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Access to the noryohimban [6,5,6,5,6] ring system via an
intramolecular furan Diels–Alder reaction
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Abstract—Polycyclic indolic compounds containing the [6,5,6,5,6] ring system were prepared via an intramolecular furan
Diels–Alder reaction of �,�-unsaturated amides generated by the N-acylation of 1-(2-furyl)-�-tetrahydrocarbolines. This chemistry
can provide access to D(14)-noryohimban derivatives by exploiting the functionality on the C,D,E ring system of the
corresponding cycloadducts. © 2003 Elsevier Science Ltd. All rights reserved.

The polycyclic indolic [6,5,6,5,6] ring system is usually
constructed by the reductive cyclization2 of N-imido
tryptamines or by the condensation of tryptamines with
2-carboxybenzaldehyde equivalents.3 However, the
molecules generated by these methods lack any immedi-
ate functionality for further manipulation or introduc-
tion of diversity. Here, we wish to report our studies
leading to functionalized indole polycycles that give
access to D(14)-noryohimban derivatives.

Polycyclic indole alkaloids continue to be the target of
scientific investigations because of their interesting
physiological, biological and structural properties.1 In
our search for libraries of rigid heterocycles we turned
our attention to the noryohimban [6,5,6,5,6] ring sys-
tem since very little is known about the bio-
logical activities of this unnatural ring system and its
analogs, in contrast with the well studied yohimbine
alkaloids.

Scheme 1. Reagents and conditions : (a) MeOH, 60°C; (b) (CH2)2Cl2, 70°C, 24 h; (c) THF, NiPr2Et, rt to 60°C; (d) CH3CN,
HBTU, R3R4NH, NEt3; (e) n-BuLi, THF, −78°C, HMPA, CuI then ClCOCO2Me.
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We envisioned4 that N-acylation of a secondary fur-
furylamine such as �-tetrahydrocarboline 3 (�-THC)
with maleic anhydride5 would result in the activated
maleamide 5-cis, which could undergo an intramolecu-
lar furan Diels–Alder cycloaddition (IMDAF)6 to give
carboxylic acid 6. Similarly, N-acylation of 3 with acid
chloride 4 followed by an IMDAF cycloaddition of the
intermediate �,�-unsaturated amide 5-trans would give
compound 7 (Scheme 1). If this were the case, then
entry to hexacyclic heterocycles 6 and 7 would require
the synthesis of 3.

A direct route to �-THC 3 (R=H) would involve the
Pictet–Spengler reaction of tryptamine 1 with 2-furalde-
hyde. However, the instability of the requisite furalde-
hydes and products towards acidic conditions makes
these substrates inaccessible by this route. We found
that the disubstituted 1-(2-furyl)-1-carboxymethyl-�-tet-
rahydrocarboline 3 (R=CO2Me) was particularly sta-
ble and readily available by a Pictet–Spengler
condensation of tryptamine hydrochloride 1 with the
furyl-�-ketoester 2 (Scheme 1). Eight different sub-
strates were prepared in good yields (40–73%, Table 1)
from eight commercially available tryptamines and �-
ketoester 2.7 Ketoester 2 was prepared in multi-gram
quantities from furan in 40–50% yield via a lithiation,
transmetallation with CuI, and quenching the corre-
sponding cuprate with methyl oxalyl chloride.8

As we had hoped, when disubstituted tetra-
hydrocarboline 3 was treated with maleic anhydride in
dichloroethane (DCE) at 70°C, carboxylic acid 6 was
formed as the sole product. Acid 6 could then be
converted cleanly to amide 8 (Table 1, entries 6–8)
upon treatment with an amine in the presence of

HBTU, as shown in Scheme 1, thus introducing an
additional element of diversity.

We also found that N-acylation of 3 with a crotonyl or
cinnamoyl chloride 4 at room temperature afforded the
�,�-unsaturated amide 5-trans, which converged to
cycloadduct 7 upon heating at 60°C for 5 h (Table 1,
entries 1–5). However, electron-withdrawing sub-
stituents on the phenyl ring of cinnamoyl chlorides
facilitated the cycloaddition process and the corre-
sponding cycloadducts were formed even after stirring
the reaction mixture at room temperature overnight
(entries 4 and 5). Although similar intramolecular
Diels–Alder reactions of furans with �,�-unsaturated
amides9 are usually accelerated by internal hydrogen
bonding, internal coordination with a Lewis acid cata-
lyst or excessive heating, cyclization of �,�-unsaturated
amide 5-trans is presumably entropically favored due to
the rigid tether and the gem-disubstitution effect.10

The cycloaddition proceeds in a stereocontrolled fash-
ion where an exo-addition of the furan nucleus to the
dienophile prevails. The transition state presumably
involves a conformation where the ester group lies anti
to the furan oxygen due to unfavorable steric repulsions
between the ester carbonyl and the lone pair of elec-
trons on the furan oxygen. The stereochemical outcome
of the cycloaddition was determined by a single X-ray
crystal structure of compound 7a.12

Cycloadducts 6 and 7 contain functionalities, which
allow access to new noryohimban derivatives (Scheme
2). For instance, dihydroxylation of the olefin 7b (con-
ditions a) gave diol 9 while reduction of the ester group
gave alcohol 10 (conditions b). Reduction of both the

Table 1.

