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Abstract: Synthesis of different benzopyrans was achieved by
Diels–Alder reaction of 2-nitro glycals with Danishefky’s diene,
hydrolysis of the enol ether moiety, and subsequent elimination of
the nitro and methoxy group.
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The benzannulated pyran skeleton is found in many natu-
rally occurring biologically active compounds. Among
them the well known rotinoids,1 flavonoids,2 chromones,3

and griseorhodin antibiotics are included.4 Furthermore,
the contained glycal moieties are important as both syn-
thetic and biological intermediates.5 To the best of our
knowledge, till now, only two types of approaches have
been reported in the literature using glycal derivatives for
the synthesis of benzopyrans: i) Diels–Alder reaction of
C-2-vinyl glycals with dienophiles.6 ii) Reaction of sugar
derived Fischer carbene complexes with acetylenes.7 As
part of our ongoing interest in the exploitation of 2-nitro
glycals8,9 to the synthesis of a variety of 2-amino glyco-
sides, we have recently reported the synthesis of O-,8a–d

C-glycosides8e and N-nucleosides8f via Michael type addi-
tion of different hetero and carbon nucleophiles to 2-nitro-
glycals followed by reduction of the nitro group to the
amino group. We, now, wish to report the synthesis of
benzannulated C-glycosides via Diels–Alder reaction of
2-nitro glycals with Danishefky’s diene, which, as report-
ed, reacts with nitroalkenes.10

A convenient route to benzannulated dihydropyrans ap-
peared to involve a Diels–Alder reaction of 2-nitroglycals
with Danishefky’s diene (2) and subsequent aromatisation
of the cycloadduct. Indeed, cycloaddition of nitro galactal
1 with 2 in refluxing toluene worked well and produced
almost quantitative yields of the cycloadduct which was
hydrolysed using dilute H2SO4 to produce a mixture of 3
and 4 in the ratio of approximately 4:1 (Scheme 1).

The hydrolysed product was just filtered by column chro-
matography and used for the next step without separation.
The hydrolysed product was refluxed in toluene in the
presence of DBN11 for 24 h in order to eliminate the nitro
and methoxy group to get the desired product. To our sur-

prise, compound 5 was produced in 68% yield instead of
the expected product 6, thus after b-elimination under
opening of the tetrahydropyran ring a nitro group transfer
to a nucleophile, presumably toluene, seems to take place.
The structure of compound 5 was assigned on the basis of
its NMR spectral data. For example, aliphatic and aromat-
ic hydroxy groups appear as broad singlets at d 2.86 ppm
and 5.37 ppm, respectively.12 Our basic aim was to get via
HNO2-elimination and enolization, the benzannulated di-
hydropyran 6 and hence several bases such as NaH,
NaOCH3 and t-BuOK were employed in THF to get the
desired product. Among them NaH did yield the corre-
sponding benzopyran 6 in 30% yield whereas NaOCH3

and t-BuOK yielded a mixture of compounds 5 and 6 in
the ratio of 2:1. However, elimination using 1 M NaOCH3

in methanol produced the desired benzopyran 6 in 55%
yield. Separation of 3 and 4 and then base treatment led to
the same result because 3 was first transformed into 4. The
structure of compound 6 was confirmed on the basis of its
spectral data. In its proton NMR, the phenolic hydroxy
group appeared at d 5.14 ppm as a broad singlet and it was
also confirmed by methylation of the phenolic hydroxy
group (Scheme 3). Further, extension of this reaction to
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other glycals such as 7, 8 and 11 produced the desired ad-
ducts 9, 10, 12 in 40%, 35% and 65% yields, respectively
(Scheme 2). Although, the yields were moderate in the
elimination step but yields of the cycloaddition reactions
and hydrolysis steps were quantitative in all the cases
studied.

Scheme 2

Since, some naturally occurring compounds1a,e have C-C
bonds at the benzylic position of the phenolic group, we
intended to generate a C-C bond at the benzylic position
of the phenolic group of compound 6. For this purpose,
compound 6 was O-methylated (→ 13) and then
debenzylated using Pd-C/H2 and 1 equivalent of BaCO3 in
methanol, in order to avoid acid supported hydrogenolysis
of the a-benzyloxy group;13 following acetylation of the
free hydroxy groups using Et3N and Ac2O in dichlo-
romethane gave the corresponding triacetate 14 in 65%
yield (two steps). Triacetate 14 was reacted with allyl-
trimethylsilane in dichloromethane in the presence of
TMSOTf at 0 °C to produce the desired 4-C-allyl product
15 in 78% yield (Scheme 3).

