Richter, C.; Schedler, M.; Glorius, F. Nature 2014, 510, 485. (j) Flanigan, D. M.; Romanov–Michailidis, F.; White, N. A.; Rovis, T. Chem. Rev. 2015, 115, 9307.

(11) (a) For reviews on NHC–Si complexes, see: (a) Raynaud, J.; Liu, N.; Gnanou, Y.; Taton, D. *Macromolecules* **2010**, *43*, 8853. (b) Fuchter, M. J. *Chem. - Eur. J.* **2010**, *16*, 12286.

(12) For a recent review on NHC catalyzed transformations of silicon reagents, see: He, L.; Guo, H.; Wang, Y.; Du, G.–F.; Dai, B. *Tetrahedron Lett.* **2015**, *56*, 972 and references cited therein.

(13) Selected examples: (a) Song, J. J.; Gallou, F.; Reeves, J. T.; Tan, Z.; Yee, N. K.; Senanayake, C. H. *J. Org. Chem.* **2006**, *71*, 1273. (b) Suzuki, Y.; Bakar, A.; Muramatsu, K.; Sato, M. *Tetrahedron* **2006**, *62*, 4227. (c) Kano, T.; Sasaki, K.; Konishi, T.; Mii, H.; Maruoka, K. *Tetrahedron Lett.* **2006**, *47*, 4615.

(14) (a) Sammis, G. M.; Jacobsen, E. N. J. Am. Chem. Soc. 2003, 125, 4442. (b) Shibasaki, M.; Kanai, M. Org. Biomol. Chem. 2007, 5, 2027.
(c) Tanaka, Y.; Kanai, M.; Shibasaki, M. Synlett 2008, 2008, 2295.
(d) Yang, J.; Shen, Y.; Chen, F.-X. Synthesis 2010, 2010, 1325.

(15) Zjawiony, J. K.; Bartyzel, P.; Hamann, M. T. J. Nat. Prod. 1998, 61, 1502.

(16) (a) Ramanjaneyulu, B. T.; Mahesh, S.; Anand, R. V. Org. Lett. 2015, 17, 6. (b) Arde, P.; Ramanjaneyulu, B. T.; Reddy, V.; Saxena, A.; Anand, R. V. Org. Biomol. Chem. 2012, 10, 848. (c) Arde, P.; Reddy, V.; Anand, R. V. RSC Adv. 2014, 4, 49775.

(17) Selected recent examples, where p-QMs have been used as electrophiles: (a) Chu, W.-D.; Zhang, L.-F.; Bao, X.; Zhao, X.-H.; Zeng, C.; Du, J.-Y.; Zhang, G.-B.; Wang, F.-X.; Ma, X.-Y.; Fan, C.-A. Angew. Chem., Int. Ed. 2013, 52, 9229. (b) Caruana, L.; Kniep, F.; Johansen, T. K.; Poulsen, P. H.; Jørgensen, K. A. J. Am. Chem. Soc. 2014, 136, 15929. (c) Wang, Z.; Wong, Y. F.; Sun, J. Angew. Chem., Int. Ed. 2015, 54, 13711. (d) Parra, A.; Tortosa, M. ChemCatChem 2015, 7, 1524. (e) López, A.; Parra, A.; Jarava-Barrera, C.; Tortosa, M. Chem. Commun. 2015, 51, 17684. (f) Lou, Y.; Cao, P.; Jia, T.; Zhang, Y.; Wang, M.; Liao, J. Angew. Chem., Int. Ed. 2015, 54, 12134. (g) He, F.-S.; Jin, J.-H.; Yang, Z.-T.; Yu, X.; Fossey, J. S.; Deng, W.-P. ACS Catal. 2016, 6, 652. (h) Zhao, K.; Zhi, Y.; Wang, A.; Enders, D. ACS Catal. 2016, 6, 657. (i) Yuan, Z.; Wei, W.; Lin, A.; Yao, H. Org. Lett. 2016, 18, 3370. (j) Li, X.; Xu, X.; Wei, W.; Lin, A.; Yao, H. Org. Lett. 2016, 18, 428. (k) Huang, B.; Shen, Y.; Mao, Z.; Liu, Y.; Cui, S. Org. Lett. 2016, 18, 4888. (1) Jarava-Barrera, C.; Parra, A.; López, A.; Cruz-Acosta, F.; Collado-Sanz, D.; Cárdenas, D. J.; Tortosa, M. ACS Catal. 2016, 6, 442. (m) Zhang, Z.-P.; Dong, N.; Li, X. Chem. Commun. 2017, 53, 1301.

(18) (a) Reddy, V.; Anand, R. V. Org. Lett. 2015, 17, 3390.
(b) Ramanjaneyulu, B. T.; Mahesh, S.; Anand, R. V. Org. Lett. 2015, 17, 3952. (c) Arde, P.; Anand, R. V. Org. Biomol. Chem. 2016, 14, 5550.
(d) Jadhav, A. S.; Anand, R. V. Org. Biomol. Chem. 2017, 15, 56.

(19) (a) Duong, H. A.; Tekavec, T. N.; Arif, A. M.; Louie, J. Chem. Commun. 2004, 112. (b) Voutchkova, A. M.; Feliz, M.; Clot, E.; Eisenstein, O.; Crabtree, R. H. J. Am. Chem. Soc. 2007, 129, 12834. (c) Sauvage, X.; Demonceau, A.; Delaude, L. Adv. Synth. Catal. 2009, 351, 2031. (d) Naik, P. U.; Petitjean, L.; Refes, K.; Picquet, M.; Plasseraud, L. Adv. Synth. Catal. 2009, 351, 1753. (e) Fèvre, M.; Coupillaud, P.; Miqueu, K.; Sotiropoulos, J.-M.; Vignolle, J.; Taton, D. J. Org. Chem. 2012, 77, 10135. (f) Hans, M.; Delaude, L.; Rodriguez, J.; Coquerel, Y. J. Org. Chem. 2014, 79, 2758.

(20) Interestingly, in all the optimization experiments, the silvlated phenol was not observed. Instead, only the desilvlated product 7a was detected even before the workup. The aqueous $Na_2S_2O_3$ workup was adopted to decompose the excess Me_3Si -CN.

(21) Becker, H. D. J. Org. Chem. 1967, 32, 2943.

(22) (a) Muratake, H.; Hayakawa, A.; Natsume, M. *Tetrahedron Lett.* **1997**, 38, 7577. (b) Wang, J.–Q.; Miller, M. A.; Mock, B. H.; Lopshire, J. C.; Groh, W. J.; Zipes, D. P.; Hutchins, G. D.; Zheng, Q.–H. *Bioorg. Med. Chem. Lett.* **2005**, *15*, 4510.

(23) Mostefa-Kara, B.; Ziani-Cherif, C.; Benabdallah, M.; Rahmoun, N. M.; Villemin, D.; Choukchou-Braham, N.; Boucherit, K. *Der. Pharma Chemia* **2010**, *2*, 14.

(24) Malpert, J. H.; Grinevich, O.; Strehmel, B.; Jarikov, V.; Mejiritski, A.; Neckers, D. C. *Tetrahedron* **2001**, *57*, 967.