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Among the series of isoelectronic four-membered, two-
electron aromatic compounds 1±3 (Scheme 1), to date
derivatives of the dicationic and uncharged skeletons 1[1]

and 2,[2±4] respectively, have been realized experimentally.
The barriers of their ring inversions, which are a measure of
the stabilization of the folded over the planar rings, have not
been determined experimentally for any example. We report

herein the synthesis, crystal structure, and the ring inversion
barrier of the anion 3a (Scheme 2), and show, based on line
shape analyses of its temperature-dependent NMR spectra,
that its skeletal bonds fluctuate via a distorted triboratetra-
hedrane anion 6a (see Scheme 3) as transition state. B3LYP
computations[5] on model molecules support this proposal.

The unsymmetrically substituted triboracyclobutanide 3a
is obtained by reaction of lithium in diethyl ether with the
symmetrically substituted derivative 4, which is accessible
from 5[6] and dichloro(trimethylsilylmethyl)borane
(Scheme 2). Attempts to detect the symmetrically substituted
compound 3b by NMR spectroscopic monitoring of the
reaction of 4with lithium naphthalenide in [D8]THFat�80 8C
proved unsuccessful. The constitutions of 3a and 4 are in
accord with their NMR data (Table 1) and are confirmed
unambiguously by their crystal structure determinations[7]

(Figure 1).
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Scheme 2. Synthesis of the triboracyclobutanide 3a by ring expansion
of the diboracyclopropanide 5 via 4. The compound 3b, expected as
the primary product of the reaction of 4 with lithium, was not detected.
(R=SiMe3, Dur=2,3,5,6-tetramethylphenyl).

Scheme 1. Frameworks of isoelectronic four-membered two-electron ar-
omatic compounds 1±3. Circles denote two cyclic delocalized elec-
trons.

Figure 1. Structures of the anion 3a (a) and of 4 (b) in the crystal. Hy-
drogen atoms were omitted for clarity, except those of the methylene
groups. Selected bond lengths [pm] and angles [8] . 3a : C1-B2 150.6(5),
B2-B1 162.7(5), B1-B3 162.8(5), B3-C1 152.2(5), C1-B1 199.8(4), B2-B3
214.0(5), C1-Si1 182.7(3); C1,B2,B3/B3,B2,B1 59.3(3)8. 4 : C1-B1
142.8(8), C1-B2 145.4(7), B2-B1 169.5(9), B1-B3 192.6(8), B2-B3
189.0(9), C1-Si1 183.7(5), B1-C10 156.9(8), B2-C20 156.8(8), B3-C2
153.9(8), B3-Cl1 179.0(6); C1,B1,B2/B3,B2,B1 0.8(6)8.
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The anion 3a forms a solvent-separated ion pair with a
lithium ion, which is coordinated by three molecules of
diethyl ether. The four-membered ring of the triboracyclo-
butanide 3a is strongly (by 598) folded, as expected for an
isoster of the 1,3-dihydro-1,3-diborete[2±4] 2 and the cyclo-
butadienyl dication[1] 1. The substitution pattern of the boron
atoms of 3a does not correspond to the symmetric substitu-
tion pattern of its precursor 4. Evidently, the initially formed,
symmetrically substituted triboracyclobutanide 3b rapidly
isomerizes to 3a. Line width phenomena in the NMR spectra
of 3a provide a hint for the mechanism of this isomerization.
At low temperature there are 1H and 13C NMR signals for two
different Duryl substituents, at higher temperatures their
broadenings and coalescences are observed. The 11B NMR
spectrum of 3a in [D8]THFat 27 8C shows three signals at d=
16, 38, and 42 ppm, of which that at d= 42 ppm remains
unchanged at higher temperatures, whereas the other two
signals broaden. This shows that not only the Duryl sub-
stituents but also the boron atoms to which they are attached
participate in the exchange. The barrier for the exchange of
the environments of the Duryl substituents, that is
the topomerization in 3a, was determined to be
19.9 kcalmol�1 based on the line shape analysis of
the signals of the o-Me,m-Me, and p-H atoms.[8] For
the diastereotopic methylene protons of the Me3-
SiCH2 substituents, which reveal the planar chirality
of 3a, a more rapid exchange than for the Duryl
substituents is determined from the line shape
analysis of their signals. This is plausible, if one
considers, that two pathways are available for the
enantiomerization of 3a : one by ring inversion via
the planar transition state 7a (Scheme 3b) and a
second by rearrangement of the framework via a
distorted triboratetrahedrane anion 6a,[9, 10] which
also leads to an enantiomerization, however, with-
out ring inversion (see Scheme 3a). The barrier of
the enantiomerization by ring inversion is calcu-
lated to be 13.2 kcalmol�1.[8]

