## $\beta$ -ELEMEN-9 $\beta$ -OL FROM ACHILLEA AGERATUM

R. GRANDI, A. MARCHESINI, U. M. PAGNONI and R. TRAVE Istituto di Chimica Organica, Università di Modena, 41100 Modena, Italy

(Revised Received 6 June 1972. Accepted 15 June 1972)

Key Word Index—Achillea ageratum; Compositae; sesquiterpene alcohol;  $\beta$ -elemen-9 $\beta$ -ol.

Abstract—The oil obtained from a hexane extraction of the flowers and leaves of *Achillea ageratum* L. yielded a new sesquiterpene alcohol,  $\beta$ -elemen-9 $\beta$ -ol. Its structure and stereochemistry have been established by chemical and physico-chemical methods.

RECENTLY we reported<sup>1</sup> the isolation and structure determination of a new germacrane sesquiterpene, ageratriol (I), from *Achillea ageratum* L. (Compositae). In order to examine the biogenetic route to I, we have examined the oil obtained by steam distillation of the residue of a hexane extraction of the flowers and leaves of *A. ageratum*. It contains about 20 components, of which the most abundant is 1,8-cineole (~60%). From the high boiling fraction, after repeated chromatography on silica gel and final purification on GLC, a new compound  $\beta$ -elemen-9 $\beta$ -ol (II), C<sub>15</sub>H<sub>24</sub>O, (b.p. 113–115°/0·3 mm) was obtained (~25% of the original oil).

The  $\beta$ -elemene skeleton in II was demonstrated by treating<sup>2</sup> with NaBH<sub>4</sub> in MeOH the tosylhydrazone of ketone III (b.p. 87-90°/0·25 mm), obtained from  $\beta$ -elemen-9-ol by Jones oxidation. A mixture of two hydrocarbons was obtained from the reaction; the most abundant (70%), which was isolated by preparative GLC, shows physical and spectroscopic data in agreement with that reported<sup>3</sup> in the literature for  $\beta$ -elemene (IV). Furthermore, this compound (b.p. 115-116°/10 mm) has the same  $R_t$  on GLC as that of an authentic sample.

The position of the hydroxyl, indicated as being in C-9 by the double doublet at 3.46  $\delta$  (J 3.7 and 11 Hz) of the hydrogen a to the hydroxyl in the NMR spectrum of II, is substantiated as follows: II is reduced (PtO<sub>2</sub>, *n*-hexane) to the saturated alcohol V (m.p. 105.5°) which, by Jones oxidation, yields the ketone VI (b.p. 100–102°/1 mm); the ORD and CD curves of this compound show negative Cotton effect, in agreement with the suggested stereostructure. When VI is treated with Ac<sub>2</sub>O–HClO<sub>4</sub> in CCl<sub>4</sub><sup>4</sup> the enolacetate VII is obtained, which exhibits in its NMR spectrum a broad signlet at 5.32  $\delta$  due to an olefinic proton, thus excluding C-6 position for the hydroxyl group. The enolacetate was treated with Br<sub>2</sub> in CCl<sub>4</sub> and, subsequently, with MeOH,<sup>5</sup> to yield a 3:2 mixture of the two bromoketones VIII (b.p. 120°/1 mm) and IX (m.p. 74°), which were then separated by preparative

<sup>&</sup>lt;sup>1</sup> L. GARANTI, A. MARCHESINI, U. M. PAGNONI and R. TRAVE, Tetrahedron Letters 1397 (1972).

<sup>&</sup>lt;sup>2</sup> L. CAGLIOTI, Tetrahedron 22, 487 (1966).

<sup>&</sup>lt;sup>3</sup> V. SYKORA, V. HEROUT and F. SORM, Coll. Czech. Commun. Chem. 21, 267 (1956); T. IRIE, K. YAMAMOTO. and T. MASAMUNE, Bull. Chem. Soc. Japan 37, 1053 (1964).

