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A series of unsymmetrical N,N-disubstituted benzimidazolium salts were synthesized as N-heterocyclic
carbene (NHC) precursors. These compounds were used to synthesize of N-heterocyclic carbene silver(I)
complexes. New compounds were characterized by NMR and IR spectroscopies and elemental analyses.
The antibacterial activity of all the compounds was tested against Gram (+)/(−) and fungal strains using
the agar dilution procedure.
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Since the first isolation of a stable, free N-heterocyclic carbene
(NHC) by Arduengo in 1991 [1], NHCs had become crucial ligands in
organometallic chemistry and homogeneous catalysis [2–4]. The
NHC–metal complexes are remarkably stable toward heat, air, and
moisture, and many organic reactions using metal–NHC complexes
as catalysts have been investigated, such as olefin metathesis [5,6],
C–C [7,8], and C–N [9] bond formation reactions. Later discoveries
revealed that silver and gold derivatives of NHCs can be used in
medicinal applications. NHC complexes of silver have become
common-place in the organometallic literature. One reason for this
is that NHC silver cpmplexes are easily prepared by a one-pot reac-
tion of an azolium salt with Ag2O, which can be easily derived. Anoth-
er reason for this is that carbene silver complexes can be used as
carbene transfer reagent for synthesis of Ni, Pd, Pt, Cu, Au, Rh, Ir,
and Ru carbene complexes, such a route affords a convenient method
for the preparation of these carbene metal complexes [10,11]. In addi-
tion, a new discovery shows that silver carbene complexes have
shown interesting biological activity as antimicrobial and anticancer
agents [12,13]. The achievement such as their synthetic routes, struc-
tural features and applications of Ag–NHC complexes has been sum-
marized by Youngs and coworkers [14,15] and Lin et al. [16,17],
respectively. The first use of silver NHCs as antimicrobial agents was
reported by Youngs and coworkers in 2004 [12].

Silver has a long standing use as an antimicrobial agent, particu-
larly in modern medicine for the prevention and treatment of bacte-
rial infections associated with severe burn wounds [18]. This is
emir).
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evidenced by the use of silver sulfadiazine (Silvadine) in burn wards
worldwide since 1968 [19,20]. High antimicrobial activity and mini-
mal side effects of silver sulfadiazine have made it a very convenient
therapy for treatment of infections in burns over the past four de-
cades [21–24].

In recent years, considerable attention has been given to the synthesis
of benzimidazole derivatives because of their various pharmacological
activities such as antitumour, anti-ulcer, antibacterial, and antifungal
properties [25–32]. Although there are different antibacterial and antifun-
gal drugs used in the treatment of bacterial and fungal infections, some of
them have undesirable side effects [33]. Therefore, many clinically effec-
tive antibacterial and antifungal drugs have become less effective due to
the development of resistance to these drugs. Since benzimidazole com-
pounds have been found to have a broad range of pharmacological activ-
ity,many research groups have been interested in this type of heterocyclic
compound [25–32].

In the light of the general importance of these compounds, we
wish to report the synthesis and characterization of benzimidazolium
salts and their silver complexes. The Ag(I) complexes and the metal-
free ligands were screened for their ability to inhibit the growth of a
number of Gram-positive and Gram-negative and fungi strains.

The reaction of N-butylbenzimidazole with aryl halides to prepare
the benzimidazolium salts was found to be very good yields in DMF at
80 °C for 12 h (Scheme 1) [34].

The salts are air- andmoisture-stable both in the solid state and in so-
lution. The 1H NMR spectra of the benzimidazolium salts 1a–1e exhibit
the signal for the NCHN proton in the range of δ 11.10–11.83 ppm.
These values are typical for NCHN protons of benzimidazolium salts
[35,36]. The 13C NMR spectra of 1a–1e exhibit the NCN resonances be-
tween δ 143.5 and 144.0 ppm, which are also typical values previously
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Scheme 1. Synthesis of benzimidazolium salts (1a–1e).
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reported for benzimidazolium salts [37,38]. IR data for benzimidazolium
salts clearly indicate the presence of the –C_N–groupwith a υ(C_N) vi-
bration between 1442 and 1465 cm−1. TheNMRand IR values are similar
to those found for other 1,3-dialkylbenzimidazolium salts.

