Date: 23-09-13 17:45:29

Eurjoc European Journal of Organic Chemistry -

DOI: 10.1002/ejoc.201300860

Organophosphorus-Selenium Heteroatom Derivatives from Selenation of Primary/Secondary Amines and Haloalkanes/Dihaloalkanes

Pages: 10

Guoxiong Hua,^[a] Kasun S. A. Arachchige,^[a] Alexandra M. Z. Slawin,^[a] and J. Derek Woollins^{*[a]}

Keywords: Woollins' reagent / Selenium / Phosphorus / Amines / Haloalkanes

Reaction of 2,4-bis(phenyl)-1,3-diselenadiphosphetane-2,4diselenide (Woollins' reagent) with four equivalents of primary/secondary amines led to a series of ammonium phenylphosphonamido-diselenoates or phenylphosphonamido-diselenoic diamides **1a–n**, the latter further reacted in situ with either two equivalents of haloalkanes or an equimolar amount of dihaloalkane, resulting in formation of the corre-

Introduction

Organophosphorus chemistry has attracted huge attention in both academic and industrial research for several decades.^[1-3] A wide range of applications have been documented in fields such as coordination chemistry, material science, homogeneous catalysis, the synthesis of biologically active agents or pesticides, and additives for polymers such as lubricants and antioxidants.^[4–10] 2.4-Bis(phenvl)-1.3diselenadiphosphethane-2,4-diselenide $[{PhP(Se)(\mu-Se)}_2]$ (Woollins' reagent, WR), a selenium counterpart of the well-known Lawesson's reagent (LR), has been well-developed in recent years as an efficient phosphorus-seleniumcontaining building block or selenation reagent for organic synthetic chemistry.^[11] The reactions of WR with various organic substrates ranges from simple oxygen-selenium exchange to the formation of complex phosphorus-selenium heterocycles as well as the formation of surprising phosphorus-selenium-free products.^[12-25] We have recently reported the synthesis of a series of ammonium phenylphosphonamido-diselenoates and phenylphosphonamido-diselenoic diamides from the reaction of WR with primary or secondary amines,^[26] and the formation of a series of organophosphorus-selenium heteroatom derivatives from the selenation of alkenyl or arynyl-diamines.^[27] As a part of our continuing exploration into the reactivity of WR towards different organic nucleophiles, herein, we report the synthesis of a series of novel Se-alkylphenylphosphonamido-diselenoate and alkane bis(N-alkyl-P-phenylphos-

http://www.st-andrews.ac.uk/chemistry/

sponding Se-alkylphenyl-Se-alkylphenyl-phosphonamidodiselenoates **2a–n** and alkane bis(*N*-alkyl-*P*-phenylphosphonamido-diselenoate) derivatives **3a–n** in good to excellent yields. All new compounds have been characterized spectroscopically including multinuclear NMR (¹H, ¹³C, ³¹P and ⁷⁷Se), IR and mass spectroscopy. Two representative X-ray structures are also described.

phonamido-diselenoate) derivatives through the reaction of WR with primary/secondary amines, followed by treatment with haloalkanes or dihaloalkanes in situ. We also report two representative X-ray structures.

Results and Discussion

Treatment of WR with four molar equivalents of primary or secondary amine in anhydrous tetrahydrofuran (THF) at ambient temperature for 2 h proceeded with cleavage of the four-membered ring in WR, leading to formation of the corresponding ammonium salts of phenylphosphonamidodiselenoates and phenylphosphonamido-diselenoic diamides 1a-n in almost quantitative yields.^[26] These ammonium salts were further reacted in situ with two equivalents of haloalkanes at ambient temperature for 24 h to give the corresponding Se-alkylphenylphosphonamido-diselenoates **2a**–**n**, as depicted in Scheme 1. These new heteroatom compounds were isolated in good to excellent yields (41–93%; Table 1) as either sticky oils or pastes that were soluble in both chlorinated solvents and tetrahydrofuran. It should be noted that products 2e-l, bearing a strong electron-withdrawing group R^3 (*p*-BrC₆H₄COCH₂), were obtained in rather high yields (55-93%), whereas products 2b and 2c, bearing a less electron-withdrawing group R^3 [CH₃(CH₂)₁₀ or CH₃(CH₂)₆], were isolated in the lowest yields (41 and 42%, respectively). Thus, it appears that a strong electronwithdrawing group R³ is hugely beneficial for the formation of the reaction products. Compounds 2a-n are stable to air and moisture for months without any clear signs of degradation.

[[]a] EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife, Scotland, KY16 9ST, UK E-mail: jdw3@st-and.ac.uk

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/ejoc.201300860.

Date: 23-09-13 17:45:29

Pages: 10

Х	\mathbb{R}^1	R ²	R ³	Product	Yield (%)	$\delta_{\rm P} ({\rm ppm})$ [($J_{\rm P,Se}$), Hz]	$\delta_{\text{Se}} \text{ (ppm)}$ [($J_{\text{P,Se}}$), Hz]
Cl	c-Hexyl	Н	C ₆ H ₅ COCH ₂	2a	54	53.7 [371/792]	345.4 [371]
Br	<i>c</i> -Hexyl	Н	CH ₃ (CH ₂) ₁₀	2b	42	53.2 [391/786]	-102.0 [792] 323.6 [391] -104.5 [786]
Br	c-Hexyl	Н	$CH_3(CH_2)_8$	2c	41	53.2 [390/786]	323.6 [390]
Br	c-Hexyl	Н	CH ₃ (CH ₂) ₆	2d	59	53.2 [390/786]	-104.6 [786] 323.6 [391]
Br	tBu	Н	1,4-BrC ₆ H ₄ COCH ₂	2e	82	46.9 [355/794]	-104.4 [786] 384.0 [355]
Br	sBu	Н	1,4-BrC ₆ H ₄ COCH ₂	2f ^[a]	93	56.0 [366/796] 54.8 [373/782]	-33.0 [792] 346.1 [367] -101.9 [794] 348.5 [374]
Br	<i>n</i> Bu	Н	1,4-BrC ₆ H ₄ COCH ₂	2g	81	58.0 [370/794]	-104.8 [784] 321.2 [370] 100.4 [794]
Br	<i>c</i> -Hexyl	Н	1,4-BrC ₆ H ₄ COCH ₂	2h	56	54.5 [369/794]	-100.4 [794] 347.7 [369] -100.7 [794]
Br	c-Pentyl	Н	1,4-BrC ₆ H ₄ COCH ₂	2i	81	55.8 [369/791]	338.8 [369] _95 3 [791]
Br	<i>i</i> Pr	Н	$1,\!4\text{-}BrC_6H_4COCH_2$	2j	88	54.6 [369/794]	345.3 [370]
Br	<i>i</i> Pr	<i>i</i> Pr	1,4-BrC ₆ H ₄ COCH ₂	2k	55	62.5 [366/789]	-102.4 [794] 311.7 [367]
Br	<i>i</i> Bu	<i>i</i> Bu	1,4-BrC ₆ H ₄ COCH ₂	21	67	78.4 [362/798]	-26.1 [789] 299.8 [362]
Br	<i>i</i> Pr	iPr	1,2-(HOCH ₂)C ₆ H ₄ CH ₂	2m	44	59.9 [387/777]	-93.5 [799] 361.4 [388] -26 4 [777]
Br	B_n	Н	1,4-BrC ₆ H ₄ COCH ₂	2n	47	58.3 [376/798]	324.8 [376] -103.4 [798]

Table 1. Se-Alkylphenylphosphonamidodiselenoates 2a-n and their ³¹P and ⁷⁷Se NMR spectra.

[a] Two diastereomers were found in compound 2f.

Scheme 1. Synthesis of *Se*-alkylphenylphosphonamidodiselenoates **2a–n** (R groups defined in Table 1).

Compounds **2a**–**n** were characterised by IR and ¹H, ¹³C, ³¹P and ⁷⁷Se NMR spectroscopy and by mass spectrometry. All new compounds showed the anticipated $[M + H]^+$ or $[M + Na]^+$ peak in their mass spectra and satisfactory accurate mass measurements. Two isomers were found in the NMR spectra of **2f**. The ³¹P NMR spectra of **2a**–**n** display sharp singlets in the range of 46.9–78.4 ppm, flanked by two pairs of selenium satellites with ³¹P–⁷⁷Se coupling constants in the range of 355–391 Hz and 777–798 Hz, indicating the presence of P–Se single bonds and P=Se double bonds in each compound. This was further substantiated by the ⁷⁷Se NMR spectra of **2a–n**, which contain signals arising from SeR in the range of $\delta = 299.8–384.0$ ppm and from P=Se in the range of $\delta = -104.8$ to -26.1 ppm, respectively, with matching ${}^{31}P{}^{-77}Se$ coupling constants (Table 1).

The molecular structures of **2e** and **2i** were confirmed by single-crystal X-ray diffraction analysis, which are shown in Figure 1^[28] and Figure 2.^[29] The transparent, colourless cubic crystals of **2e** and **2i** were grown from dichloromethane solution with slow diffusion of hexane. Compound **2e** crystallized in the triclinic space group $P\overline{1}$, whereas compound **2i** crystallized in the monoclinic space group $P2_{1/c}$ with two independent molecules per unit cell. In compound

Figure 1. X-ray structure of **2e** (hydrogen atoms omitted for clarity). Selected bond lengths [Å] and angles (°) (esds in parentheses): Se(1)–P(1) 2.103(3), Se(2)–P(1) 2.257(3), Se(2)–C(11) 1.948(9), P(1)–C(1) 1.807(8), P(1)–N(1) 1.666(6), N(1)–C(7) 1.488(9); P(1)–Se(2)–C(11) 99.3(3), Se(1)–P(1)–Se(2) 113.48(11), Se(1)–P(1)–N(1) 120.7(2), Se(1)–P(1)–C(1) 113.0(3), Se(2)–P(1)–N(1) 100.8(3), Se(2)–P(1)–C(1) 100.4(3), N(1)–P(1)–C(1) 106.0(4), P(1)–N(1)–C(7) 124.9(5).

Organophosphorus-Selenium Heteroatom Derivatives

Figure 2. X-ray structure of **2i** (hydrogen atoms omitted for clarity). Selected bond lengths [Å] and angles (°) (esds in parentheses) (dimensions for second independent molecule in square parentheses): Se(1)–P(1) 2.097(4) [2.103(4)], Se(2)–P(1) 2.281(4) [2.208(4)], Se(2)–C(12) 1.950(11) [1.972(10)], P(1)–C(1) 1.791(10) [1.838(10)], P(1)–N(1) 1.666(6) [1.644(9)], N(1)–C(7) 1.483(12) [1.513(12)]; P(1)–Se(2)–C(11) 99.4(3) [101.3(3)], Se(1)–P(1)–Se(2) 114.09(12) [114.29(12)], Se(1)–P(1)–N(1) 113.3(3) [111.2(4)], Se(1)–P(1)–C(1) 113.7(4) [113.3(4)], Se(2)–P(1)–N(1) 109.4(3) [110.1(3)], Se(2)–P(1)–C(1) 101.3(4) [100.6(4)], N(1)–P(1)–C(1) 106.4(5) [106.6(5)], P(1)–N(1)–C(7) 119.2(6) [121.1(7)].

2e, the two phenyl rings are inclined 56.85° to one another. The P(1)–Se(1) [2.103(3) Å] and P(1)–Se(2) [2.0954(13) Å] bond lengths in **2e** and the P(1)–Se(1) [2.097(4)/2.103(4)]

and P(1)–Se(2) [2.281(4)/2.208(4) Å] bond lengths in **2i** are consistent with P–Se single bonds (2.2–2.3 Å) and P=Se double bonds (2.08–2.12 Å) in similar compounds.^[25,30,31]

We also carried out analogous reactions by using dihaloalkanes instead of monohaloalkanes. Thus, ammonium phenyldiselenophosphonates 1a-n were further reacted in situ with one molar equivalent of dibromoalkanes in tetrahydrofuran at ambient temperature for 24 h to give the corresponding *Se*-alkylphenylphosphonamido-diselenoates 3a**n**, as shown in Scheme 2. These new compounds were isolated in moderate to good yields (51–80%; Table 2) as sticky

Scheme 2. Synthesis of *Se*-alkylphenylphosphonamidodiselenoates **3a–n** (R and E groups are defined in Table 2).