<sup>&</sup>lt;sup>4</sup> D. H. R. BARTON, R. M. EVANS, J. C. HAMLET, P. G. JONES and T. WALKER, J. Chem. Soc. 747 (1954).

<sup>&</sup>lt;sup>5</sup> P. Z. BEDOUKIAN, Org. Syn. Coll. Vol. 3, 127 (1955).

GLC. The type of multiplicity of the signals at 4.45  $\delta$  (1H, dd (J 3.7 and 1.5\* Hz),  $\underline{H}$ -C-Br) in the NMR spectrum of VIII and at 4.76  $\delta$  (1H, d(J 11 Hz),  $\underline{H}$ -C-Br) in that of IX clearly indicates the presence of a hydrogen atom  $\alpha$  to the carbon bearing the bromine atom, thus confirming C-9 position for the ketonic group.



The values of the coupling constants of the double doublet signal of the C-9 proton in the NMR spectrum of  $\beta$ -elemen-9 $\beta$ -ol suggests that the hydroxyl group is equatorially oriented. This fact, and the results previously described, establish the stereostructure of  $\beta$ -elemen-9 $\beta$ -ol implicit in II.

Since the derivatives of  $\beta$ -elemene normally result from Cope-re-arrangement of germacrane precursors,<sup>6</sup> one may assume that  $\beta$ -elemen-9 $\beta$ -ol is a transformation product of an X-structure-like compound. An attempt is now being made to isolate the precursor using fresh material.

## EXPERIMENTAL

Plant material. The plants of Achillea ageratum were harvested in northern Sardinia in July.

Isolation of  $\beta$ -elemen-9 $\beta$ -ol (II). The flowers (10 kg) were extracted with *n*-hexane (60 l.) by percolation at room temp. The solvent was evaporated *in vacuo* to afford a dark yellow oil (110 g) which, by steam distillation, yielded a volatile mixture (40 g). The low boiling fraction, consisting chiefly of 1,8-cineole, was eliminated by careful distillation. The residue (14 g) was chromatographed on silic**a** gel (300 g) and eluted with light petrol.-ether, to give  $\beta$ -elemen-9 $\beta$ -ol (9 g), which was further purified (98%) by distillation, b.p. 113–115°/0·3 mm, and obtained in a pure state by preparative GLC (SE 30 on Chromosorb W, 160°). MS: (M<sup>+</sup>) 220 *m*/*e*. NMR<sup>7</sup> (CDCl<sub>3</sub>): 0·96 (3H, *s*, CH<sub>3</sub>-C), 1·73 (6H, *s*, CH<sub>3</sub>-C=C). 3·46 (1H, *dd*(J 3·7 and 11 Hz), H–C–O), 4·6–5·33 (6H, *m*, CH<sub>3</sub>=C) and 5·76  $\delta$  (1H, *dd*(J 11·2 and 17 Hz), H–C=C). IR (film): 3420, 3080, 1640, 1065, 975, 890 cm<sup>-1</sup>. [a]<sub>D</sub><sup>20</sup> – 19·9° (*c*, 2 CH<sub>3</sub>OH). (Found: C, 81·71; H, 11·17. C<sub>15</sub>H<sub>24</sub>O requires: C, 81·82; H, 10·9%.)

β-Elemen-9-one (III). The β-elemen-9β-ol (0·9 g) was dissolved in pure acetone (20 cm<sup>3</sup>). Jones' reagent was added dropwise at 0° until a persistent orange colour was formed. After 10 min the mixture was diluted with H<sub>2</sub>O (40 cm<sup>3</sup>) and extracted with ether (3 × 15 cm<sup>3</sup>). Removal of ether *in vacuo* afforded the ketone III (a single peak in GLC), which was purified by distillation (0·82 g), b.p. 87–90°/0·25 mm. MS: (M<sup>+</sup>) 218. NMR (CDCl<sub>3</sub>): 1·19 (3H, s, CH<sub>3</sub>–C), 1·78 (6H, s, CH<sub>3</sub>–C=C), 4·7–5·32 (6H, m, CH<sub>2</sub>=C), 6·04 δ (1H, *dd(J* 10·5 and 17·7 Hz), H–C=C). IR (film): 1700 cm<sup>-1</sup>.  $[a]_{D}^{20}$  –50° (c, 2 MeOH).