Synthesis of the Ag(I) complexes were conducted in the absence
of light and all complexes were stored in the dark. The reaction of
the benzimidazolium salt with 2 equiv. Ag2O in dichloromethane
resulted in the silver–NHC complex as a crystalline solid (Scheme 2)
[39].

The benzimidazolium salts and silver–NHC complexes were char-
acterized by analytical and spectroscopic techniques [34,39]. The FT-
IR spectroscopy, 1H- and 13C NMR spectroscopy, and elemental anal-
ysis data of the title compound confirm the proposed structure.

The silver complexes are stable in the air and toward the moisture
with good solubility in polar solvents. The successful formation of sil-
ver carbene complexes was indicated by the absence of a peak of
NCHN proton region of δ 11.10–11.83 ppm in their 1H NMR spectra
further suggested full conversion to silver (I) NHC complexes.

Nolan et al. have recently reported the synthesis of a series of
mono-carbene silver halides [R2NHC]-AgCl and have demonstrated
the influence of halide ions and the solvent on the structural formulas
of Ag(I)–NHCs [40]. Similar results have been communicated by Lee
et al. [41]. Ion-pair complexes have been obtained in the reaction of
N,N-dimethylimidazoliumiodide with Ag2O in DCM [42]. Fluxional
behavior between [R2NHC]-AgX and [(R2NHC)2-Ag]+[AgX2]− species
was observed in solution for most of the complexes [43]. Mechanism
of formation of silver N-Heterocyclic carbenes was reported by Peris
and coworkers in 2007 [44]. According to these results, the mono-
meric compound NHC-Ag-X, in which the two ligands adopt a linear
disposition, seems to be the most favorable species in CH2Cl2 solution.
It is well known that silver ions and silver based compounds are
highly toxic to microorganisms [45,46] showing strong biocidal ef-
fects. Therefore as an advancement of our previous studies, we have
now prepared a series of Ag(I) complexes of NHC and investigated
their antimicrobial activity. Antimicrobial activity was observed for
all compounds against the both gram(+)/(−) bacterials and fungal
strains using the agar dilution procedure recommended by the Clini-
cal and Laboratory Standards Institute [47–49]. The solvent used to
prepare the stock solutions (DMSO) played no role in growth inhibi-
tion on the same bacteria strains. The antimicrobial activities of the
NHC precursors (1a–1e) and their corresponding silver complexes
(2a–2e) are summarized in Table 1.

As shown table, antimicrobial activity was observed in silver–NHC
complexes (2a–2e) tested against bacteria and fungi at 100–25 μg/mL
concentrations. NHC precursors (1a–1e) are less active than
corresponding silver complexes against all bacteria strains. Same ac-
tivity was observed for compounds 1bwith 1c and 2c with 2e against
all bacteria strains. Compound 2awas found effective in inhibiting the
growth of all bacterial strains with MICs values between 25 and
50 μg/mL. Especially these compounds are more effective against
fungi strains (Table 1). On comparison with the benzimidazolium
salts, the silver complexes have shown enhanced activity. The com-
plexes exhibited enhanced antibacterial activity, which is due to the
synergistic effect that increases the lipophilicity of the complexes. Be-
cause microorganism cell is surrounded by a lipid membrane. Al-
though the cytotoxic effects of silver against Gram-positive and
Gram-negative bacteria have long been established, the mechanisms
of action are not completely understood. Sporadic studies of the cell
toxicity mechanisms of silver suggest that silver ions kill organisms
through a variety of ways.



Scheme 2. Synthesis of silver–NHC complexes (2a–2e).
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In conclusion, a series of novel unsymmetrically substituted N-
heterocyclic carbene precursors and their silver complexes were syn-
thesized and characterized by 1H NMR, 13C NMR, IR and elemental
analyses. New silver complexes shown high antibacterial activity
compared with the precursors against gram(+)/(−) and fungi
strains. More studies are now in progress including a larger collection
of bacteria of different species in order to determine if the antimicro-
bial activity is species dependent and its possible application in differ-
ent fields. New biological active Pt or Au NHC complexes will be
prepared with an aim to develop robust cancer chemotherapeutic
agents. Furthermore we will test the properties of both transmetallation
reaction and catalysis of silver complexes described in this work.
Table 1
Minimal inhibitory concentrations (lg/mL) of compounds.