Table 2. Se-Alkylphenylphosphonamidodiselenoates 3a-n and their ³¹P and ⁷⁷Se NMR spectra.

	<i>J</i> 1	J 1 1			1	
Product	\mathbb{R}^1	\mathbb{R}^2	E	Yield (%)	$\delta_{\rm P}$ (ppm) [($J_{\rm P,Se}$), Hz]	$\delta_{\text{Se}} \text{ (ppm) } [(J_{\text{P,Se}}), \text{Hz}]$
3a	c-Hexyl	Н	CH ₂	79	54.9 [374/791]	398.6 [371], -91.9 [791]
	-				54.8 371/791	395.5 [374], -92.7 [791]
3b	c-Hexyl	Н	CH ₂ CH ₂	80	52.5 384/789	378.5 384, -90.1 784
					52.4 [386/786]	375.6 [386], -94.7 [786]
3c	c-Hexyl	Η	$CH_2CH_2CH_2$	70	53.7 [384/789]	325.1 [384], -102.8 [789]
					53.6 [386/786]	324.8 [386], -103.5 [786]
3d	c-Hexyl	Η	$CH_2CH_2CH_2CH_2$	78	53.5 [384/789]	326.7 [386], -105.0[789]
					53.4 [386/786]	326.3 [388], -105.2 [786]
3e	c-Hexyl	Η	$1,2-CH_2C_6H_4CH_2$	77	53.9 [386/789]	395.9 [386], -96.7 [789]
					53.8 [386/789]	395.1 [386], -96.8 [789]
3f	<i>i</i> Pr	Η	CH_2CH_2	65	53.0 [383/786]	514.7 [385], -248.5 [784]
					52.7 [385/784]	514.5 [383], -248.7 [786]
3g	<i>i</i> Pr	Η	$CH_2CH_2CH_2$	55	53.9 [385/789]	323.4 [385], -164.2 [789]
					53.8 [385/789]	323.0 [385], -173.8 [789]
3h	<i>i</i> Pr	Н	$1,2-CH_2C_6H_4CH_2$	56	54.2 [385/786]	392.7 [385], –99.5 [786]
					54.1 [385/786]	392.1 [385], -99.7 [786]
3i	<i>i</i> Bu	iBu	$1,2-CH_2C_6H_4CH_2$	53	77.1 [386/792]	357.1 [386], -95.6 [792]
					76.8 [386/794]	354.1 [386], –96.7 [794]
					76.2 [386/794]	350.5 [386], –98.4 [794]
					76.1 [386/792]	350.1 [386], -99.1 [792]
3j	iPr	Н	biphenyl-4,4'-diylbis(methylene)	54	54.0 [387/789]	408.5 [386], –99.1 [789]
					53.9 [387/789]	408.4 [385], –99.3 [789]
3k	tBu	Н	$1,3-CH_2C_6H_4CH_2$	59	46.1 [374/794]	450.7 [374], -49.2 [789]
					45.9 [367/789]	447.8 [377], -49.8 [789]
					45.8 [377/789]	447.2 [367], -50.4 [789]
31	tBu	Н	$1,2-CH_2C_6H_4CH_2$	51	46.0 [376/789]	438.8 [378], -50.3 [789]
•	D			~ .	45.9 [378/786]	438.1 [385], -50.4 [789]
3m	sBu	Н	1,2-CH ₂ C ₆ H ₄ CH ₂	54	55.2 [384/789]	395.9 [384], -99.0 [789]
					55.1 [384/789]	395.2 [384], -99.5 [789]
					54.8 [384/789]	394.8 [384], -101.2 [789]
•	D			60	54.7 [387/789]	391.4 [387], -101.4 [789]
3n	sBu	Н	$1,3-CH_2C_6H_4CH_2$	60	55.0 [390/789]	406.4 [390], -97.1 [789]
					54.9 [390/789]	406.2 [390], -97.5 [789]
					54.6 [390/789]	406.1 [390], -99.1 [789]
					54.5 [390/789]	405.7 [390], -99.5 [789]

FULL PAPER

oils, pastes or solids that were soluble in chloroform, dichloromethane and tetrahydrofuran, and insoluble in diethyl ether and hexane.

The characterisation of 3a-n was made on the basis of ¹H, ¹³C, ³¹P and ⁷⁷Se NMR, IR spectroscopy and mass spectrometry. All new compounds showed the anticipated $[M + H]^+$ or $[M + Na]^+$ peak in their mass spectra and satisfactory accurate mass measurements were obtained for all compounds. The ³¹P NMR spectra of **3a-h**, **3j** and **3l** exhibit two sets of double resonances (as a consequence of the stereoisomers present) with two sets of satellites, whereas, interestingly, the ³¹P NMR spectra of 3i, 3m and 3n displayed four sets of double resonances, and three sets of double resonances were found in 3k, as a consequence of the stereoisomers present (Table 2). The two phosphorus atoms constitute potential stereogenic centres in compounds 3a-n, thus, stereotopic (R,R), (S,S), (S,R) and (R,S)stereoisomers are possible. Not surprisingly, in the ³¹P NMR spectra of 3a-h, 3j and 3l, two phosphorus signals with different intensity ratio (see experimental section) were observed in the range $\delta = 52.4-54.9$ ppm, flanked by two sets of satellites for the endocyclic and exocyclic selenium atoms [J(P,Se_{endo}) coupling constants being in the range of 371–387 Hz and $J(P,Se_{exo})$ coupling constants in the range of 784–794 Hz], although we were not able to assign them specifically to particular stereoisomers. However, four phosphorus signals with very similar chemical shifts and different intensity ratio were found in the ³¹P NMR spectra of compound 3i, 3m and 3n, whereas three similar phosphorus signals with different intensity ratio were also observed in the ${}^{31}P$ NMR spectrum of **3k**, and all of these signals were flanked by two sets of satellites for the endocyclic and exocyclic selenium atoms (see Table 2). The results indicate the presence of some spatial hindrance effects in compounds 3i, 3k, 3m and 3n, compared with compounds 3a-h, 3j and **31**. The hindered rotation of two large $Ph(NR^{1}R^{2})P(Se)CH_{2}$ groups from the *ortho* or *meta* position in the bridged linkage benzene backbone in 3i, 3k, 3m and 3n may result in three or four magnetically different phosphorus environments rather than three or four chemically different phosphorus environments when two potential stereogenic centres exist. Detailed ³¹P and ⁷⁷Se NMR spectroscopic analyses reveal the relatively small coupling constant ${}^{3}J_{PSe}$ = 17.0 Hz and ${}^{4}J_{PP}$ = 4.2 Hz in **3a**, ${}^{4}J_{PSe}$ = 12.3 Hz in **3b** and 3f, supporting the presence of the P(Se)SeCH₂SeP(Se) or P(Se)SeCH₂CH₂SeP(Se) linkage in compounds 3a, 3b and **3f**. The ³¹P and ⁷⁷Se NMR chemical shifts and coupling constants are comparable to those of previously reported phosphorus-selenium compounds.[32-35]

Conclusions

An efficient route has been developed to prepare a series of new *Se*-alkylphenylphosphonamido-diselenoate and alkane bis(*N*-alkyl-*P*-phenylphosphonamido-diselenoate) derivatives in moderate to good yields from the reaction of ammonium phenylphosphonamido-diselenoates or phenylphosphonamido-diselenoic diamides, which were derived from the reaction of WR with primary/secondary amines, with either two molar equivalents of haloalkanes or one molar equivalent of dibromoalkanes. All new compounds were fully characterised by means of IR, mass spectroscopy and multinuclear NMR analysis in conjunction with singlecrystal X-ray crystallography of two structures.

Experimental Section

General: Unless otherwise stated, all reactions were carried out under on oxygen-free nitrogen atmosphere by using predried solvents and standard Schlenk techniques; subsequent chromatographic and work up procedures were performed in air. ¹H (270 MHz), ¹³C (67.9 MHz), ³¹P{¹H} (109 MHz) and ⁷⁷Se{¹H} (51.4 MHz referenced to external Me₂Se) NMR spectra were recorded at 25 °C (unless stated otherwise) with a JEOL GSX 270 instrument. IR spectra were recorded as KBr pellets in the range of 4000–250 cm⁻¹ with a Perkin-Elmer 2000 FTIR/Raman spectrometer. Mass spectrometry was performed by the EPSRC National Mass Spectrometry Service Centre, Swansea and the University of St Andrews Mass Spectrometry Service. X-ray crystal data for 2e and 2j were collected with a Rigaku SCXMIni Mercury CCD system. Intensity data were collected by using ω steps accumulating area detector images spanning at least a hemisphere of reciprocal space. All data were corrected for Lorentz polarization effects. Absorption effects were corrected on the basis of multiple equivalent reflections or by semiempirical methods. Structures were solved by direct methods and refined by full-matrix least-squares against F^2 by using the program SHELXTL.^[36] Hydrogen atoms were assigned riding isotropic displacement parameters and constrained to idealized geometries.

CCDC-944056 (for **2e**) and -944057 (for **2i**) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

General Procedure for the Synthesis of 2a–n: A mixture of amine (4.0 mmol) and WR (0.54 g, 1.0 mmol) in tetrahydrofuran (60 mL) was stirred at room temperature for 2 h (the brown suspension disappeared and a pale-yellow suspension formed). To the mixture, the appropriate haloalkane (2.0 mmol) was added and the mixture was stirred at room temperature for 24 h. After filtering to remove insoluble solid and drying in vacuo, the residue was dissolved in dichloromethane (ca. 2.0 mL) and purified by column chromatography on silica gel (dichloromethane/hexane, 1:1) to give the product 2a–n.

N-Cyclohexyl *Se*-(2-Oxo-2-phenylethyl) Phenylphosphonamidodiselenoate (2a): Yield 0.519 g (54%); yellow oil. IR (KBr): $\tilde{v} = 1670$ (vs), 1596 (m), 1579 (m), 1448 (s), 1274 (vs), 1180 (m), 1005 (m), 798 (m), 748 (m), 709 (s), 688 (s), 605 (m) cm⁻¹. ¹H NMR (CD₂Cl₂): $\delta = 8.06-7.91$ (m, 4 H, Ar-H), 7.61–7.41 (m, 6 H, Ar-H), 4.75 (d, $J\{^{31}P^{-1}H\} = 13.5$ Hz, 2 H, SeCH₂), 4.37–4.12 (m, 1 H, cyclohexyl-H), 3.32–3.20 (m, 1 H, NH), 1.96–0.85 (m, 10 H, cyclohexyl-H) ppm. ¹³C NMR (CD₂Cl₂): $\delta = 194.9$ (C=O), 136.1 (d, $J_{P,C} =$ 91.3 Hz), 134.0, 133.1, 132.2 (d, $J_{P,C} = 3.1$ Hz], 130.9 (d, $J_{P,C} =$ 12.5 Hz), 128.8, 128.7, 128.5 (d, $J_{P,C} = 13.5$ Hz), 53.0, 37.5, 35.4 (d, $J_{P,C} = 19.7$ Hz), 35.3 (d, $J_{P,C} = 18.7$ Hz), 25.1 ppm. ³¹P NMR (CD₂Cl₂): $\delta = 53.7$ (s, $J_{P,Se} = 371$ Hz, $J_{P,Se} = 792$ Hz) ppm. MS (CI+): *mlz* = 486 [M + H]⁺. HRMS (CI+): calcd for C₂₀H₂₄NOPSe₂H [M + H]⁺ 486.0002; found 485.9994.