\* Long-range coupling, 'M' arrangement, with C-6 equatorial proton.

- <sup>6</sup> R. V. H. JONES and M. D. SUTHERLAND, Austral. J. Chem. 21, 2255 (1968); R. V. H. JONES and M. D. SUTHERLAND, Chem. Commun. 1229 (1968); K. NISHIMURA, N. SHIMODA and Y. HIROSE, Tetrahedron Letters 3097 (1969).
- <sup>7</sup> NMR spectra were recorded on a Varian HA-60 spectrometer, using (CH<sub>3</sub>)<sub>4</sub>Si as internal standard.

 $\beta$ -Elemene from III. 0.75 g of  $\beta$ -elemen-9-one was stirred with tosylhydrazine. HCl (1·2 g) in MeOH (15 cm<sup>3</sup>) and then refluxed on a H<sub>2</sub>O bath for 1 hr. The mixture was cooled, concentrated *in vacuo* and, after addition of H<sub>2</sub>O (10 cm<sup>3</sup>), extracted with ether (3 × 10 cm<sup>3</sup>). The residue from ether extract, chromato-graphed on silica gel, eluting with light petrol.-ether (4:5), yielded the tosylhydrazone (0·98 g), homogeneous in TLC. On crystallization, fine needles (0·6 g) were obtained, m.p. 127°. [a]<sub>D</sub><sup>20</sup> - 5·1° (c, 2 MeOH). (Found: C, 68·51; H, 7·59; N, 7·05. C<sub>22</sub>H<sub>30</sub>N<sub>2</sub>O<sub>2</sub>S requires: C, 68·39; H, 7·77; N, 7·25%.)

To a stirred solution of tosylhydrazone (0.55 g) in MeOH (20 cm<sup>3</sup>) NaBH<sub>4</sub> (1.3 g) was added at 20° over a period of 20 min. The solution was further stirred for 1 hr and then extracted with *n*-pentane (3 × 10 cm<sup>3</sup>). Removal of *n*-pentane furnished a product (0.29 g) for which GLC analysis showed two peaks (7:3). On preparative GLC (Carbowax 5% on chromosorb W) the major product was isolated and then purified by distillation, b.p. 115–116°/10 mm. GLC analysis gave a single peak, MS: (M<sup>+</sup>) 204 *m/e*. NMR (CDCl<sub>3</sub>): 1.0 (3H, *s*, CH<sub>3</sub>-C), 1.75 (6H, *s*, CH<sub>3</sub>-C=C), 4.6–5.1 (6H, m, CH<sub>2</sub>=C) and 5.82  $\delta$  (1H, *dd*(*J* 10.2 and 17.4 Hz), H–C=C).

β-elemen-9-ol (V). A solution of II (1·2 g) in *n*-hexane was hydrogenated over PtO<sub>2</sub> (0·2 g) until the absorption corresponded to 3 mol of H<sub>2</sub>. After filtering off the catalyst, the filtrate afforded β-eleman-9-ol (1·2 g) which was purified by crystallization (*n*-hexane), m.p. 105·5°. MS: (M<sup>+</sup>): 226 m/e. NMR (CDCl<sub>3</sub>): 3·53 δ (1H, dd(J 4·3 and 10·8 Hz), H–C–O). IR (Nujol): 3300 cm<sup>-1</sup>. [a]<sub>20</sub><sup>20</sup> -8·6° (c, 4·6 CHCl<sub>3</sub>).