Compound E. coli S. aureus E. faecalis P. aerug C. albicans C. tropicalis

1a 200 200 200 200 100 100
1b 400 400 200 200 100 100
1c 400 400 200 200 100 100
1d 400 400 200 200 200 200
1e 800 800 400 400 200 200
2a 50 50 50 50 25 25
2b 100 100 100 50 50 50
2c 100 100 100 100 50 50
2d 100 100 50 50 25 25
2e 100 100 100 100 50 50
Amp.a 3.12 3.12 1.56 – – –

Cip.a 1.56 0.39 0.78 3.12 – –

Fluc.a – – – – 3.12 3.12

a Amp.: Ampicillin, Cip.: Ciprofloxacin, Fluc.: Fluconazole.
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[39] Synthesis of silver–NHC complexes (2a–2e) A solution of benzimidazolium salt
(1.0 mmol), Ag2O (0.5 mmol) and activated 4 molecular sieves in dic-
hloromethane (30 mL) was stirred room temperature for 8 hours in dark condi-
tion. The reaction mixture was filtered through celite and the solvent removed
under reduced pressure. The crude product was recrystallized from
dichloromethane/hexane at room temperature. (Scheme 2). Chloro[1-(butyl)-3-
(4-methylbenzyl)benzimidazolylidene]silver(I), (2a) 1H NMR (CDCl3): 0.99 (t,
J=7.4 Hz, 3H, NCH2CH2CH2CH3), 1.44 (sex., 2H, J=7.5 Hz, NCH2CH2CH2CH3),
1.93 (quint., 2H, J=7.5 Hz, NCH2CH2CH2CH3), 2.33 (s, 3H, CH2C6H4–4-CH3),
4.44 (t, 2H, J=7.3 Hz, NCH2CH2CH2CH3), 5.61 (s, 2H, CH2C6H4–4-CH3),
7.12–7.39 (m, 8H, C6H4 and CH2C6H4‐4-CH3). 13C{1H} NMR (CDCl3): 13.7,
20.1, 21.1, 32.4 (CH2C6H4–4-CH3, NCH2CH2CH2CH3 and NCH2CH2CH2CH3,
NCH2CH2CH2CH3), 49.50 (NCH2CH2CH2CH3), 53.4 (CH2C6H4–4-CH3), 111.5,
112.2, 124.2, 124.3, 127.2, 129.8, 131.8, 133.7, 133.9, 138.5 (C6H4 and
CH2C6H4–4-CH3). M.p.: 216–217 °C, ν(CN)=1448 cm−1. Anal. Calc. for
C19H22N2AgCl: C, 54.11; H, 5.26; N, 6.64. Found C, 54.14; H, 5.20; N, 6.69 %.
Yield 71 % (0.298 g). Chloro[1-(butyl)-3-(2-methylbenzyl)benzimidazolylidene]
silver(I), (2b) 1H NMR (CDCl3): 1.03 (t, J=7.5 Hz, 3H, NCH2CH2CH2CH3), 1.45
(sex., 2H, J=7.5 Hz, NCH2CH2CH2CH3), 1.95 (quint., 2H, J=7.5 Hz,
NCH2CH2CH2CH3), 2.43 (s, 3H, CH2C6H4–2-CH3), 4.48 (t, 2H, J=7.3 Hz,
NCH2CH2CH2CH3), 5.61 (s, 2H, CH2C6H4‐2-CH3), 6.07–7.62 (m, 8H, C6H4 and
CH2C6H4‐2-CH3). 13C{1H} NMR (CDCl3): 13.5, 19.6, 20.2, 32.4 (CH2C6H4–4-
CH3, NCH2CH2CH2CH3, NCH2CH2CH2CH3 and NCH2CH2CH2CH3), 49.7
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1H NMR (CDCl3): 0.94 (t, J=7.5 Hz, 3H, NCH2CH2CH2CH3), 1.36 (sex., 2H,
J=7.8 Hz, NCH2CH2CH2CH3), 1.85 (quint., 2H, J=7.5 Hz, NCH2CH2CH2CH3),