Organophosphorus-Selenium Heteroatom Derivatives

N-Cyclohexyl *Se*-Undecyl Phenylphosphonamidodiselenoate (2b): Yield 0.433 g (42%); pale-yellow oil. IR (KBr): $\tilde{v} = 1446$ (m), 1436 (m), 1403 (m), 1292 (m), 1231 (m), 1136 (m), 1081 (s), 994 (m), 877 (m), 745 (s), 690 (s), 560 (s), 524 (s) cm⁻¹. ¹H NMR (CD₂Cl₂): δ = 8.05–7.97 (m, 2 H, Ar-H), 7.49–7.45 (m, 3 H, Ar-H), 3.40 (dt, J_{H,H} = 7.4 Hz, 1 H, cyclohexyl-H), 3.22–3.12 (m, 2 H, cyclohexyl-H), 2.92–2.84 (m, $J_{P,H}$ = 13.2 Hz, $J_{H,H}$ = 7.4 Hz, 2 H, SeCH₂), 2.71 (t, $J_{\rm H,H}$ = 7.4 Hz, 2 H, CH₂), 1.96 (d, $J_{\rm H,H}$ = 9.4 Hz, 1 H, NH), 1.71– 1.19 (m, 24 H, cyclohexyl-H, CH₂), 0.87 (t, $J_{H,H}$ = 6.6 Hz, 3 H, CH₃) ppm. ¹³C NMR (CD₂Cl₂: δ = 137.3 (d, $J_{P,C}$ = 87.2 Hz), 131.9 (d, $J_{P,C} = 3.1 \text{ Hz}$), 130.8 (d, $J_{P,C} = 12.5 \text{ Hz}$), 128.4 (d, $J_{P,C} =$ 13.5 Hz), 52.8, 35.7 (d, J_{PC} = 5.2 Hz), 35.6 (d, J_{PC} = 5.2 Hz), 32.9, 32.0, 30.5 (d, J_{PC} = 3.1 Hz), 29.9, 29.6, 29.5, 29.4, 29.1, 25.5, 25.2, 22.8, 14.0 ppm. ³¹P NMR (CD₂Cl₂): δ = 53.2 (s, $J_{P,Se}$ = 391 Hz, $J_{\rm P,Se}$ = 786 Hz) ppm. ⁷⁷Se NMR (CD₂Cl₂): δ = 323.6 (d, $J_{\rm P,Se}$ = 391 Hz), -104.5 (d, $J_{P,Se}$ = 786 Hz) ppm. MS (CI⁺): m/z = 522 [M + H]⁺. HRMS (CI⁺): calcd for $C_{23}H_{40}NPSe_2H [M + H]^+$ 522.1303; found 522.1299.

N-Cyclohexyl Se-Nonyl Phenylphosphonamidodiselenoate (2c): Yield 0.405 g (41%); colourless oil. IR (KBr): $\tilde{v} = 1447$ (m), 1436 (m), 1404 (m), 1293 (m), 1231 (m), 1142 (m), 1081 (s), 994 (m), 878 (m), 746 (s), 690 (s), 569 (s), 524 (s) cm⁻¹. ¹H NMR (CD₂Cl₂): δ = 8.05–7.97 (m, 2 H, Ar-H), 7.49–7.45 (m, 3 H, Ar-H), 3.40 (dt, J_{H,H} = 7.4 Hz, 1 H, cyclohexyl-H), 3.22–3.12 (m, 2 H, cyclohexyl-H), 2.92–2.84 (m, $J_{P,H}$ = 13.2 Hz, $J_{H,H}$ = 7.4 Hz, 2 H, SeCH₂), 2.72 (t, $J_{\rm H,H}$ = 7.4 Hz, 2 H, CH₂), 1.96 (d, $J_{\rm H,H}$ = 9.4 Hz, 1 H, NH), 1.71– 1.18 (m, 20 H, cyclohexyl-H, CH₂), 0.87 (t, $J_{H,H}$ = 6.6 Hz, 3 H, CH₃) ppm. ¹³C NMR (CD₂Cl₂): δ = 137.3 (d, $J_{P,C}$ = 86.2 Hz), 131.8 (d, $J_{P,C}$ = 3.1 Hz), 130.8 (d, $J_{P,C}$ = 12.5 Hz), 128.3 (d, $J_{P,C}$ = 13.5 Hz), 52.8, 35.6 (d, $J_{P,C}$ = 5.2 Hz), 35.5 (d, $J_{P,C}$ = 5.2 Hz), 32.9, 31.9, 30.5 (d, J_{P,C} = 3.1 Hz), 29.9, 29.5, 29.4, 29.3, 25.5, 25.2, 22.8, 14.0 ppm. ³¹P NMR (CD₂Cl₂): δ = 53.2 (s, $J_{P,Se}$ = 390 Hz, $J_{P,Se}$ = 786 Hz) ppm. ⁷⁷Se NMR (CD₂Cl₂): δ = 323.6 (d, J_{P.Se} = 390 Hz), -104.6 (d, $J_{P,Se} = 786$ Hz) ppm. MS (CI⁺): m/z = 494 [M + H]⁺. HRMS (CI⁺): calcd for C₂₁H₃₆NPSe₂H [M + H]⁺ 494.0990; found 494.0892.

N-Cyclohexyl Se-Heptyl Phenylphosphonamidodiselenoate (2d): Yield 0.272 g (59%); colourless oil. IR (KBr): $\tilde{v} = 1450$ (m), 1436 (m), 1404 (m), 1293 (m), 1231 (m), 1140 (m), 1081 (vs), 994 (m), 878 (m), 746 (s), 690 (s), 570 (s), 523 (s) cm⁻¹. ¹H NMR (CD₂Cl₂): $\delta = 8.06-7.97$ (m, 2 H, Ar-H), 7.50–7.45 (m, 3 H, Ar-H), 3.17–3.12 (m, 1 H, cyclohexyl-H), 2.89 (dt, $J_{P,H} = 13.2$ Hz, $J_{H,H} = 7.4$ Hz, 2 H, SeCH₂), 2.72 (t, $J_{H,H}$ = 7.4 Hz, 2 H, CH₂), 1.96 (d, $J_{H,H}$ = 9.4 Hz, 1 H, NH), 1.69-1.09 (m, 18 H, cyclohexyl-H, CH₂), 0.86 (t, $J_{H,H}$ = 6.6 Hz, 3 H, CH₃) ppm. ¹³C NMR (CD₂Cl₂): δ = 137.2 (d, $J_{P,C} = 87.2 \text{ Hz}$], 131.9 (d, $J_{P,C} = 3.1 \text{ Hz}$), 130.8 (d, $J_{P,C} =$ 12.5 Hz), 128.4 (d, J_{PC} = 13.5 Hz), 52.9, 35.7 (d, J_{PC} = 5.2 Hz), 35.6 (d, $J_{PC} = 5.2 \text{ Hz}$), 32.9, 31.7, 30.5 (d, $J_{PC} = 3.1 \text{ Hz}$), 29.9, 28.8, 25.3, 22.7, 13.9 ppm. ³¹P NMR (CD₂Cl₂): δ = 53.2 (s, $J_{P,Se}$ = 390 Hz, $J_{P,Se} = 786$ Hz) ppm. ⁷⁷Se NMR (CD₂Cl₂): $\delta = 323.6$ (d, $J_{PSe} = 391 \text{ Hz}$, -104.4 (d, $J_{PSe} = 786 \text{ Hz}$) ppm. MS (ES⁺): m/z =488 $[M + Na]^+$. HRMS (ES⁺): calcd for $C_{19}H_{32}NNaPSe_2$ [M +Na]⁺ 488.0500; found 488.0500.

N-tert-Butyl *Se*-[2-(4-Bromophenyl)-2-oxoethyl] Phenylphosphonamidodiselenoate (2e): Yield 0.440 g (82%); pale-yellow paste. IR (KBr): $\tilde{v} = 1669$ (s), 1582 (s), 1564 (m), 1474 (m), 1437 (m), 1385 (m), 1363 (m), 1270 (m), 1222 (m), 1188 (s), 1095 (m), 1070 (m), 983 (s), 804 (m), 747 (s), 691 (s), 546 (m), 528 (s) cm⁻¹. ¹H NMR (CD₂Cl₂): $\delta = 8.12$ -8.04 (m, 2 H, Ar-H), 7.84 (d, $J_{H,H} = 8.8$ Hz, 2 H, Ar-H), 7.60 (d, $J_{H,H} = 8.8$ Hz, 2 H, Ar-H), 7.51–7.43 (m, 3 H, Ar-H), 4.37 (d, $J_{P,H} = 13.2$ Hz, 2 H, SeCH₂), 2.54 (d, $J_{H,H} = 9.5$ Hz, 1 H, NH), 1.30 (s, 9 H, CH₃) ppm. ¹³C NMR (CD₂Cl₂): $\delta = 194.3$ (C=O), 137.7 (d, J_{PC} = 91.3 Hz), 134.4, 132.1, 131.2, 131.0, 130.4, 128.6, 128.4, 58.0, 38.5, 31.1 ppm. ³¹P NMR (CD₂Cl₂): δ = 46.9 (s, $J_{P,Se}$ = 355 Hz, $J_{P,Se}$ = 794 Hz) ppm. ⁷⁷Se NMR (CD₂Cl₂): δ = 384.0 (d, $J_{P,Se}$ = 355 Hz), -53.0 (d, $J_{P,Se}$ = 792 Hz) ppm. MS (ES⁺): m/z = 560 [M + Na]⁺. HRMS (ES⁺): calcd for C₁₈H₂₁BrNONaPSe₂ [M + Na]⁺ 559.8772; found 559.8767.

N-sec-Butyl Se-[2-(4-Bromophenyl)-2-oxoethyl] Phenylphosphonamidodiselenoate (2f): Yield 0.500 g (93%); reddish yellow sticky oil. Two stereoisomers were found in ca. 1:1 intensity ratio. IR (KBr): $\tilde{v} = 1671$ (s), 1583 (s), 1435 (m), 1397 (s), 1273 (s), 1178 (s), 1098 (m), 1070 (s), 1004 (s), 838 (m), 746 (s), 689 (m), 538 (s) cm⁻¹. ¹H NMR (CD₂Cl₂): δ = 8.04–7.94 (m, 2×2 H, Ar-H), 7.81–7.75 (m, 2×2 H, Ar-H), 7.61–7.54 (m, 2×2 H, Ar-H), 7.49–7.45 (m, 3 H, Ar-H), 4.27–3.91 (m, 2×1 H, CH), 3.51–3.05 (m, 2×2 H, SeCH₂), 2.54 (d, $J_{H,H}$ = 9.5 Hz, 2×1 H, NH), 1.59–1.41 (m, 2×2 H, CH₂), 1.13 (dd, $J_{H,H}$ = 6.6 Hz, $J_{P,H}$ = 3.3 Hz, 3 H, CH₃), 1.12 $(dd, J_{H,H} = 6.6 \text{ Hz}, J_{P,H} = 3.3 \text{ Hz}, 3 \text{ H}, \text{CH}_3), 0.88 (t, J_{H,H} = 7.4 \text{ Hz},$ 3 H, CH₃), 0.85 (t, $J_{H,H}$ = 7.4 Hz, 3 H, CH₃) ppm. ¹³C NMR (CD_2Cl_2) : δ = 194.4 (C=O), 136.3 (d, $J_{P,C}$ = 89.4 Hz), 136.2 (d, $J_{P,C}$ = 90.6 Hz), 134.6, 134.5, 132.6 (d, $J_{P,C}$ = 3.1 Hz), 132.5 (d, $J_{P,C}$ = 3.1 Hz), 132.4, 132.3, 132.2, 131.5, 131.4, 131.3, 131.2, 130.7, 130.6, 129.1, 129.0, 128.3, 128.7, 51.7 (d, $J_{P,C}$ = 18.9 Hz), 51.4 (d, $J_{P,C}$ = 18.7 Hz), 38.1, 37.5, 31.8 (d, $J_{P,C} = 23.6$ Hz), 31.7 (d, $J_{P,C} =$ 22.1 Hz), 22.2 (d, $J_{P,C} = 21.4$ Hz), 22.1 (d, $J_{P,C} = 20.5$ Hz), 10.5, 10.4 ppm. ³¹P NMR (CD₂Cl₂): δ = 56.0 (s, $J_{P,Se}$ = 366 Hz, $J_{P,Se}$ = 796 Hz), 54.8 (s, $J_{P,Se} = 373$ Hz, $J_{P,Se} = 782$ Hz) ppm. ⁷⁷Se NMR (CD_2Cl_2) : $\delta = 348.5$ (d, $J_{PSe} = 374$ Hz), 346.1 (d, $J_{PSe} = 367$ Hz), -101.9 (d, $J_{P,Se} = 794$ Hz), -104.8 (d, $J_{P,Se} = 784$ Hz) ppm. MS (ES^+) : $m/z = 560 [M + Na]^+$. HRMS (ES^+) : calcd for C₁₈H₂₁BrNONaPSe₂ [M + Na]⁺ 559.8772; found 559.8762.

