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Abstract: A novel and safe approach was developed for the synthe-
sis of bioactive 2-aroyl-3,5-diarylfurans in excellent yields by using
a cyanide-impregnated anion-exchange resin as a versatile reagent.
The possibility of reusing the polymer-supported reagent makes the
process environmentally friendly and economically advantageous.
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A key principle of green chemistry is to design new syn-
thetic procedures that eliminate the generation of waste
and that avoid the use of toxic and hazardous reagents,
thereby reducing costs and developing environmentally
benign processes.1 The concept of atom-efficiency in
green chemistry focuses on the reduction or, preferably,
the elimination of byproduct formation.2 Polymer-
supported reagents3 have a significant role in green chem-
istry, as the use of such reagents provides a practical
method for cleaner preparation and more efficient purifi-
cation of target molecules.4

Substituted furans are an intriguing class of heterocycles
that exhibit a wide range of biological activities5 and ap-
pear as key structural units in many important pharmaceu-
ticals, natural products, and other materials.6 Among this
family of compounds, 2-aroylfuran derivatives have at-
tracted attention because they represent the core units of
many naturally occurring compounds, for example, the
two enantiomers of frontalin,7 a bark beetle pheromone
that has useful control activities against harmful insect in-
festations.7,8 Some 2-aroylfuran derivatives have tubercu-
lostatic activities,9 and other derivatives have been
employed as intermediates for the synthesis of targets that
possesses fungicidal and medicinal activities.10,11

Generally, 2-aroylfuran derivatives are synthesized by the
reaction of pyrylium salts with O-nucleophiles in the pres-
ence of a base and iodine.10,12 However, this reaction has
several drawbacks, such as the need for extended reaction
times (e.g., 18 h for pyrylium salt 1a), poor yields, and
complicated and often laborious workup and purification
steps, all of which render the approach unsatisfactory
from the standpoint of atom-efficiency.

With this background and as part of our continuing efforts
to develop efficient and environmentally friendly

transformations13 and to apply them to the synthesis of bi-
ologically important molecules,14 we developed a highly
practical, straightforward, and green approach to the syn-
thesis of bioactive 2-aroylfuran derivatives by ring con-
traction of pyrylium salts in the presence of a cyanide-
exchanged macroporous polymer resin.

We recently investigated the reaction of pyrylium salts
with sodium cyanide in boiling acetonitrile, and we ob-
tained substituted 2-furyl acetonitriles 4 within a short
time as the sole products (Scheme 1).14 Surprisingly, al-
lowing the same reaction to run for a prolonged period led
to the formation of a new compound, the corresponding 2-
aroylfuran 7, along with the development of an intensely
red solution. The formation of 2-aroylfurans 7 is of con-
siderable interest, because this is the first report of the
synthesis of these useful compounds by ring contraction
of a pyrylium salt, involving a carbon nucleophile instead
of the usual oxygen nucleophiles. This unexpected result
encouraged us to optimize the conditions for the synthesis
of 2-aroylfurans.

Initially, we chose 2,4,6-triphenylpyrylium perchlorate as
a model compound and we examined the effect of the sol-
vent. Among ethanol, acetonitrile, dichloromethane, and
tetrahydrofuran, acetonitrile gave the best results. Next,
we screened the effect of changing the ratio of the re-
agents and substrates for the reaction, and the best yield
was obtained by using a reagent-to-substrate ratio of 1:4.

We then examined the scope and generality of our new
ring contraction by using various triarylpyrylium perchlo-
rates under our optimized reaction conditions.15 The struc-
tures of resulting 2-aroyl-3,5-diarylfurans 7a–f were
established unambiguously by physical and spectroscopic
(IR, 1H NMR, and 13C NMR) analyses (see the Supporting
Information). A mechanistic rationale with a possible se-
quence of events is shown in Scheme 1.

The first step of the reaction gives the α-cyanopyran 2,
which undergoes electrocyclic ring opening to form the
acyclic valence tautomer 3. The thermally unstable cyan-
odienone 3 then undergoes rapid cyclization to the 2-furyl
acetonitrile 4. Subsequent hydrolysis of the cyano group
followed by elimination of carbon dioxide gives the 2-ar-
oylfuran 7. Nucleophilic attack by hydroxyl ions on the
carbonyl moiety of dienone 5 gives anion 6, which trans-
forms into 7 by sequential nucleophilic ring closure and
oxidative aromatization. The fact that the 2-furyl acetoni-
trile 4 can be isolated after a short reaction time suggests
that the activation energy for the forward reaction of com-
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pound 4 is lower than that for the 2-aroylfuran 7 (see the
Supporting Information).