2.20, 2.30 and 2.35 (s, 15H, CH2C6(CH3)5‐2,3,4,5,6), 4.36 (t, 2H, J=7.3 Hz,
NCH2CH2CH2CH3), 5.48 (s, 2H, CH2C6(CH3)5‐2,3,4,5,6), 7.38–7.50 (m, 4H,
C6H4). 13C{1H} NMR (CDCl3): 13.7, 17.1, 17.2, 17.4, 20.1 and 32.3
(CH2C6(CH3)5)-2,3,4,5,6), (NCH2CH2CH2CH3, NCH2CH2CH2CH3 and
NCH2CH2CH2CH3), 47.7 (NCH2CH2CH2CH3), 50.2 (CH2C6(CH3)5)-2,3,4,5,6),
111.4, 111.5, 123.9, 124.2, 126.6, 132.9, 133.7, 134.2, 134.4 and 137.3 (C6H4
and CH2C6(CH3)5)-2,3,4,5,6). M.p.: 234–236 °C, ν(CN)=1401 cm−1. Anal.
Calc. for C23H30N2AgCl: C, 57.81; H, 6.33; N, 5.86. Found C, 57.86; H, 6.32; N,
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5.81 %. Yield 81 % (0.386 g). Chloro[1-(butyl)-3-(3-methoxylbenzyl)
benzimidazolylidene]silver(I), (2d) 1H NMR (CDCl3): 1.01 (t, J=7.6 Hz, 3H,
NCH2CH2CH2CH3), 1.45 (sex., 2H, J=7.5 Hz NCH2CH2CH2CH3), 1.92 (quint.,
2H, J=7.8 Hz, NCH2CH2CH2CH3), 3.78 (s, 3H, CH2C6H4‐3-OCH3), 4.45 (t, 2H,
J=7.3 Hz, NCH2CH2CH2CH3), 5.63 (s, 2H, CH2C6H4–3-OCH3), 6.78–7.42 (m,
8H, C6H4 and CH2C6H4‐3-OCH3). 13C{1H} NMR (CDCl3): 13.5, 20.1 and 32.4
(NCH2CH2CH2CH3, NCH2CH2CH2CH3 and NCH2CH2CH2CH3), 49.6
(NCH2CH2CH2CH3), 53.3 (CH2C6H4‐3-OCH3), 55.3 (C6H4‐3-OCH3), 111.5,
112.2, 112.9, 113.6, 113.8, 113.9, 119.3, 124.3, 130.2, 133.8, 136.4 and 160.0
(C6H4 and CH2C6H4‐3-OCH3). M.p.:225–228 °C, ν(CN)=1455 cm−1. Anal.
Calc. for C19H22N2OAgCl: C, 52.14; H, 5.07; N, 6.40. Found C, 52.09; H, 5.10; N,
6.37 %. Yield 57 % (0.248 g). Chloro[1-(butyl)-3-(3,4,5-trimethoxylbenzyl)
benzimidazolylidene]silver(I), (2e) 1H NMR (CDCl3): 0.97 (t, J=7.3 Hz, 3H,
NCH2CH2CH2CH3), 1.42 (sex., J=7.2 Hz, 2H, NCH2CH2CH2CH3), 1.92 (quint.,
J=7.3 Hz, 2H, NCH2CH2CH2CH3), 3.81 and 3.82(s, 9H, CH2C6H2‐3,4,5-(OCH3)
3), 4.45 (t, J=7.2 Hz, 2H, NCH2CH2CH2CH3), 5.55 (s, 2H, CH2C6H2‐3,4,5-
(OCH3)3), 7.28–7.49 (m, 6H, C6H4 and CH2C6H2‐3,4,5-(OCH3)3). 13C{1H}
NMR (CDCl3): 13.7, 20.2 and 32.3 (NCH2CH2CH2CH3, NCH2CH2CH2CH3 and
NCH2CH2CH2CH3), 49.59 (NCH2CH2CH2CH3), 53.5 (CH2C6H2‐3,4,5-(OCH3)3),
56.3 and 60.9 (C6H2‐3,4,5,-(OCH3)3), 104.6, 111.6, 112.0, 124.3, 124.4, 130.6,
133.7, 133.8, 138.2, and 153.7 (C6H4 and CH2C6H2–3,4,5-(OCH3)3). M.p.:
204–205 °C, ν(CN)=1478 cm−1. Anal. Calc. for C21H26N2O3AgCl: C, 50.67; H,
5.26; N, 5.63. Found C, 50.69; H, 5.20; N, 5.65 %. Yield 80 % (0.397 g).
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