N-Butyl Se-[2-(4-Bromophenyl)-2-oxoethyl] Phenylphosphonamidodiselenoate (2g): Yield 0.434 g (81%); yellow sticky oil. IR (KBr): $\tilde{v} = 1657$ (s), 1585 (s), 1435 (m), 1396 (m), 1279 (s), 1100 (m), 1085 (m), 1069 (m), 1004 (s), 841 (m), 752 (s), 705 (m), 689 (m), 567 (s), 441 (m) cm⁻¹. ¹H NMR (CD₂Cl₂): δ = 8.00–7.92 (m, 2 H, Ar-H), 7.81 (d, $J_{H,H}$ = 6.9 Hz, 2 H, Ar-H), 7.61 (d, $J_{H,H}$ = 6.9 Hz, 2 H, Ar-H), 7.50-7.47 (m, 3 H, Ar-H), 4.31-4.15 (m, 2 H, NHCH₂), 3.18 (br. s, 1 H, NH), 2.91 (d, 2 H, SeCH₂), 1.62–1.28 (m, 4 H, cyclohexyl-H), 0.87 (t, $J_{H,H}$ = 7.4 Hz, 3 H, CH₃) ppm. ¹³C NMR (CD_2Cl_2) : $\delta = 194.4$ (C=O), 135.4 (d, $J_{PC} = 89.9$ Hz), 134.5, 132.8 (d, $J_{\rm PC}$ = 3.1 Hz), 132.4, 131.1 (d, $J_{\rm PC}$ = 12.5 Hz), 130.7, 129.1 (d, $J_{\rm P,C}$ = 13.5 Hz), 43.5 (d, $J_{\rm P,C}$ = 3.7 Hz), 37.2, 33.3 (d, $J_{\rm P,C}$ = 9.5 Hz), 20.4, 13.9 ppm. ³¹P NMR (CD₂Cl₂): δ = 58.0 (s, $J_{P,Se}$ = 370 Hz, $J_{P,Se} = 794 \text{ Hz}$) ppm. ⁷⁷Se NMR (CD₂Cl₂): $\delta = 321.2$ (d, $J_{P,Se} =$ 370 Hz), -100.4 (d, $J_{P,Se} = 794$ Hz) ppm. MS (ES⁺): m/z = 560 [M + Na]⁺. HRMS (ES⁺): calcd for $C_{18}H_{21}NONaBrPSe_2 [M + Na]^+$ 559.8772; found 559.8771.

N-Cyclohexyl *Se*-[2-(4-Bromophenyl)-2-oxoethyl] Phenylphosphonamidodiselenoate (2h): Yield 0.630 g (56%); brown paste. IR (KBr): $\tilde{v} = 1673$ (s), 1584 (s), 1483 (m), 1435 (m), 1396 (m), 1270 (s), 1178 (m), 1071 (s), 1004 (s), 836 (m), 747 (s), 689 (m), 519 (s) cm⁻¹. ¹H NMR (CD₂Cl₂): $\delta = 8.02-7.97$ (m, 2 H, Ar-H), 7.80–7.78 (m, 2 H, Ar-H), 7.62–7.58 (m, 2 H, Ar-H), 7.50–7.43 (m, 3 H, Ar-H), 4.30– 4.14 (m, 1 H, cyclohexyl-H), 3.23 (br. s, 1 H, NH), 2.59–2.52 (d, 2 H, SeCH₂), 2.05–0.86 (m, 10 H, cyclohexyl-H) ppm. ¹³C NMR (CD₂Cl₂): $\delta = 194.3$ (C=O), 136.3 (d, $J_{P,C} = 90.0$ Hz), 134.5, 132.6 (d, $J_{P,C} = 3.1$ Hz), 132.4, 131.1 (d, $J_{P,C} = 12.5$ Hz), 130.7, 129.1 (d, $J_{P,C} = 13.5$ Hz), 53.1 (d, $J_{P,C} = 18.1$ Hz), 37.8, 35.8, 29.0, 25.3 ppm. ³¹P NMR (CD₂Cl₂): $\delta = 54.5$ (s, $J_{P,Se} = 369$ Hz, $J_{P,Se} =$ 794 Hz) ppm. ⁷⁷Se NMR (CD₂Cl₂): $\delta = 347.7$ (d, $J_{P,Se} = 369$ Hz), -100.7 (d, $J_{P,Se} = 794$ Hz) ppm. MS (CI⁺): m/z = 564 [M + H]⁺. HRMS (CI⁺): calcd for C₂₀H₂₃BrNOPSe₂H [M + H]⁺ 563.9109; found 563.9111.

5

FULL PAPER

N-Cyclopentyl Se-[2-(4-Bromophenyl)-2-oxoethyl] Phenylphosphonamidodiselenoate (2i): Yield 0.445 g (81%); greyish yellow paste. IR (KBr): $\tilde{v} = 1658$ (s)m, 1581 (s), 1434 (m), 1416 (m), 1395 (m), 1278 (s), 1177 (m), 1093 (m), 1068 (m), 1004 (s), 840 (s), 752 (s), 704 (m), 687 (m), 621 (m), 555 (s), 463 (s), 418 (m) cm⁻¹. ¹H NMR $(CD_2Cl_2): \delta = 8.02-7.93 \text{ (m, 2 H, Ar-H)}, 7.81 \text{ (d, } J_{H,H} = 6.9 \text{ Hz}, 2$ H, Ar-H), 7.58 (d, $J_{H,H}$ = 6.9 Hz, 2 H, Ar-H), 7.52–7.42 (m, 3 H, Ar-H), 4.32-4.12 (m, 1 H, cyclopentyl-H), 3.31 (dd, 1 H, NH), 2.54 (d, 2 H, SeCH₂), 1.94–1.45 (m, 8 H, cyclopentyl-H) ppm. ¹³C NMR $(CD_2Cl_2): \delta = 194.1 \text{ (d, } J_{P,C} = 3.4 \text{ Hz}, \text{ C=O}), 135.6 \text{ (d, } J_{P,C} = 3.4 \text{ Hz}, \text{ C=O})$ 90.3 Hz), 134.2, 132.4 (d, $J_{P,C}$ = 3.1 Hz), 132.0, 130.9 (d, $J_{P,C}$ = 12.5 Hz), 130.4, 128.7 (d, $J_{P,C}$ = 13.5 Hz), 55.8 (d, $J_{P,C}$ = 4.2 Hz), 37.2, 34.8 (d, J_{PC} = 6.2 Hz), 23.3 (d, J_{PC} = 7.3 Hz) ppm. ³¹P NMR (CD₂Cl₂): δ = 55.8 (s, $J_{P,Se}$ = 369 Hz, $J_{P,Se}$ = 791 Hz) ppm. ⁷⁷Se NMR (CD₂Cl₂): δ = 338.8 (d, $J_{P,Se}$ = 369 Hz), -95.3 (d, $J_{P,Se}$ = 791 Hz) ppm. MS (ES⁺): $m/z = 572 [M + Na]^+$. HRMS (ES⁺): calcd for C₁₉H₂₁NONaBrPSe₂ [M + Na]⁺ 571.8772; found 571.8766.

N-Isopropyl Se-[2-(4-Bromophenyl)-2-oxoethyl] Phenylphosphonamidodiselenoate (2j): Yield 0.460 g (88%); light-yellow paste. IR (KBr): $\tilde{v} = 1656$ (s), 1580 (s), 1563 (m), 1413 (s), 1277 (s), 1124 (m), 1094 (m), 1068 (m), 1029 (m), 1004 (s), 748 (s), 703 (m), 687 (m), 622 (m), 565 (s), 473 (m), 585 (m), 420 (m) cm⁻¹. ¹H NMR $(CD_2Cl_2): \delta = 8.01 \text{ (dd, } J_{PH} = 14.9 \text{ Hz}, J_{H,H} = 8.0 \text{ Hz}, 2 \text{ H}, \text{ Ar-H}),$ 7.80 (d, $J_{H,H}$ = 8.5 Hz, 2 H, Ar-H), 7.60 (d, $J_{H,H}$ = 8.5 Hz, 2 H, Ar-H), 7.52-7.43 (m, 3 H, Ar-H), 4.31-4.08 (m, 1 H, CH), 3.65- $3.52 \text{ (m, 2 H, SeCH}_2), 3.19 \text{ (br., 1 H, NH)}, 1.15 \text{ (d, } J_{H,H} = 6.1 \text{ Hz},$ 6 H, CH₃) ppm. ¹³C NMR (CD₂Cl₂): δ = 194.0 (C=O), 135.8 (d, $J_{P,C}$ = 90.3 Hz, Ar-C), 134.2 (Ar-C), 132.3 (d, $J_{P,C}$ = 3.1 Hz, Ar-C), 132.1 (Ar-C), 130.9 (d, $J_{PC} = 12.5$ Hz, Ar-C), 130.4 (Ar-C), 128.6 (d, $J_{P,C}$ = 13.5 Hz, Ar-C), 46.2 (N-C), 37.4 (Se-C), 25.0 (d, $J_{P,C}$ = 5.2 Hz, CH₃), 24.6 (d, $J_{P,C}$ = 5.2 Hz, CH₃) ppm. ³¹P NMR (CD₂Cl₂): δ = 54.6 (s, $J_{P,Se}$ = 369 Hz, $J_{P,Se}$ = 794 Hz) ppm. ⁷⁷Se NMR (CD₂Cl₂): δ = 345.3 (d, $J_{P,Se}$ = 370 Hz), -102.4 (d, $J_{P,Se}$ = 794 Hz) ppm. MS (CI⁺): $m/z = 524 [M + H]^+$. HRMS (CI⁺): calcd for $C_{17}H_{19}BrNOPSe_2H [M + H]^+$ 523.8789; found 523.8791.

N,N-Diisopropyl Se-[2-(4-Bromophenyl)-2-oxoethyl] Phenylphosphonamidodiselenoate (2k): Yield 0.310 g (55%); yellow paste. IR (KBr): $\tilde{v} = 1682$ (s), 1585 (s), 1434 (m), 1394 (s), 1362 (m), 1266 (s), 1174 (m), 1105 (m), 1071 (s), 1007 (s), 821 (s), 747 (s), 588 (m), 559 (m), 496 (m), 454 (m) cm⁻¹. ¹H NMR (CD₂Cl₂): δ = 7.82–7.80 (m, 2 H, Ar-H), 7.78 (d, $J_{H,H}$ = 6.9 Hz, 2 H, Ar-H), 7.61 (d, $J_{H,H}$ = 6.9 Hz, 2 H, Ar-H), 7.58–7.54 (m, 3 H, Ar-H), 4.39–4.34 (m, 2 H, CH), 2.54 (d, 2 H, SeCH₂), 1.46 (d, $J_{H,H}$ = 6.4 Hz, 12 H, CH₃) ppm. ¹³C NMR (CD₂Cl₂): δ = 194.1 (C=O), 133.5 (d, $J_{P,C}$ = 112.1 Hz), 132.1, 131.9, 131.6 (d, $J_{P,C} = 3.1$ Hz), 131.2 (d, $J_{P,C} =$ 12.5 Hz), 130.5, 130.2, 128.3 (d, $J_{P,C} = 13.5$ Hz), 50.0, 39.3, 22.8 ppm. ³¹P NMR (CD₂Cl₂): δ = 62.5 (s, J_{PSe} = 366 Hz, J_{PSe} = 789 Hz) ppm. ⁷⁷Se NMR (CD₂Cl₂): δ = 311.7 (d, J_{PSe} = 367 Hz), -26.1 (d, $J_{PSe} = 789$ Hz) ppm. MS (CI⁺): m/z = 566 [M + H]⁺. HRMS (CI⁺): calcd for $C_{20}H_{24}BrNOPSe_2H [M + H]^+$ 565.9266; found 565.9269.

