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Abstract.- The first intramolecular 1,3-dipolar cycloaddition of an acyclic, chiral, 
polyfunetionalized 7-alkenyl tethered N-benzyl nitrone is reported. This is a new and 
efficient approach for the synthesis of chiral, densely functionalized cycloheptanes from 
carbohydrates. © 1999 Elsevier Science Ltd. All rights reserved. 

The asymmetric synthesis of cycloheptanes from carbohydrates is limited to some isolated examples: (a) nitro 

condensation of 1,6-dialdehydo sugar derivatives, 1 (b) ring expansion of enantiomerically pure 

cyclohexanones2, 3 and (c) the intramolecular 1,3-dipolar cycloaddition (1,3-DC) of nitrile oxides. 4 Our current 

interest in the synthesis of calystegine B2 (Scheme 1) 5 and the absence of a general and efficient methodology 

for the synthesis of  chiral cycloheptanes 6 from carbohydrates, prompted us to explore new synthetic 

possibilities for such a conversion. We have studied a free radical cyclization, 7 a metathesis ring closing 8 and 

the intramolecular 1,3-DC of 7-alkenyl nitrones,9,10 via intermediates A, B and C, respectively (Scheme 1). 

In this communication we present our preliminary results on the last approach, showing the first example 

of an intramolecular 1,3-DC 11 of an acyclic, 7-alkenyl tethered N-benzyl nitrone of type C (Scheme 1), that has 

resulted in a new and efficient asymmetric synthesis of  chiral, densely functionalized cycloheptanes from 
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Scheme 2. Reagents: (a) BrMgCH=CH2, THF (2:epi-(C-1)-2/4:1 ;75%; separate isomers); (b) 
BnBr, Nail, THF (85%); (c) AcOH:H20 (4:1), 0.2 M, 55 "C; (d) CISit-BuPh2, py; (e) Mel, Nail, THF; 
(f) Bu4NF, THF; (g) PCC, NaOAc, molecular sieves; (h) NaHCO3, EtOAc, HONHBn. HCI; 
(i) Chlorobenzene, 130 "C. 

For our studies directed to the synthesis of the required precursors, we selected the readily available 
2,3:5,6-bis-O-isopropylidene-c~-D-mannofuranose (1).12 Vinylmagnesium bromide addition, gave the major 

isomer 213 that was isolated in good chemical yield (Scheme 2). Benzylation and acid hydrolysis gave a 

mixture of tetrol 4 and monoacetonide 5.14,15 Compound 4 was submitted to standard protocols for the final 

assembly of the required functionality for nitrone 1,3-cycloaddition (Scheme 2). Silylation followed by 

methylation under mildly basic conditions 16 and desilylation gave compound 8 in good chemical yield. Product 

g was submitted to oxidation with PCC in the presence of molecular sieves and sodium acetate to give aldehyde 

9 that was transformed into the nilrone 10 by the usual methodology. To our great surprise, 4 thermolysis of 
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compound 10 did not afford any of the expected cycloisoxazolidine adducts; only decomposition to the 

aldehyde 9 was observed and no cyclized product could be isolated. 

In view of these results we turned our attention to the intermediate 5 and submitted it to the same 

sequence of synthetic transformations that gave compound 10 from 4 in good overall yield. Following these 

procedures, nitrone 1517 was obtained from compound 5. To our satisfaction, thermolysis of this precursor, in 

chlorobenzene, afforded product 16 in 50% yield, 17 as a mixture of isomers in 6:4 ratio, that we were unable to 

separate, and whose relative and absolute stereochemistry at the newly formed stereocenters could not be 

assigned. From these results it was clear that the 1,3-dioxolane ring at positions C-4 and C-5 in the precursor is 

a potent and critical structural element that controls the success of the intramolecular reaction leading to the 

cycloheptane. 18 This structural motif obviously reduces the conformational degrees of freedom in the transition 

state, and as a result favours the carbocyclization. 

The analytical [correct elemental analysis for C33H39NO6; MS: e/m (70 eV): 545 (M +, 21), 530 (M+-15), 

91 (C7H7, + 100)] and spectroscopic data (full set of NMR experiments: 1H, 13C, DEFT, COSY HMQC) of 

compound 16 clearly supported the regiospecific formation of the bicyclo[5.3.0] type of isoxazolidine, instead 

of the alternative bicyclo[5.2.1] type of isoxazolidine 19 (the absence of signals at -26.0 ppm, typical for a 

methylene in the bridge position 19 was significant and moved us to discard this hypothesis). Particularly 

diagnostic was the analysis of the 13C NMR spectrum of the mixture; in this spectrum we could observe 
coherent 20 and significant signals for compound 16 [in the major isomer: (8) 42.4 (C3a), 67.0 (C-3), 67.6 (C- 

8a), 62.3 (N-CH2C6H5), 58.1 (OCH3); in the minor isomer: (8) 44.4 (C3a), 68.3 (C-3), 67.5 (C-8a), 64.6 (N- 

CH2C6H5), 61.1 (OCH3) ]. In agreement with this assumption, in the 1H NMR spectrum of compounds 16, we 

could analyze H-3A (3.53, dd, J= 10.8, 6.6 Hz), H-3a (2.75, dt, J= 10.8, 8.1 Hz), H-8a (2.90, m) for the major 

isomer, and H-3A (3.68, dd, J= 10.9, 7.6 Hz), H-3a (3.00, m), H-8a (3.19, m) for the minor isomer. 

In summary, we have described the first successful intramolecular 1,3-DC of an acyclic, chiral, 

polyfunctionalized 7-alkenyl tethered N-nitrone. We have found that the presence of an annulated ring in the 

precursor (i. e., an acetonide in positions O-C4 and O-C5 in compound 15) was critical for the success of the 

process. These results pave the way for a new, simple and efficient synthesis of chiral, densely functionalized 

cycloheptanes from carbohydrates. Work is in progress to check the scope and limits of this methodology. 
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