β-Eleman-9-one (VI). A solution of β-eleman-9-ol (1·1 g) in acetone (25 cm<sup>3</sup>) was oxidized under the same conditions as that of I and worked up to afford an oil (0·95 g) which was purified by distillation in vacuo, b.p. 100-102°/1 mm. MS: (M<sup>+</sup>) 224 m/e. IR (film): 1708 cm<sup>-1</sup>.  $[a]_D^{20} - 28\cdot3^\circ$  (c, 6 CHCl<sub>3</sub>). ORD<sup>8</sup> (c, 0·20 CH<sub>3</sub>OH), 20°,  $[\phi]_{317} - 2051^\circ$ ;  $(\phi)_{275} + 2073^\circ$ . CD<sup>8</sup> (c, 0·20 MeOH), 20°,  $[\theta]_{340}$  0;  $[\theta]_{296} - 3300$ ;  $[\theta]_{240}$  0;  $\Gamma$ 36 nm.

Enolacetylation of VI.  $\beta$ -Eleman-9-one (0.8 g) in CCl<sub>4</sub> (15 cm<sup>3</sup>) was treated at room temp. with 50% aqueous HClO<sub>4</sub> (2 drops) in Ac<sub>2</sub>O (1 cm<sup>3</sup>). After 1 hr at room temp. the solution was washed with ice-cold 5% NaOH and H<sub>2</sub>O, then dried (MgSO<sub>4</sub>) and the solvent removed *in vacuo*. The residue was purified by distillation (0.65 g), b.p. 103-105°/0·1 mm. NMR (CDCl<sub>3</sub>): 2·12 (3H, s, CH<sub>3</sub>-O-C=O) and 5·32  $\delta$  (1H, br. s, H-C=C). IR: (film) 1755, 1210 cm<sup>-1</sup>.

Bromoketones VIII and IX. (a) From the enolacetate VII. The compound VII (0.5 g) was dissolved in  $CCl_4$  (5 cm<sup>3</sup>) and a solution (10%) of  $Br_2$  in  $CCl_4$  was added at room temp. dropwise until a persistent colour was formed. After 10 min, MeOH (0.5 cm<sup>3</sup>) was added; the mixture was shaken thoroughly and left at room temp. for 6 hr after which it was diluted with  $H_2O$  (5 cm<sup>3</sup>). The organic layer was separated and the aqueous solution extracted further with  $CCl_4$  (2 × 10 cm<sup>3</sup>). The organic layer was separated and the aqueous solution extracted further with  $CCl_4$  (2 × 10 cm<sup>3</sup>). The residue from combined  $CCl_4$  extracts was separated into the components VIII and IX (3:2) by preparative GLC (Carbowax 5%). (VIII). b.p. 120°/1 mm. NMR (CDCl\_3): 1:36 (3H, s,  $CH_3-C$ ), 4:45 (1H, dd (J 3:7 and 1:5 Hz), H–C–Br). IR (film): 1698 cm<sup>-1</sup> (IX). m.p. 74°. NMR (CDCl\_3): 1:07 (3H, s,  $CH_3-C$ ) and 4:76  $\delta$  (1H, dJ (11 Hz), H–C–Br). IR (Nujol). 1710 cm<sup>-1</sup>. (b) By direct bromination of the ketone VI. The ketone VI (0:5 g) in HOAc (10 cm<sup>3</sup>) was treated with excess bromine at room temp. The mixture was left for 1 hr and then worked up in the usual manner to further with a mixture (0:6 g) (3:7) of the two bromoketones VIII and IX.

Acknowledgements—The authors are grateful to Professor F. Sorm for an authentic sample of  $\beta$ -elemene Support of this research by the Consiglio Nazionale delle Ricerche, Rome, is gratefully acknowledged.

<sup>8</sup> K. MORIKAWA and Y. HIROSE, *Tetrahedron Letters* 2899 (1968); 869 (1969) reported for a VI-like compound, obtained from  $(-)-\delta$ -elemenol, CD and ORD values considerably lower than those found here.