Synthesis, Reactivity, and X-ray Crystal Structure of a Remarkably Stable Bis(alkoxo)platinum Complex

NATHANIEL W. ALCOCK, ANDREW W. G. PLATT and PAUL G. PRINGLE* Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K. (Received September 18, 1986)

Abstract

Platinum complexes of the ligand Ph₂PCH₂-CMe₂OH are described including [Pt(PPh₂CH₂-CMe₂O)₂] which contains Pt-O bonds of unprecedented stability that readily undergo insertion of SO₂ and CO.

Few alkoxo-platinum complexes have been fully characterised because they are often strongly basic, extremely moisture and base sensitive, and very labile, undergoing β -hydrogen elimination rapidly [1-4]. Despite this high instability, considerable effort [1, 5-7] has recently been expended in attempts to synthesise complexes containing alkoxo-platinum bonds so that their reactivity can be systematically investigated. In this communication we report the synthesis of chelate-stabilised alkoxo complexes of platinum which are very stable both thermally and hydrolytically and are suitable model compounds for the study of the reactivity of Pt-O bonds.

We reasoned that Ph₂PCH₂CMe₂OH (1) would form chelate stabilised alkoxo-platinum complexes.

The synthesis of platinum complexes of 1 are summarised in Scheme 1.** The white complex 2 isolated on treatment of $[PtCl_2(NCBu^t)_2]$ with 1 in acetone, was assigned the cis-structure 2a on the basis of the IR spectrum: $\nu(Pt-Cl)$ 310, 285 cm⁻¹. The ³¹P{¹H} NMR spectrum of a CDCl₃ solution of 2 at 25 °C was a broad singlet with ¹⁹⁵Pt satellites. At -60 °C the spectrum showed a sharp AX pattern with chemical shifts and coupling constants (Table I) fully consistent [8] with the salt structure 2b, in which the alcohol donor group has displaced a chloro ligand. Complex 2 dissolves in methanol to give a conducting solution (Λ = 78 Ω^{-1} cm² mol⁻¹). This indicates that the OH donor in ligand 1 is a stronger donor for platinum than

Scheme 1. (i) Ligand 1 in acetone, +25 °C; (ii) AgClO₄ in acetone, +25 °C; (iii) Et₃N, CHCl₃, +25 °C; (iv) Et₃N/CH-Cl₃ or KOH/MeOH or LiN(SiMe₃)₂/THF at 25 °C; (v) Dilute HCl, CHCl₃, +25 °C.

TABLE I. 31 P NMR Dataa

Complex	δ (P) (ppm)	¹ J(PtP) (Hz)	$^{2}J(P_{\mathbf{A}}P_{\mathbf{B}})$ (Hz)
2 ^b	+30.7°	3749	18
	$-1.2^{\mathbf{d}}$	3937	
3	+16.0	3952	
4 ^e 5 6 ^f	+23.1	3303	
5	4.6	2723	
6 ^f	5.4, 0.6		325
7	35.9	3121	388
	13.4	3142	

^aIn CDCl₃ unless stated otherwise; 36.4 MHz, chemical shifts (±0.1 ppm) are to high frequency of 85% H₃PO₄.
^bAt -60 °C.
^cP_A in structure 2b.
^dP_B in structure 2b.
^eIn (CD₃)₂CO.
^{f 195}Pt satellites not observed due to low intensity.

^{*}Author to whom correspondence should be addressed.

^{**}All new complexes have been characterised by elemental analysis (C, H, Cl), IR, ¹H and ³¹P NMR spectroscopy.

N. W. Alcock et al.

the OMe in Ph₂PCH₂CH₂OMe [9] or the SPh in Ph₂PCH₂CH₂SPh [10], both of which give neutral complexes of the type [PtCl₂(P)₂]. The fluxionality observed in solutions of 2 at ambient temperatures may be due to rapid reversible Cl⁻ coordination or intramolecular interchange of OH donors (Scheme 2).

Scheme 2.

The bis-chelate dicationic species 3 is prepared quantitatively by the addition of AgClO₄ to solutions of 2. The neutral bis(alkoxo)platinum species 4 is readily formed by treatment of 2 with a variety of bases under mild conditions or by deprotonation of 3 with triethylamine (see Scheme 1). Complex 4 is remarkably stable thermally and hydrolytically, e.g. it was recovered unchanged after treatment with boiling ethanolic KOH for 16 h and can be recrystallised from aqueous methanol solutions. Thus it contrasts with the recently reported [1] [Pt(dppe)-(OMe)₂], the first bis(alkoxo)platinum complex, which decomposes in CH₂Cl₂ solution at +25 °C and could not be isolated in pure form.