N,*N*-Diisobuyl *Se*-[2-(4-Bromophenyl)-2-oxoethyl] Phenylphosphonamidodiselenoate (21): Yield 0.398 g (67%); reddish yellow sticky oil. IR (KBr): $\tilde{v} = 1683$ (s), 1585 (s), 1465 (m), 1434 (m), 1394 (m), 1267 (s), 1177 (m), 1156 (m), 1094 (s), 1070 (s), 1009 (s), 876 (m), 819 (m), 745 (s), 704 (m), 690 (m), 575 (s), 490 (m) cm⁻¹. ¹H NMR (CD₂Cl₂): $\delta = 8.02$ (dd, $J_{P,H} = 14.6$ Hz, $J_{H,H} = 6.6$ Hz, 2 H, Ar-H), 7.81 (d, $J_{H,H} = 6.9$ Hz, 2 H, Ar-H), 7.59 (d, $J_{P,H} = 10.8$ Hz, 2 H, SeCH₂), 2.94–2.81 (m, 4 H, NCH₂), 1.89–1.81 (m, 2 H, CH), 0.81 (d, $J_{H,H} = 6.6$ Hz, 6 H, CH₃), 0.75 (d, $J_{H,H} = 6.6$ Hz,

6 H, CH₃) ppm. ¹³C NMR (CD₂Cl₂): δ = 193.9 (C=O), 135.2 (d, J_{PC} = 112.1 Hz), 132.3, 132.1, 132.0 (d, J_{PC} = 3.1 Hz), 131.9, 130.2 (d, J_{PC} = 12.5 Hz), 129.5, 128.3 (d, J_{PC} = 13.5 Hz), 55.3, 38.9, 26.8, 20.3 ppm. ³¹P NMR (CD₂Cl₂): δ = 78.4 (s, J_{PSe} = 362 Hz, J_{PSe} = 798 Hz) ppm. ⁷⁷Se NMR (CD₂Cl₂): δ = 299.8 (d, J_{PSe} = 362 Hz), -93.5 (d, J_{PSe} = 799 Hz) ppm. MS (ES⁺): m/z = 616 [M + Na]⁺. HRMS (ES⁺): calcd for C₂₂H₂₉NONaBrPSe₂ [M + Na]⁺ 615.9398; found 615.9409.

N,*N*-Diisopropyl *Se*-[2-(Hydroxymethyl)benzyl] Phenylphosphonamidodiselenoate (2m): Yield 0.215 g (44%); yellow paste. IR (KBr): $\bar{v} = 1486$ (m), 1453 (m), 1435 (m), 1172 (m), 1040 (m), 759 (s), 711 (m), 550 (s), 507 (m), 442 (m) cm⁻¹. ¹H NMR (CD₂Cl₂): $\delta = 8.01$ -7.94 (m, 2 H, Ar-H), 7.35–7.22 (m, 7 H, Ar-H), 4.67 (d, *J*_{H,H} = 15.4 Hz, 2 H, CH₂), 3.96–3.85 (m, 2 H, CH), 3.70 (t, 1 H, OH), 2.59 (d, 2 H, SeCH₂), 1.29 (dd, 12 H, CH₃) ppm. ¹³C NMR (CD₂Cl₂): δ = 139.2, 136.7, 133.5, 131.5, 131.2, 131.0, 130.3, 128.8, 127.7, 127.3, 62.6, 50.0, 29.9, 22.8 ppm. ³¹P NMR (CD₂Cl₂); δ = 59.9 (s, *J*_{P,Se} = 387 Hz, *J*_{P,Se} = 777 Hz) ppm. ⁷⁷Se NMR (CD₂Cl₂): δ = 361.4 (d, *J*_{P,Se} = 388 Hz), -26.4 (d, *J*_{P,Se} = 777 Hz) ppm. MS (CI⁺): *m/z* = 490 [M + H]⁺. HRMS (CI⁺): calcd for C₂₀H₂₈NOPSe₂H [M + H]⁺ 490.0315; found 490.0308.

N-Benzyl *Se*-[2-(4-Bromophenyl)-2-oxoethyl] Phenylphosphonamidodiselenoate (2n): Yield 0.534 g (47%); yellow paste. IR (KBr): $\tilde{v} =$ 1693 (vs), 1580 (s), 1479 (m), 1453 (m), 1434 (m), 1394 (m), 1274 (m), 1189 (m), 1100 (m), 1056 (s), 984 (s), 801 (s), 731 (s), 686 (s), 555 (s), 492 (m), 475 (m), 445 (m) cm⁻¹. ¹H NMR (CD₂Cl₂): $\delta =$ 8.03 (d, *J*_{H,H} = 8.26 Hz, 2 H, Ar-H), 7.81–7.77 (m, 2 H, Ar-H), 7.60–7.47 (m, 5 H, Ar-H), 7.36–7.26 (m, 5 H, Ar-H), 4.31–4.01 (m, 4 H, CH₂), 3.68–3.60 (m, 1 H, NH) ppm. ¹³C NMR (CD₂Cl₂): $\delta =$ 193.9 (C=O), 138.7, 138.5, 134.8 (d, *J*_{P,C} = 91.3 Hz), 132.6 (d, *J*_{P,C} = 3.1 Hz), 132.1, 130.9 (d, *J*_{P,C} = 12.5 Hz), 130.4 (d, *J*_{P,C} = 13.5 Hz), 129.9, 128.9, 128.7, 128.1, 127.6, 46.9, 37.2 ppm. ³¹P NMR (CD₂Cl₂): $\delta =$ 58.3 (s, *J*_{P,Se} = 376 Hz, *J*_{P,Se} = 798 Hz) ppm. ⁷⁷Se NMR (CD₂Cl₂): $\delta =$ 324.8 (d, *J*_{P,Se} = 376 Hz), -103.4 (d, *J*_{P,Se} = 798 Hz) ppm. MS (ES⁺): *m*/*z* = 594 [M + Na]⁺. HRMS (CI⁺): calcd for C₂₁H₁₉NOPSe₂BrH [M + H]⁺ 571.8790; found 571.8787.

General Procedure for the Synthesis of 3a–n: A mixture of amine (4.0 mmol) and WR (0.54 g, 1.0 mmol) in THF (60 mL) was stirred at room temperature for 2 h (the brown suspension disappeared and a pale-yellow suspension formed). To the mixture, the appropriate dihaloalkane (1.0 mmol) was added and the mixture was stirred at room temperature for 24 h. After filtering to remove insoluble solid and drying in vacuo, the residue was dissolved in dichloromethane (ca. 2.0 mL) and purified by column chromatography on silica gel (dichloromethane) to give the product **3a–n**.

Bis(N-cyclohexyl-P-phenylphosphonamidodiselenoate) Methylene (3a): Yield 0.585 g (79%); pale-yellow oil. A pair of diastereoisomers was found in multinuclear NMR spectra in ca. 1:1 intensity ratio. IR (KBr): $\tilde{v} = 1435$ (s), 1403 (m), 1292 (m), 1231 (m), 1139 (m), 1077 (vs), 994 (s), 902 (s), 879 (s), 745 (s), 688 (s), 567 (s), 518 (vs), 490 (s), 438 (m) cm⁻¹. ¹H NMR (CD₂Cl₂): δ = 8.01–7.88 (m, 2×4 H, Ar-H), 7.60–7.39 (m, 2×6 H, Ar-H), 4.42–4.20 (m, 2×2 H, cyclohexyl-H), 3.21 (d, 2 H, SeCH₂), 3.05 (d, 2 H, SeCH₂), 1.96-0.83 (m, 2×20 H, NH, cyclohexyl-H) ppm. ¹³C NMR (CD₂Cl₂): δ = 136.2 (d, $J_{P,C}$ = 88.2 Hz), 132.3 (d, $J_{P,C}$ = 3.1 Hz), 130.9 (d, $J_{P,C}$ = 12.5 Hz), 128.6 (d, $J_{P,C}$ = 13.5 Hz), 53.1 (d, $J_{P,C}$ = 9.5 Hz), 35.6, 29.1, 25.4, 25.2 ppm. ³¹P NMR (CD₂Cl₂): δ = 54.9 (s, $J_{P,Se}$ = 374 Hz, $J_{P,Se}$ = 791 Hz), 54.8 (s, $J_{P,Se}$ = 371 Hz, $J_{P,Se}$ = 791 Hz) ppm. ⁷⁷Se NMR (CD₂Cl₂): δ = 398.6 (d, $J_{P,Se}$ = 371 Hz), 395.5 (d, $J_{P,Se}$ = 374 Hz), -91.9 (d, $J_{P,Se}$ = 791 Hz), -92.7 (d, $J_{P,Se}$ = 791 Hz) ppm. MS (CI⁺): m/z = 745 [M + H]⁺. HRMS (CI⁺): calcd for C₂₅H₃₇N₂P₂Se₄ [M + H] 744.9101; found 744.9099.

6

Date: 23-09-13 17:45:29

Pages: 10

Ethane-1,2-diyl Bis(N-cyclohexyl-P-phenylphosphonamidodiselenoate) (3b): Yield 0.604 g (80%); pale-yellow oil. A pair of diastereoisomers was found in multinuclear NMR spectra in ca. 1:1 intensity ratio. IR (KBr): $\tilde{v} = 1434$ (m), 1405 (m), 1077 (s), 994 (m), 878 (m), 745 (m), 688 (s), 519 (s), 479 (m), 443 (m) cm⁻¹. ¹H NMR (CD₂Cl₂): $\delta = 8.12-7.90$ (m, 2×4 H, Ar-H), 7.50–7.43 (m, 2×6 H, Ar-H), 4.36-4.06 (dd, 2×2 H, cyclohexyl-H), 3.20-3.08 (m, 2×4 H, CH₂Se), 2.28–1.17 (m, 2×22 H, NH, cyclohexyl-H) ppm. ¹³C NMR (CD₂Cl₂): δ = 135.7 (d, J_{PC} = 90.3 Hz), 135.6 (d, J_{PC} = 90.3 Hz), 132.2 (d, $J_{PC} = 3.1$ Hz), 132.5 (d, $J_{PC} = 3.1$ Hz), 130.9 (d, $J_{P,C}$ = 12.5 Hz), 130.8 (d, $J_{P,C}$ = 12.5 Hz), 128.6, 130.9 (d, $J_{P,C}$ = 13.5 Hz), 53.0, 52.9, 35.7, 35.6, 32.1, 30.9, 25.4, 25.3 ppm. ^{31}P NMR (CD₂Cl₂): δ = 52.5 (s, J_{PSe} = 384 Hz, J_{PSe} = 784 Hz), 52.4 (s, $J_{P,Se} = 386 \text{ Hz}$, $J_{P,Se} = 786 \text{ Hz}$) ppm. ⁷⁷Se NMR (CD₂Cl₂): $\delta =$ 378.5 (d, $J_{P,Se}$ = 384 Hz), 375.6 (d, $J_{P,Se}$ = 386 Hz), -90.1 (d, $J_{P,Se}$ = 784 Hz), -94.7 (d, $J_{P,Se}$ = 786 Hz) ppm. MS (CI⁺): m/z = 759 [M + H]⁺. HRMS (CI⁺): calcd for C₂₆H₃₉N₂P₂Se₄ [M + H] 758.9256; found 758.9260.

Propane-1,3-diyl Bis(N-cyclohexyl-P-phenylphosphonamidodiselenoate) (3c): Yield 0.540 g (70%); pale-yellow paste. A pair of diastereoisomers was found in multinuclear NMR spectra in ca. 1:1 intensity ratio. IR (KBr): $\tilde{v} = 1435$ (m), 1403 (m), 1289 (m), 1229 (m), 1078 (vs), 994 (m), 878 (m), 745 (s), 689 (s), 568 (m), 520 (s), 489 (m) cm⁻¹. ¹H NMR (CD₂Cl₂): δ = 8.03–7.95 (m, 2×4 H, Ar-H), 7.53-7.451 (m, 2×6 H, Ar-H), 3.28-3.11 (m, 2×2 H, cyclohexyl-H), 2.96–2.76 (m, 2×6 H, SeCH₂, NH), 2.14–1.07 (m, 2×22 H, cyclohexyl-H) ppm. ¹³C NMR (CD₂Cl₂): δ = 137.1 (d, J_{P,C} = 88.2 Hz), 132.0 (d, J_{PC} = 3.1 Hz), 130.8 (d, J_{PC} = 12.5 Hz), 128.5 (d, J_{PC} = 13.5 Hz), 53.0, 35.6, 32.3, 31.2, 25.4, 25.3 ppm. ³¹P NMR (CD₂Cl₂): δ = 53.7 (s, $J_{P,Se}$ = 384 Hz, $J_{P,Se}$ = 789 Hz), 53.6 (s, $J_{P,Se}$ = 386 Hz, $J_{P,Se}$ = 786 Hz) ppm. ⁷⁷Se NMR (CD₂Cl₂): δ = 325.1 (d, $J_{P,Se} = 384 \text{ Hz}$), 324.8 (d, $J_{P,Se} = 386 \text{ Hz}$), -102.8 (d, $J_{P,Se} = 789 \text{ Hz}$), -103.5 (d, $J_{P.Se} = 786$ Hz) ppm. MS (CI⁺): m/z = 773 [M + H]⁺. HRMS (CI⁺): calcd for C₂₇H₄₁N₂P₂Se₄ [M + H] 772.9421; found 772.9416.