�-THC (Yield%a)Entry Yielda (%)Product

1 3a R1=6-H (64) 7a R2=Ph 90
2 943b R1=6-Cl (55) 7b R2=Ph

3c R1=6-OH (62)3 707c R2=Me
3d R1=6-OBn (73)4 7d R2=(2-Cl)Ph 86

5 3e R1=7-F (60) 7e R2=(3-CF3)Ph 79
8a R3–R4=-(CH2)2NPh(3-CF3)(CH2)2-3f R1=6-OMe (70) 726

778b R3=isobutyl, R4=H3g R1=6-Me (65)7
3h R1=6-Br (40)8 8c R3=Ph, R4=H 85

a Isolated yields of purified products. All compounds gave satisfactory 1H NMR and mass spectra.11

Scheme 2. Reagents and conditions : (a) OsO4 (cat.), NMMO, acetone–H2O (4:1); (b) EtOH, NaBH4; (c) Me3O+BF4
−, CH2Cl2 at

rt then EtOH, NaBH4; (d) Me3O+BF4
−, CH2Cl2 at rt then MeOH, NaBH4, 0°C to rt.
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amido carbonyl and the ester group of cycloadduct 7b,
without cleavage of the oxygen bridge of the oxabicyclo
ring system, gave noryohimban 11 (conditions c). Selec-
tive reduction of the amido carbonyl of 7b gave nor-
yohimban 12 (conditions d), which was also converted
to diol 13 (conditions a).

The functionality of intermediates 6, 7, and 8 is
amenable to further chemical diversification through
solution phase parallel synthesis methods13 utilizing the
chemistry depicted in Scheme 1. The preparation of
screening libraries utilizing these compounds as build-
ing blocks towards the synthesis of highly functional-
ized noryohimban derivatives is currently under
investigation and will be communicated in due course.
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in EtOAc and washed with 1N HCl. The organic phase
was then isolated, dried over Na2SO4, filtered and con-
centrated to give the crude product. Purification by silica
gel flash chromatography or preparative TLC with
EtOAC–Hex as eluent afforded the desired product. 1H
NMR (300 MHz, CDCl3) for 8b: � 8.20 (s, 1H), 7.28 (d,
2 H, J=8.2 Hz), 7.05 (dd, 1H, J=1.6, J=8.2 Hz), 6.70
(d, 1H, J=6.0 Hz), 6.55 (dd, 1H, J=1.9, J=6.0 Hz), 6.45
(t, 1H, J=4.9 Hz), 5.15 (d, 1H, J=1.7 Hz), 4.60 (m, 1H),
3.90 (s, 3H), 3.25–2.70 (m, 7H), 2.42 (s, 3H), 1.72 (m,
1H), 0.85 (t, 6H).
Spectroscopic data for selected compounds. Diol 9: 1H
NMR (300 MHz, CDCl3): � 9.15 (s, 1H), 7.50 (d, 1H,
J=1.6 Hz), 7.40–7.10 (m, 7H), 4.55 (dd, 1H, J=4.4,
J=12.9 Hz), 4.48 (d, 1H, J=5.2 Hz), 4.25 (d, 1H, J=6.0
Hz), 4.18 (d, 1H, J=6.0 Hz), 3.82 (s, 3H), 3.65 (t, 1H,
J=5.2, J=5.5 Hz), 3.20 (d, 1H, J=5.5 Hz), 3.10 (m, 1H),
3.0–2.78 (m, 2H). Compound 10: 1H NMR (300 MHz,
CD3OD): � 7.45 (d, 1H, J=2.2 Hz), 7.35-7.15 (m, 6 H),
7.03 (m, 2H), 6.27 (dd, 1H, J=1.6, J=6.0 Hz), 5.03 (dd,
1H, J=1.6, J=4.7 Hz), 4.50 (dd, 1H, J=5.2, J=13.2
Hz), 4.35 (d, 1H, J=12.1 Hz), 4.12 (d, 1H, J=12.1 Hz),
3.65 (t, 1H, J=4.1, J=4.4 Hz), 3.25 (m, 2H), 2.78 (m,
2H). Compound 11: 1H NMR (300 MHz, CD3OD): � 7.40
(d, 1H, J=1.6 Hz), 7.25–7.08 (m, 6 H), 6.97 (m, 2H), 6.15
(dd, 1H, J=1.6, J=5.8 Hz), 4.92 (dd, 1H, J=1.6, J=4.7
Hz), 4.07 (d, 1H, J=11.0 Hz), 3.90 (d, 1H, J=11.0 Hz),
3.40–3.12 (m, 4H), 2.95 (m, 2H), 2.50 (m, 2H). Compound
12: 1H NMR (300 MHz, CDCl3): � 8.30 (s, 1H), 7.47 (d,
1H, J=1.6 Hz), 7.25 (m, 4H), 7.10 (m, 3H), 6.57 (d, 1H,

J=5.8 Hz), 6.20 (dd, 1H, J=1.1, J=5.5 Hz), 5.08 (dd,
1H, J=1.1, J=4.4 Hz), 3.90 (s, 3H), 3.45 (m, 2H), 3.30
(m, 2H), 3.0 (m, 2H), 2.60 (m, 2H). Diol 13: 1H NMR
(300 MHz, CD3OD): � 7.50–7.15 (m, 7H), 7.05 (dd, 1H,
J=2.2, J=8.5 Hz), 4.32 (d, 1H, J=5.5 Hz), 4.25 (d, 1H,
J=6.1 Hz), 3.92 (d, 1H, J=6.3 Hz), 3.78 (s, 3H), 3.42–
3.18 (m, 4H), 3.12–2.80 (m, 3H), 2.58 (dd, 1H, J=3.0,
J=15.4 Hz).
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