It may be predicted [11] from the mismatch of hard donor (alkoxo) and soft acid [platinum(II)] that alkoxo-platinum bonds would be weak, and if correct, this would help explain the instability of such complexes. The X-ray crystal structure of 4 was determined to confirm the structural identification, and obtain the Pt-O bond distance. It reveals (Fig. 1) that the Pt-O bond is of absolutely normal length. The average Pt-O distance in 5 of 2.024(3) A can best be compared with the Pt-C distance of 2.120(4) Å in [(Ph₂MeP)₂PtMe₂], as this contains closely similar phosphine ligands coordinated to Pt(II) [12]; it also has a Pt-P distance (2.284(1) A) reasonably similar to that in 4. The 0.11 Å difference in covalent radius of C and O (obtained by comparing C-C and C-O bonds) corresponds very closely to the difference between the Pt-C and Pt-O bonds.

Fig. 1. Molecular structure of $[Ph_2PCH_2C(CH_3)_2O]_2Pt$. The crystals are rhombohedral, space group R3, a = 17.026(2) Å, $\alpha = 92.76(1)^\circ$, with Z = 6. R = 0.029 for 3914 unique observed reflections $(I/\sigma(I)$ 3.0). Principal dimensions are Pt-P 2.222(1), Pt-O 2.024(3) Å (averages) P(1)-Pt-P(2) 105.7(1)°, O(1)-Pt-O(2) 85.7(1)°. The crystals contain 3.5 molecules of H_2O per molecule of complex and show a network of hydrogen bonds involving the solvent and the oxygen atoms of the ligand molecules.

The value of ${}^{1}J(PtP)$ for 3 is very large, indicating that the OH group is a weak donor ligand but the value of ${}^{1}J(PtP)$ for the alkoxo complex 4 is in the range expected for P trans to Cl [13]. This reinforces the X-ray crystallographic evidence that the Pt-O bonding is not inherently weak and the observed instability of alkoxo-platinum complexes is almost certainly kinetic, i.e. facile β -hydride elimination.

The methyl substituents on ligand 1 are not essential for the stability of the alkoxo-platinum species since we have recently found that the ligands Ph_2 - $PCH_2CHMeOH$ and $Ph_2PCH_2CH_2OH$ give analogous chelate complexes to 3 and 4 which are less soluble but have similar stability. The β -hydrogens in the chelates formed by these ligands are oriented away from the metal centre and are thus not available for elimination; the stability of metallacarbacycles relative to dialkyls is explained similarly [14].

Preliminary results show that 4 is a suitable model compound for studying the reactivity of Pt-OR bonds. Hence a solution of 4 in CDCl₃ reacts rapidly with an excess of SO₂ to give the bis sulphinate complex 5, the product of SO₂ insertion into both of the Pt-O bonds of 4 with concomitant *cis-trans* isomerisation. Structure 5 is assigned on the basis of elemental analysis, IR [17] (ν (SO) 1370(m), 1360(m), 1150(s) cm⁻¹), ³¹P (Table I) and ¹H NMR (virtual triplet at δ 2.91 for the CH₂ resonance). An intermediate species, characterised only in solu-

tion by its 31P NMR spectrum (Table I), is assigned structure 6, the product of mono insertion. Similarly CDCl₃ solutions of 4 react with CO (30 atm) to give a single product assigned structure 7 on the basis of ³¹P NMR (Table I) and IR (ν (CO) 1625 cm⁻¹ evidence).

Acknowledgements

We thank the SERC for financial support and Johnson Matthey PLC for the generous loan of platinum salts.

References

- 1 H. E. Bryndza, S. A. Kretchmor and T. H. Tulip, J. Chem. Soc., Chem. Commun., 977 (1985).
- 2 M. A. Bennett, G. B. Robertson, P. O. Whimp and T. Yoshida, J. Am. Chem. Soc., 95, 3028 (1973).
- 3 T. Yoshida, T. Okano and S. Otsuka, J. Chem. Soc., Dalton Trans., 993 (1976).
- 4 A. B. Goel, S. Goel and D. G. Vanderveer, Inorg. Chim. Acta, 54, 2169 (1981).
- 5 H. E. Bryndza, Organometallics, 4, 406 (1985).
- 6 P. K. Monaghan and R. J. Puddephatt, Organometallics, 3, 444 (1984).
- 7 H, E. Bryndza, Organometallics, 4, 1686 (1985).
- 8 R. T. Boeré and C. J. Willis, Inorg. Chem., 24, 1059 (1985).
- G. K. Anderson and R. Kumar, Inorg. Chem., 23, 4064 (1984).
- 10 A. R. Sanger, Can. J. Chem., 61, 2214 (1983).
- 11 J. A. Davies and F. R. Hartley, Chem. Rev., 81, 79 (1981).
- 12 J. M. Wisner, T. J. Bartczak, J. A. Ibers, J. J. Low and
- W. A. Goddard, *J. Am. Chem. Soc.*, 108, 347 (1986). 13 P. S. Pregosin and R. W. Kunz, ³¹P and ¹³C NMR of Transition Metal Complexes', Springer, Berlin, 1979.
- 14 J. X. McDermott, J. F. White and G. M. Whitesides, J. Am. Chem. Soc., 98, 6521 (1976).
- 15 R. A. Michelin, M. Napoli and R. Ros, J. Organomet. Chem., 175, 239 (1979).