Butane-1,4-diyl Bis(N-cyclohexyl-P-phenylphosphonamidodiselenoate) (3d): Yield 0.610 g (48%); pale-green paste. A pair of diastereoisomers was found in multinuclear NMR spectra in ca. 1:1 intensity ratio. IR (KBr): v = 1436 (m), 1396 (m), 1078 (s), 997 (m), 886 (m), 746 (s), 688 (s), 572 (m), 519 (s), 485 (m) cm⁻¹. ¹H NMR (CD₂Cl₂): δ = 7.98–7.96 (m, 2×4 H, Ar-H), 7.47–7.42 (m, 2×6 H, Ar-H), 3.96–3.79 (m, 2×4 H, SeCH₂), 2.81–1.15 (m, 2×28 H, NH, cyclohexyl-H) ppm. $^{13}\mathrm{C}$ NMR (CD₂Cl₂): δ = 137.1 (d, $J_{\mathrm{P,C}}$ = 86.2 Hz), 132.7 (d, J_{PC} = 3.1 Hz), 130.8 (d, J_{PC} = 12.5 Hz), 128.4 (d, J_{PC} = 13.5 Hz), 52.9, 35.7, 33.4, 25.9, 25.1, 24.5 ppm. ³¹P NMR $(CD_2Cl_2): \delta = 53.5$ (s, $J_{P,Se} = 384$ Hz, $J_{P,Se} = 789$ Hz), 53.4 (s, $J_{P,Se}$ = 386 Hz, $J_{P,Se}$ = 786 Hz) ppm. ⁷⁷Se NMR (CD₂Cl₂): δ = 326.7 (d, $J_{\rm P.Se} = 386$ Hz), 326.3 (d, $J_{\rm P.Se} = 388$ Hz), -105.0 (d, $J_{\rm P.Se} = 789$ Hz), -105.2 (d, $J_{P.Se} = 786$ Hz) ppm. MS (CI⁺): m/z = 789 [M + H]⁺. HRMS (C|I⁺): calcd for $C_{28}H_{43}N_2PSe_4$ [M + H] 788.9562; found 788.9556.

1,2-Phenylenebis(methylene) Bis(*N***-cyclohexyl***-P***-phenylphosphon-amidodiselenoate)** (3e): Yield 0.642 g (77%); milky green solid. A pair of diastereoisomers was found in multinuclear NMR spectra in ca. 1:1 intensity ratio. IR (KBr): $\tilde{v} = 1435$ (m), 1401 (m), 1290 (w), 1072 (m), 1076 (s), 993 (m), 877 (m), 745 (s), 688 (s), 567 (m), 519 (s), 489 (m), 436 (m) cm⁻¹. ¹H NMR (CD₂Cl₂): $\delta = 7.94-7.88$ (m, 2×4 H, Ar-H), 7.38–7.22 (m, 2×6 H, Ar-H), 7.21–6.99 (m, 2×4 H, Ar-H), 4.38–4.18 (m, 2×2 H, cyclohexyl-H), 3.11–2.76 (m, 2×6 H, SeCH₂, NH), 1.86–1.12 (m, 2×20 H, cyclohexyl-H) ppm. ¹³C NMR (CD₂Cl₂): $\delta = 137.3$, 136.6, 136.1, 132.0, 130.9, 130.8, 128.6, 128.4, 127.8, 53.1, 52.7, 35.6, 33.8, 33.4, 25.4,

_____Eurjoean Journal of Organic Chem

25.2 ppm. ³¹P NMR (CD₂Cl₂): δ = 53.9 (s, $J_{P,Se}$ = 386 Hz, $J_{P,Se}$ = 789 Hz), 53.8 (s, $J_{P,Se}$ = 386 Hz, $J_{P,Se}$ = 789 Hz) ppm. ⁷⁷Se NMR (CD₂Cl₂): δ = 395.9 (d, $J_{P,Se}$ = 386 Hz), 395.1 (d, $J_{P,Se}$ = 386 Hz), -96.7 (d, $J_{P,Se}$ = 789 Hz), -96.8 (d, $J_{P,Se}$ = 789 Hz) ppm. MS (CI⁺): m/z = 835 [M + H]⁺. HRMS (C|I⁺): calcd for C₃₂H₄₃N₂PSe₄ [M + H] 834.9580; found 834.9569.

Ethane-1,2-diyl Bis(N-isopropyl-P-phenylphosphonamidodiselenoate) (3f): Yield 0.440 g (55%); reddish pink paste. A pair of diastereoisomers was found in multinuclear NMR spectra in ca. 2:3 intensity ratio. IR (KBr): $\tilde{v} = 1436$ (s), 1398 (m), 1160 (m), 1130 (s), 1027 (s), 946 (m), 890 (m), 747 (s), 692 (s), 586 (s), 537 (s) cm^{-1} . ¹H NMR (CD₂Cl₂): δ = 7.88–7.79 (m, 2×4 H, Ar-H), 7.50–7.43 (m, 2×6 H, Ar-H), 4.25–4.05 (m, 2×2 H, CH), 3.60–3.57 (m, 2×4 H, SeCH₂), 3.19–3.16 (m, 2×2 H, NH), 1.38–1.34 (m, 2×12 H, CH₃) ppm. ¹³C NMR (CD₂Cl₂): δ = 137.1, 136.5, 131.6 (d, J_{P,C}) = 3.1 Hz), 130.8, 130.6, 128.3, 128.1, 61.9, 61.8, 45.3, 44.7, 25.2, 24.7 ppm. ³¹P NMR (CD₂Cl₂): δ = 53.0 (s, $J_{P,Se}$ = 383 Hz, $J_{P,Se}$ = 786 Hz), 52.7 (s, $J_{P,Se} = 385$ Hz, $J_{P,Se} = 784$ Hz) ppm. ⁷⁷Se NMR $(CD_2Cl_2): \delta = 514.7 \text{ (d, } J_{PSe} = 385 \text{ Hz}), 514.5 \text{ (d, } J_{PSe} = 383 \text{ Hz}),$ -248.5 (d, $J_{P.Se} = 784$ Hz), -248.7 (d, $J_{P.Se} = 786$ Hz) ppm. MS $(CI^{+}): m/z = 679 [M + H]^{+}. HRMS (C|I^{+}): calcd for C_{20}H_{31}N_2PSe_4$ [M + H] 678.8631; found 678.8625.

Propane-1,3-diyl Bis(N-isopropyl-P-phenylphosphonamidodiselenoate) (3g): Yield 0.380 g (55%); reddish yellow paste. A pair of diastereoisomers was found in multinuclear NMR spectra in ca. 1:1 intensity ratio. IR (KBr): $\tilde{v} = 163$ (w), 1435 (m), 1285 (m), 1114 (m), 1029 (s), 893 (s), 806 (s), 747 (m), 691 (s), 542 (m) cm⁻¹. ¹H NMR (CD₂Cl₂): $\delta = 8.03-7.94$ (m, 2×4 H, Ar-H), 7.54–7.47 (m, 2×6 H, Ar-H), 3.90–3.52 (m, 2×2 H, CH), 3.30–3.24 (m, 2×4 H, SeCH₂), 2.98–2.88 (m, 2×2 H, NH), 1.52–1.37 (m, 2×2 H, CH₂), 1.17–1.12 (m, 2×12 H, CH₃) ppm. ¹³C NMR (CD₂Cl₂): δ = 136.8, 136.2, 135.5, 135.1, 132.6 (d, $J_{P,C}$ = 3.1 Hz), 132.1 (d, $J_{P,C}$ = 3.1 Hz), 131.1, 130.9, 130.7, 130.5, 129.1, 128.9, 18.6, 128.4, 46.2, 45.8, 29.1, 29.0, 25.0, 24.5, 20.9 ppm. ³¹P NMR (CD₂Cl₂): δ = 53.9 (s, $J_{P,Se} = 385 \text{ Hz}$, $J_{P,Se} = 789 \text{ Hz}$), 53.8 (s, $J_{P,Se} = 385 \text{ Hz}$, $J_{P,Se} =$ 789 Hz) ppm. ⁷⁷Se NMR (CD₂Cl₂): δ = 323.4 (d, $J_{P,Se}$ = 385 Hz), 323.0 (d, $J_{P,Se}$ = 385 Hz), -164.2 (d, $J_{P,Se}$ = 789 Hz), -173.8 (d, $J_{P,Se}$ = 786 Hz) ppm. MS (CI⁺): m/z = 693 [M + H]⁺. HRMS (C|I⁺): calcd for C₂₁H₃₃N₂PSe₄ [M + H] 692.8788; found 692.8779.

1,2-Phenylenebis(methylene) Bis(N-isopropyl-P-phenylphosphonamidodiselenoate) (3h): Yield 0.495 g (66%); pale-green paste. A pair of diastereoisomers was found in multinuclear NMR spectra in ca. 3:2 intensity ratio. IR (KBr): $\tilde{v} = 1434$ (m), 1362 (m), 1124 (m), 1096 (m), 1007 (s), 881 (s), 744 (s), 688 (s), 532 (s) cm⁻¹. ¹H NMR (CD₂Cl₂): δ = 8.04–7.94 (m, 2×4 H, Ar-H), 7.52–7.47 (m, 2×6 H, Ar-H), 7.15–7.06 (m, 2×4 H, Ar-H), 4.27–4.20 (m, 2×2 H, CH), 3.92–3.83 (m, 2×4 H, SeCH₂), 2.74–2.68 (m, 2×2 H, NH), 1.15–1.08 (m, 2×12 H, CH₃) ppm. ¹³C NMR (CD₂Cl₂): δ = 137.6, 137.1, 136.6, 135.8, 132.2 (d, $J_{P,C}$ = 3.1 Hz), 131.0 (d, $J_{P,C}$ = 12.5 Hz), 130.9 (d, $J_{P,C}$ = 12.5 Hz), 128.6 (d, $J_{P,C}$ = 13.5 Hz), 127.8 (d, $J_{P,C}$ = 13.5 Hz), 46.3, 33.7, 24.9, 24.8 ppm. ³¹P NMR (CD₂Cl₂): δ = 54.2 (s, $J_{P,Se}$ = 385 Hz, $J_{P,Se}$ = 786 Hz), 54.1 (s, $J_{P,Se}$ = 385 Hz, $J_{P,Se} = 786 \text{ Hz}$ ppm. ⁷⁷Se NMR (CD₂Cl₂): $\delta = 392.7$ (d, $J_{P,Se} =$ 385 Hz), 392.1 (d, $J_{P,Se}$ = 385 Hz), -99.5 (d, $J_{P,Se}$ = 786 Hz), -99.7 (d, $J_{P,Se} = 786 \text{ Hz}$) ppm. MS (CI⁺): $m/z = 755 \text{ [M + H]}^+$. HRMS (C|I⁺): calcd for C₂₆H₃₅N₂PSe₄ [M + H] 692.8788; found 692.8779.