B3LYP/6-311+G** computations[5] reveal that
the transition state 6c (Scheme 4) lies
17.2 kcalmol�1 above 3c, and planar 7c is
9.6 kcalmol�1 higher in energy than 3c. The dis-
torted tetrahedral transition state of the isomer-
ization of the 1,2-dihydro-1,2-diborete to the un-
substituted 1,3-dihydro-1,3-diborete 2u, which is
isoelectronic to the framework of 6, lies
22.9 kcalmol�1 above 2u according to computations
by McKee; planarization of 2u requires only

Scheme 3. a) Distorted triboratetrahedrane anions of the type 6a[9] as transition
states of the isomerization 3b!3a and of the enantiomerization of 3a without
ring inversion but with topomerization, that is exchange of the boron atoms with
the Duryl substituents. There are only ten electrons available for the six skeletal
bonds of the tetrahedron. b) Enantiomerization of 3a with ring inversion the planar
transition state 7a.

Table 1: Selected physical and spectroscopic properties of 3a¥Li(DME)2
and 4.[a]

3a¥Li(DME)2: pale yellow solid, m.p. 73±758C (without decomp), yield
90%. 1H NMR (500 MHz, [D8]THF, �23 8C): d=6.36, 6.20 (each s, each
1H, p-H, Tcoal=40 8C); 3.41, 3.26 (each DME); 2.04, 2.02 (each s, each
6H, o- or m-CH3, Tcoal=17 8C); 1.98, 1.94 (each s, each 6H, o- or m-CH3,
Tcoal=27 8C); 0.92, 0.43 (each d, each 1H, BCH2, Tcoal=37 8C); �0.05,
�0.08 ppm (each s, each 9H, Me3Si); 13C NMR (75 MHz, [D8]THF,
27 8C): d=156.4, 155.6 (each br. s, each 1C, i-C); 133.4, 131.9, 130.4,
130.0 (each s, each 2C, o- and m-C); 129.0 (br. s, 1C, CB2); 126.6, 124.5
(each d, each 1C, p-C); 20.7, 20.0 (each q, each 4C, o- and m-CH3); 9.7
(br. t, 1C, BCH2), 2.4, 1.8 ppm (each q, each 3C, Me3Si); 11B NMR
(160 MHz, [D8]THF, 27 8C): d=42, 38, 16 ppm

4 : colorless solid, m.p. 133±1348C (decomp), yield 55%. 1H NMR
(500 MHz, C6D6 , 27 8C): d=7.04 (s, 2H, p-H); 2.54, 2.19 (each s, each
12H, o- and m-CH3); 1.49 (s, 2H, BCH2); 0.32, �0.21 ppm (each s, 9H,
Me3Si); 13C NMR (125 MHz, C6D6, 27 8C): d=137.2, 134.6 (each s, each
4C, o- and m-C); 134.0 (br. s, 2C, i-C); 132.9 (d, 2C, p-C); 22.0 (br. t, 1C,
BCH2); 22.2, 19.7 (each q, each 4C, o- andm-CH3); 0.6, 0.3 ppm (each q,
each 3C, Me3Si); 11B NMR (160 MHz, C6D6, 27 8C): d=71 (1B), 38 ppm
(2B)

[a] DME=1,2-dimethoxyethane.

Scheme 4. Computed[5] energy differences be-
tween 3c and distorted tetrahedral 6c and planar
7c, respectively.
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Known molecules with a planar-tetracoordinate carbon
atom[1] contain metal centers.[2] According to computations[3]

the prototype of such molecules without metal centers is the
diboracyclopropane 1u (Scheme 1). Derivatives of the lower
energy isomer 2u with planar-tetracoordinate boron atoms[4]

16.9 kcalmol�1.[4] For the dianion of B4Me4[10] the distorted
tetrahedral form according to our computations lies only
4.9 kcalmol�1 above the folded two-electron aromtic com-
pound; its planarization requires 7.3 kcalmol�1. Thus, an
increasing number of boron atoms in four-membered two-
electron aromatic compounds facilitates the planarization as
well as the fluctuation of the skeletal bonds.
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