We carried out further experiments to support our pro-
posed mechanism. The isolated cyanodienone intermedi-
ate 3, which we characterized by physical and
spectroscopic analysis (Supporting Information), was
found to afford product 7 on prolonged heating. Further-
more, prolonged heating of 2-furyl acetonitrile 4 in aceto-
nitrile also resulted in the formation of compound 7, along
with a small amount of compound 3, in agreement with
our proposed mechanism.

The formation of a deep-red coloration during reaction
can be ascribed to the formation of the anion 6, typical of
species generated in the presence of O-nucleophiles. The
formation of the anion 6 as a byproduct is one of the major
drawbacks for the synthesis of 2-aroyl-3,5-diarylfurans 7
by standard methods, as this side reaction reduces the
yield of the desired product10,12 (see Supporting Informa-
tion).

This development prompted us to search for a synthetic
route to 7 that would avoid any appreciable concentration
of byproduct 6 in solution and that would remove the need
to use free inorganic cyanide. The fact that perchlorate
ions bind more strongly to basic anion-exchange resins
than does cyanide ion,16 coupled with the well-known
high reactivity of pyrylium salts in addition reactions,
suggested that we ought to examine the reaction of pyry-
lium perchlorates with the cyanide form of a porous an-
ion-exchange polymer.

The cyanide-supported resin was prepared by treating the
chloride form of Amberlite IRA 910 (a macroporous resin

containing quaternary ammonium groups) with aqueous
sodium cyanide.17 The typical loading of the cyanide
anion on the support was 1.4 mmol·g–1, as determined by
potentiometry.18

When we treated the model substrate triphenylpyrylium
perchlorate (1a) with the cyanide-containing resin, we ob-
tained (3,5-diphenyl-2-furyl)(phenyl)methanone (7a) in
excellent yield. As shown in Figure 1, none of the red-
colored byproduct 6 was formed. A weak interaction be-
tween anion 6 and the resin, which increases the nucleo-
philicity of the anion, might contribute to the suppression
of byproduct formation and to the rapid progress of the re-
action. In addition, the high porosity of the resin appears
to allow good diffusion of reactants and solvents into the
interior of the polymer matrix.

Figure 1  Synthesis of 2-aroyl-3,5-diarylfuran 7 using sodium cya-
nide (right) and cyanide-containing resin (left)

Scheme 1 Plausible mechanism for the formation of 2-aroylfuran derivatives 7
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The product can be isolated by filtering off the resin and
purified by removing the solvent under reduced pressure
without laborious aqueous workup or chromatographic
purification steps.

To test the scope and utility of our synthetic protocol, we
examined the process with a range of triarylpyrylium per-
chlorates containing electron-donating or electron-with-
drawing groups at the para-position of the substituted
phenyl rings in the presence of the cyanide-impregnated
anion-exchange resin.19 Representative results of this syn-
thetic modification are listed in Table 1. Electron-donat-
ing substituent decreased the reaction rate (entries 1–4),
possibly because these groups decrease the positive
charge at the α-position of the heterocyclic ring. The pres-
ence of more strongly electron-donating groups led to lon-
ger reaction times. In contrast, the presence of an electron-
withdrawing group (entries 5 and 6) accelerated the reac-
tion.

This protocol therefore offers the possibility of consider-
ably decreasing the reaction time and improving the yield

in comparison with conventional conditions. Further-
more, the procedure gives the desired 2-aroylfuran deriv-
atives 7 exclusively with none of the corresponding
byproducts 6. In addition, the resin-supported cyanide is
much less hazardous to use, because the cyanide residues
are retained on the Amberlite resin and are not extracted
into either aqueous or organic media. These aspects point
to this being an atom-efficient process that produces less
waste than would otherwise have arisen from the use of
excess reagents.

In conclusion, a cyanide-containing resin was successful-
ly used in a high-yielding and clean conversion of a range
of triarylpyrylium perchlorates into 2-aroylfuran deriva-
tives. Because of its operational simplicity, this effective
synthetic route minimizes environmental impact in many
ways, including ease of manipulation and workup, better
control of hazardous cyanide, shorter reaction times, and
minimization of byproducts. We expect that this green
and practical protocol will be useful in academic research
and in pharmaceutical development.

Table 1  Conversion of Various Triarylpyrylium Salts 1 into the Corresponding 2-Aroyl-3,5-diarylfurans 7 at 85 °C by Using Cyanide-
Containing Resin

Entry Substrate (1) Product (7) Time (h) Yield (%)

1 7 86

2 8 87

3 10 87

4 11 91

5 5 86

6 4 84
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