1,2-Phenylenebis(methylene) Bis(*N*,*N*-diisobutyl-*P*-phenylphosphonamidodiselenoate) (3i): Yield 0.475 g (53%); pale-green paste. Four diastereoisomers were found in multinuclear NMR spectra in ca. 1:1:3:3 intensity ratio. IR (KBr): $\tilde{v} = 1616$ (w), 1509 (w), 1436 (m), 1396 (m), 1216 (s), 1138 (s), 1026 (m), 897 (s), 747 (m), 715 (m), 692 (s), 541 (s), 487 (m) cm⁻¹. ¹H NMR (CD₂Cl₂): $\delta = 8.09$ –

FULL PAPER

7.97 (m, 4×4 H, Ar-H), 7.47–7.38 (m, 4×6 H, Ar-H), 7.15–7.04 (m, 4×4 H, Ar-H), 4.30–3.80 (m, 4×8 H, CH₂), 2.96–2.82 (m, 4×4 H, SeCH₂), 1.91–1.81 (m, 4×4 H, CH), 0.85–0.75 (m, 4×24 H, CH₃) ppm. ¹³C NMR (CD₂Cl₂): δ = 137.8, 137.5, 137.4, 136.7, 136.4, 136.0, 135.9, 135.1, 132.2, 132.1, 131.8, 131.7, 131.0, 130.8, 130.5, 128.4, 128.2, 127.6, 127.5, 55.5, 34.5, 34.3, 30.3, 27.0, 26.9, 20.5, 20.3 ppm. ³¹P NMR (CD₂Cl₂): δ = 77.1 (s, $J_{P,Se}$ = 386 Hz, $J_{P,Se}$ = 792 Hz), 76.8 (s, $J_{P,Se}$ = 386 Hz, $J_{P,Se}$ = 794 Hz), 76.2 (s, $J_{P,Se}$ = 386 Hz, $J_{P,Se}$ = 386 Hz), 350.5 (d, $J_{P,Se}$ = 386 Hz), 350.1 (d, $J_{P,Se}$ = 386 Hz), -95.6 (d, $J_{P,Se}$ = 792 Hz) ppm. MS (CI⁺): m/z = 895 [M + H]⁺. HRMS (C|I⁺): calcd for C₃₆H₅₅N₂PSe₄ [M + H] 895.0520; found 895.0498.

Biphenyl-4,4'-Diylbis(methylene) Bis(N-isopropyl-P-phenylphosphonamidodiselenoate) (3j): Yield 0.445 g (54%); reddish yellow solid. A pair of diastereoisomers was found in multinuclear NMR spectra in ca. 1:2 intensity ratio. IR (KBr): $\tilde{v} = 1580$ (w), 1495 (s), 1433 (m), 1396 (s), 1160 (s), 1094 (s), 1002 (m), 814 (s), 741 (s), 687 (s), 508 (s), 486 (s), 409 (m) cm⁻¹. ¹H NMR (CD₂Cl₂): $\delta = 8.01$ -7.93 (m, 2×4 H, Ar-H), 7.45–7.29 (m, 2×14 H, Ar-H), 4.20–4.17 $(m, 2 \times 4 \text{ H}, \text{ SeCH}_2), 3.91-3.78 (m, 2 \times 2 \text{ H}, \text{ CH}), 2.65-2.55 (m, 2 \times 2 \text{ H}, \text{ CH})$ 2×2 H, NH), 1.30–1.11 (m, 2×12 H, CH₃) ppm. ¹³C NMR (CD_2Cl_2) : $\delta = 139.5$, 139.4, 138.4, 137.6, 132.0, 131.0, 130.8, 130.0, 129.7, 129.5, 128.6, 128.4, 127.1, 126.9, 46.2, 35.7, 24.9 ppm. ³¹P NMR (CD₂Cl₂): δ = 54.0 (s, $J_{P,Se}$ = 387 Hz, $J_{P,Se}$ = 789 Hz), 53.9 (s, $J_{P,Se}$ = 387 Hz, $J_{P,Se}$ = 789 Hz) ppm. ⁷⁷Se NMR (CD₂Cl₂): δ = 408.5 (d, $J_{P,Se}$ = 386 Hz), 408.4 (d, $J_{P,Se}$ = 386 Hz), -99.1 (d, $J_{P,Se}$ = 789 Hz), -99.3 (d, $J_{P,Se}$ = 789 Hz) ppm. MS (CI⁺): m/z = 831 [M + H]⁺. HRMS (C|I⁺): calcd for $C_{32}H_{39}N_2P_2Se_4$ [M + H] 830.9257; found 830.9254.

Bis(N-tert-butyl-P-phenylphosphon-**1,3-Phenylenebis(methylene)** amidodiselenoate) (3k): Yield 0.460 g (59%); pale-yellow paste. Three diastereoisomers were found in multinuclear NMR spectra in ca. 1:2:2 intensity ratio. IR (KBr): v = 1602 (m), 1483 (m), 1435 (s), 1364 (s), 1217 (s), 1209 (s), 1094 (s), 993 (s), 840 (m), 794 (m), 745 (m), 691 (s), 529 (vs), 429 (m) cm⁻¹. ¹H NMR (CD₂Cl₂): δ = 8.09-8.00 (m, 3×4 H, Ar-H), 7.51-7.44 (m, 3×6 H, Ar-H), 7.23-7.07 (m, 3×4 H, Ar-H), 4.26–4.09 (m, 3×4 H, SeCH₂), 2.78 (br., 3×2 H, NH), 1.30–1.21 (m, 3×18 H, CH₃) ppm. ¹³C NMR $(CD_2Cl_2): \delta = 140.0, 139.7, 139.2, 139.0, 138.2, 137.9, 132.7, 132.2,$ 131.8, 131.1, 130.9, 130.5, 130.4, 130.3, 130.1, 129.9, 129.1, 128.9, 128.7, 128.5, 128.3, 128.2, 128.1, 127.9, 127.7, 56.0, 55.9, 31.4, 31.3, 27.8 ppm. ³¹P NMR (CD₂Cl₂): δ = 46.1 (s, $J_{P,Se}$ = 374 Hz, $J_{P,Se}$ = 794 Hz), 45.9 (s, $J_{P,Se} = 367$ Hz, $J_{P,Se} = 789$ Hz), 45.8 (s, $J_{P,Se} =$ 377 Hz, $J_{P,Se}$ = 789 Hz) ppm. ⁷⁷Se NMR (CD₂Cl₂): δ = 450.7 (d, $J_{\rm P.Se} = 374 \text{ Hz}$), 447.8 (d, $J_{\rm P.Se} = 377 \text{ Hz}$), 447.2 (d, $J_{\rm P.Se} = 367 \text{ Hz}$), -49.2 (d, $J_{P.Se} = 789$ Hz), -49.8 (d, $J_{P.Se} = 789$ Hz), -50.4 (d, $J_{P.Se}$ = 794 Hz) ppm. MS (CI⁺): m/z = 783 [M + H]⁺. HRMS (C|I⁺): calcd for C₂₈H₃₉N₂P₂Se₄ [M + H] 782.9257; found 782.9250.

1,2-Phenylenebis(methylene) Bis(*N***-tert-butyl-***P***-phenylphosphon-amidodiselenoate) (31):** Yield 0.396 g (51%); greenish yellow solid. A pair of diastereoisomers was found in multinuclear NMR spectra in ca. 1:1 intensity ratio. IR (KBr): $\tilde{v} = 1434$ (s), 1363 (s), 1217 (s), 1194 (s), 1093 (s), 990 (s), 838 (m), 746 (m), 725 (m), 688 (s), 529 (vs), 485 (m), 432 (m) cm⁻¹. ¹H NMR (CD₂Cl₂): $\delta = 8.10-8.01$ (m, 2×4 H, Ar-H), 7.49–7.44 (m, 2×6 H, Ar-H), 7.36–7.31 (m, 2×2 H, Ar-H), 7.16–7.08 (m, 2×2 H, Ar-H), 4.41–4.19 (m, 2×4 H, SeCH₂), 2.83 (br., 2×2 H, NH), 1.28 (s, 18 H, CH₃), 1.26 (s, 18 H, CH₃) ppm. ¹³C NMR (CD₂Cl₂): $\delta = 138.4$ (d, $J_{P,C} = 109$ Hz), 137.3 (d, $J_{P,C} = 108$ Hz), 133.3 (d, $J_{P,C} = 3.1$ Hz), 131.8 (d, $J_{P,C} = 108$ Hz), 133.9 (d) $J_{P,C} = 3.1$ Hz), 131.8 (d), $J_{P,C} = 108$ Hz), 132.0 (d) $J_{P,C} = 3.1$ Hz), 131.8 (d), $J_{P,C} = 3.1$ Hz), 131.8 (d) $J_{P,$

3.1 Hz), 131.2, 131.0, 130.8, 130.4, 128.5, 128.4, 128.3, 127.9, 127.7, 127.6, 56.0, 55.9, 34.5, 31.4, 31.3 ppm. ³¹P NMR (CD₂Cl₂): δ = 46.0 (s, $J_{P,Se}$ = 376 Hz, $J_{P,Se}$ = 789 Hz), 45.9 (s, $J_{P,Se}$ = 378 Hz, $J_{P,Se}$ = 786 Hz) ppm. ⁷⁷Se NMR (CD₂Cl₂): δ = 438.8 (d, $J_{P,Se}$ = 378 Hz), 438.1 (d, $J_{P,Se}$ = 376 Hz), -50.3 (d, $J_{P,Se}$ = 789 Hz), -50.4 (d, $J_{P,Se}$ = 789 Hz) ppm. MS (CI⁺): m/z = 783 [M + H]⁺. HRMS (C|I⁺): calcd for C₂₈H₃₉N₂P₂Se₄ [M + H] 782.9257; found 782.9238.

1.2-Phenylenebis(methylene) Bis(N-sec-butyl-P-phenylphosphonamidodiselenoate) (3m): Yield 0.420 g (54%); yellow paste. Four diastereoisomers were found in multinuclear NMR spectra in ca. 1.0:1.0:1.2:1.0 intensity ratio. IR (KBr): $\tilde{v} = 1453$ (m), 1434 (s), 1398 (m), 1131 (m), 1096 (s), 1038 (m), 1007 (m), 949 (m), 852 (m), 744 (s), 688 (s), 534 (vs), 490 (m) cm⁻¹. ¹H NMR (CD₂Cl₂): δ = 8.15-7.90 (m, 4×4 H, Ar-H), 7.56-7.30 (m, 4×6 H, Ar-H), 7.27-7.05 (m, 4×4 H, Ar-H), 4.23–4.05 (m, 4×4 H, SeCH₂), 3.95–3.86 (m, 4×2 H, CH), 2.69–2.66 (m, 4×2 H, NH), 1.62–1.28 (m, 4×4 H, CH₂), 1.15–1.09 (m, 4×6 H, CH₃), 0.85–0.83 (m, 4×6 H, CH₃) ppm. ¹³C NMR (CD₂Cl₂): δ = 137.6, 137.2, 136.5, 135.9, 133.3, 132.0, 131.7, 131.1, 130.9, 130.5, 128.6, 128.4, 127.8, 127.7, 51.3, 51.2, 33.9, 32.4, 31.5, 30.2, 22.0, 10.2 ppm. $^{31}\mathrm{P}$ NMR (CD₂Cl₂): δ = 55.2 (s, $J_{P,Se}$ = 384 Hz, $J_{P,Se}$ = 789 Hz), 55.1 (s, $J_{P,Se}$ = 384 Hz, $J_{P,Se}$ = 789 Hz), 54.8 (s, $J_{P,Se}$ = 384 Hz, $J_{P,Se}$ = 789 Hz), 54.7 (s, $J_{P,Se} = 387$ Hz, $J_{P,Se} = 789$ Hz) ppm. ⁷⁷Se NMR (CD₂Cl₂): δ = 395.9 (d, $J_{P,Se}$ = 384 Hz), 395.2 (d, $J_{P,Se}$ = 384 Hz), 394.8 (d, $J_{P,Se} = 384 \text{ Hz}$), 391.4 (d, $J_{P,Se} = 387 \text{ Hz}$), -99.0 (d, $J_{P,Se} = 789 \text{ Hz}$), -99.5 (d, $J_{P,Se} = 789$ Hz), -101.1 (d, $J_{P,Se} = 789$ Hz), -101.4 (d, $J_{P,Se}$ = 789 Hz) ppm. MS (CI⁺): m/z = 783 [M + H]⁺. HRMS (C|I⁺): calcd for $C_{28}H_{39}N_2P_2Se_4$ [M + H] 782.9257; found 782.9249.

1,3-Phenylenebis(methylene) Bis(N-sec-butyl-P-phenylphosphonamidodiselenoate) (3n): Yield 0.470 g (60%); yellow paste. Four diastereoisomers were found in multinuclear NMR spectra in ca. 1.1:1.0:1.0:1.2 intensity ratio. IR (KBr): $\tilde{v} = 1602$ (m), 1485 (m), 1435 (s), 1396 (m), 1184 (m), 1133 (m), 1097 (s), 1038 (m), 1008 (m), 951 (m), 744 (s), 692 (vs), 535 (vs), 487 (m) cm⁻¹. ¹H NMR (CD₂Cl₂): δ = 8.15–7.96 (m, 4×4 H, Ar-H), 7.51–7.46 (m, 4×6 H, Ar-H), 7.14-6.90 (m, 4×4 H, Ar-H), 4.10-4.04 (m, 4×4 H, SeCH₂), 3.82–3.61 (m, 4×2 H, CH), 2.69–2.64 (m, 4×2 H, NH), 1.45-1.38 (m, 4×4 H, CH₂), 1.19-1.10 (m, 4×6 H, CH₃), 0.98-0.83 (m, 4×6 H, CH₃) ppm. ¹³C NMR (CD₂Cl₂): δ = 139.7, 138.7, 137.1, 135.9, 132.1, 131.1, 130.9, 130.2, 130.0, 129.8, 128.9, 128.6, 128.4, 128.0, 127.9, 127.6, 51.3, 51.1, 50.1, 36.1, 35.9, 32.4, 31.5, 28.0, 27.4, 22.0, 18.2, 10.2 ppm. ³¹P NMR (CD₂Cl₂): δ = 55.0 (s, $J_{P,Se} = 390 \text{ Hz}, J_{P,Se} = 789 \text{ Hz}), 54.9 \text{ (s, } J_{P,Se} = 390 \text{ Hz}, J_{P,Se} =$ 789 Hz), 54.6 (s, $J_{P,Se} = 390$ Hz, $J_{P,Se} = 789$ Hz), 54.5 (s, $J_{P,Se} =$ 390 Hz, $J_{P,Se}$ = 789 Hz) ppm. ⁷⁷Se NMR (CD₂Cl₂): δ = 406.4 (d, $J_{P,Se}$ = 390 Hz), 406.2 (d, $J_{P,Se}$ = 390 Hz), 406.1 (d, $J_{P,Se}$ = 390 Hz), 405.7 (d, $J_{P,Se}$ = 390 Hz), -97.1 (d, $J_{P,Se}$ = 789 Hz), -97.5 (d, $J_{P,Se}$ = 789 Hz), -99.1 (d, $J_{P,Se}$ = 789 Hz), -99.5 (d, $J_{P,Se}$ = 789 Hz) ppm. MS (CI⁺): m/z = 783 [M + H]⁺. HRMS (C|I⁺): calcd for $C_{28}H_{39}N_2P_2Se_4$ [M + H] 782.9257; found 782.9246.

Supporting Information (see footnote on the first page of this article): Copies of the ¹H and ¹³C NMR spectra of the new compounds.

Acknowledgments

The authors are grateful to the University of St Andrews for financial support and the EPSRC National Mass Spectrometry Service Centre (Swansea) for mass spectral measurements.

8

^[1] R. A. Cherkasov, G. A. Kutyrev, A. N. Pudovik, *Tetrahedron* **1985**, *41*, 2567–2624.

Organophosphorus-Selenium Heteroatom Derivatives

- [2] F. H. Westheimer, *Science* **1987**, *235*, 1173–1178.
- [3] L. D. Quin, A Guide to Organophosphorus Chemistry; Wiley Interscience, New York, 2000.
- [4] V. D. Warner, D. B. Mirth, A. S. Dey, J. Med. Chem. 1973, 16, 1185–1186.
- [5] R. F. Borch, G. W. Canute, J. Med. Chem. 1991, 34, 3044–3052.
- [6] Z. R. Li, J. Y. Han, Y. Y. Jiang, P. Browne, R. J. Knox, L. Q. Hu, *Bioorg. Med. Chem.* 2003, 11, 4171–4178.
- [7] S. V. Levchik, E. D. Weil, Polym. Int. 2005, 54, 11-35.
- [8] M. Mevel, T. Montier, F. Lamarche, P. Delepine, T. Le Gall, J. J. Yaouanc, P. A. Jaffres, D. Cartier, P. Lehn, J. C. Clement, *Bioconjugate Chem.* 2007, 18, 1604–1611.
- [9] G. Keglevich, A. Kerenyi, Trends Org. Chem. 2008, 12, 73-77.
- [10] L. Kollar, G. Keglevich, Chem. Rev. 2010, 110, 4257–4302.
- [11] I. P. Gray, P. Bhattacharyya, A. M. Z. Slawin, J. D. Woollins, *Chem. Eur. J.* 2005, 11, 6221–6227.
- [12] For reviews, see: a) G. Hua, J. D. Woollins, Angew. Chem. 2009, 121, 1394; Angew. Chem. Int. Ed. 2009, 48, 1368–1377; b) J. D. Woollins, Synlett 2012, 1154–1169.
- [13] G. Hua, J. B. Henry, Y. Li, A. R. Mount, A. M. Z. Slawin, J. D. Woollins, Org. Biomol. Chem. 2010, 8, 1655–1660.
- [14] G. Hua, Y. Li, A. L. Fuller, A. M. Z. Slawin, J. D. Woollins, *Eur. J. Org. Chem.* 2009, 1612–1618.
- [15] G. Hua, A. L. Fuller, Y. Li, A. M. Z. Slawin, J. D. Woollins, New J. Chem. 2010, 34, 1565–1571.
- [16] G. Hua, A. L. Fuller, A. M. Z. Slawin, J. D. Woollins, *Eur. J. Org. Chem.* 2010, 2707–2615.
- [17] G. Hua, A. L. Fuller, A. M. Z. Slawin, J. D. Woollins, *Polyhedron* 2011, 30, 805–808.
- [18] G. Hua, A. L. Fuller, A. M. Z. Slawin, J. D. Woollins, *Eur. J. Org. Chem.* 2011, 3067–3073.
- [19] G. Hua, J. M. Griffin, S. E. Ashbrook, A. M. Z. Slawin, J. D. Woollins, Angew. Chem. 2011, 123, 4209; Angew. Chem. Int. Ed. 2011, 50, 4123–4126.
- [20] G. Hua, D. B. Cordes, Y. Li, A. M. Z. Slawin, J. D. Woollins, *Tetrahedron Lett.* 2011, 52, 3311–3314.
- [21] G. Hua, A. L. Fuller, A. M. Z. Slawin, J. D. Woollins, Synlett 2012, 23, 2453–2458.
- [22] G. Hua, J. D. Woollins, Polyhedron 2012, 42, 190-195.

- [23] G. Hua, A. M. Z. Slawin, J. D. Woollin, Synlett 2012, 23, 1170– 1174.
- [24] G. Hua, A. L. Fuller, A. M. Z. Slawin, J. D. Woollins, Synlett 2012, 23, 2453–2458.
- [25] G. Hua, R. A. M. Randall, A. M. Z. Slawin, D. B. Cordes, L. Crawford, M. Bühl, J. D. Woollins, *Chem. Commun.* 2013, 49, 2619–2621.
- [26] G. Hua, R. A. M. Randall, A. M. Z. Slawin, J. D. Woollins, Z. Anorg. Allg. Chem. 2011, 637, 1800–1806.
- [27] G. Hua, R. A. M. Randall, A. M. Z. Slawin, J. D. Woollins, *Tetrahedron* 2013, 69, 5299–5305.
- [28] Crystallographic data for compound **2e**: $C_{18}H_{20}BrNOPSe_2$; M = 535.16; triclinic; space group $P\overline{I}$; a = 8.176(8) Å, b = 10.242(10) Å, c = 12.652(13) Å, $a = 81.19(3)^\circ$, $\beta = 79.35(3)^\circ$, $\gamma = 75.78(3)^\circ$; U = 999.6(17) Å³; Z = 2; $\mu = 5.7896$ mm⁻¹; 8488 reflections, 3516 unique ($R_{int} = 0.0827$); $R_1 = 0.0522$, $wR_2 = 0.1329$.
- [29] Crystallographic data for compound **2i**: $C_{19}H_{20}BrNOPSe_2$; M = 547.17; monoclinic; space group $P2_{1/c}$; a = 6.956(6) Å, b = 17.86(2) Å, c = 32.53(3) Å, $\beta = 92.038(11)^\circ$; U = 4040(6) Å³; Z = 8; $\mu = 5.7318$ mm⁻¹; 33067 reflections, 7116 unique ($R_{int} = 0.01636$); $R_1 = 0.0659$, $wR_2 = 0.1445$.
- [30] P. Bhattacharyya, A. M. Z. Slawin, J. D. Woollins, J. Organomet. Chem. 2001, 623, 116–119.
- [31] a) P. Bhattacharyya, A. M. Z. Slawin, J. D. Woollins, *Chem. Eur. J.* 2002, *8*, 2705–2711; b) P. Bhattacharyya, A. M. Z. Slawin, J. D. Woollins, *J. Chem. Soc., Dalton Trans.* 2001, 300–303; c) P. Bhattacharyya, J. Novosad, J. R. Phillips, A. M. Z. Slawin, D. J. Williams, J. D. Woollins, *J. Chem. Soc., Dalton Trans.* 1995, 1607–1613.
- [32] G. Hua, Q. Zhang, Y. Li, A. M. Z. Slawin, J. D. Woollins, *Tetrahedron* 2009, 65, 6074–6082.
- [33] P. Kilian, P. Bhattacharyya, A. M. Z. Slawin, J. D. Woollins, *Eur. J. Inorg. Chem.* 2003, 1461–1467.
- [34] K. Karaghiosoff, K. Eckstein, Phosphorus Sulfur Silicon Relat. Elem. 1993, 75, 257–260.
- [35] M. J. Pilkington, A. M. Z. Slawin, D. J. William, D. J. Woollins, *Heteroat. Chem.* **1990**, *1*, 351–355.
- [36] SHELXL97: G. M. Sheldrick, Acta Crystallogr., Sect. A 2008, 64, 112–122.

Received: June 12, 2013 Published Online: ■

FULL PAPER

 $\underbrace{\overset{Ph}{\underset{Se}{}}}_{Se} \overset{Se}{\underset{Ph}{}} \underbrace{\overset{Se}{\underset{Ph}{}}}_{Se} \underbrace{\overset{Se}{\underset{Ph}{}}} \underbrace{\overset{Se}{\underset{Ph}{}}}_{Ph} \underbrace{\overset{Se}{\underset{Ph}{}}} \underbrace{\overset{R^{3}X}{\underset{Ph}{}} \underbrace{\overset{R^{2}}{\underset{R^{1}}{}} \underbrace{\overset{Se}{\underset{Ph}{}}}_{N-P-SeR^{3}} \underbrace{\overset{Se}{\underset{R^{1}}{}} \underbrace{\overset{H}{\underset{Ph}{}}}_{Ph} \underbrace{\overset{R^{3}X}{\underset{R^{1}}{}} \underbrace{\overset{R^{2}}{\underset{Ph}{}} \underbrace{\overset{Se}{\underset{R^{1}}{}} \underbrace{\overset{H}{\underset{Ph}{}}}_{Ph} \underbrace{\overset{R^{3}X}{\underset{R^{1}}{}} \underbrace{\overset{R^{2}}{\underset{Ph}{}} \underbrace{\overset{Se}{\underset{R^{1}}{}} \underbrace{\overset{H}{\underset{Ph}{}} \underbrace{\overset{H}{\underset{R^{1}}{}} \underbrace{\overset{H}{\underset{Ph}{}} \underbrace{\overset{H}{\underset{Ph}{}} \underbrace{\overset{H}{\underset{Ph}{}} \underbrace{\overset{H}{\underset{R^{1}}{}} \underbrace{\overset{H}{\underset{Ph}{}} \underbrace$

Phosphorus Selenium Chemistry

G. Hua, K. S. A. Arachchige, A. M. Z. Slawin, J. D. Woollins* 1-10

Organophosphorus-Selenium Heteroatom Derivatives from Selenation of Primary/ Secondary Amines and Haloalkanes/Dihaloalkanes

Keywords: Woollins' reagent / Selenium / Phosphorus / Amines / Haloalkanes

heteroatom compounds.