Scheme 3

The stereochemistry of the newly formed C-C bond was
established on the basis of NOE experiments. In its NOE
experiment, strong NOE enhancement was observed
between 3-H and 4-H and also between 4-H and 2-H
thus confirming the structure 15. Surprisingly, the stereo-

chemistry of the C-C bond was b and it shows that there
was no neighbouring group participation of the adjacent
acetyl group during the reaction.

Scheme 4

Also compounds 5 and 17 (Schemes 1 and 4) are useful
chiral intermediates for the synthesis of some alka-
loids.14,15 For instance, compound 5 can easily be trans-
formed to the alkaloid condonopsinine14 whereas
compound 17 can be converted to an analog of diolmy-
cin.15 For this purpose, the aryl hydroxy group of com-
pound 5 was methylated using MeI and K2CO3 in
refluxing acetone for 9 h, thus producing in 90% yield
compound 16 which was debenzylated; acetylation of the
free hydroxy groups furnishing desired triacetate 17
(Scheme 4).

In conclusion, we have described the synthesis of benzan-
nulated dihydropyrans via Diels–Alder reaction of 2-nitro
glycals with Danishefky’s diene, hydrolysis of the enol
ether of the cycloadduct followed by elimination of the ni-
tro and methoxy group. In addition to this, a useful chiral
intermediate 5 has been obtained. Furthermore, a new C-
C bond was generated at the benzylic position of the phe-
nolic moiety of compound 14. Transformation of the ben-
zannulated pyranosides and the chiral intermediate 5 to
natural product synthesis are in progress in our laboratory.
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Some selected data:
5: [a]D

20 = –39.1 (c 1, CHCl3); 
1H NMR (250 MHz): d 2.86 

(br s, 1 H), 3.45–3.55 (m, 2 H), 3.59 (dd, J = 1.99, 7.82 Hz, 
1 H), 3.93 (d, J = 10.8 Hz, 1 H), 4.09 (d, J = 10.8 Hz, 1 H), 
4.19 (br s, 1 H), 4.25 (d, J = 11.46 Hz, 1 H), 4.44 (d, J = 11.46 
Hz, 1 H), 4.43–4.54 (m, 3 H), 5.37 (br s, 1 H), 6.81–6.85 (m, 
2 H), 6.93–6.97 (m, 2 H), 7.18–7.35 (m, 15 H). 13C NMR 
(62.9 MHz): d 69.7, 70.4, 71.2, 73.3, 73.9, 80.3, 81.1, 115.4, 

127.6, 127.7, 127.9, 128.2, 128.3, 129.1, 130.5, 137.5, 
137.8, 156.1. MALDI: m/z 507 (M + Na+). Calcd: C, 76.80; 
H, 6.66. Found: C, 76.55; H, 6.39.
6: [a]D

20 = +6.3 (c 1, CHCl3); 
1H NMR (250 MHz): d 3.71–

3.83 (m, 2 H), 4.14 (dd, J = 2.2 Hz, 3.2 Hz, 1 H), 4.34 (td, 
J = 1.4 Hz, 5.9 Hz, 1 H), 4.44 (d, J= 11.9 Hz, 1 H), 4.53 (d, 
J = 11.9 Hz, 1 H),  4.57–4.86 (m, 5 H), 5.14 (br s, 1 H), 6.29 
(d, J = 2.4 Hz, 1 H), 6.39 (dd, J = 2.5 Hz, 8.3 Hz, 1 H), 7.20–
7.40 (m, 16 H). 13C NMR (62.9 MHz): d 69.1, 70.1, 71.8, 
73.1, 73.5, 74.0, 75.8, 103.1, 108.6, 114.0, 127.7, 127.8, 
128.1, 128.3, 128.4, 129.3, 137.7, 138.1, 153.9, 156.7. 
MALDI: m/z 505 (M + Na+). Calcd: C, 77.16; H, 6.27. 
Found: C, 76.82; H, 6.57.
9: [a]D

20 = +26.7 (c 1, CHCl3); 
1H NMR (250 MHz): d 3.7–

3.89 (m, 2 H), 4.04 (t, J = 6.1 Hz, 1 H), 4.29–4.35 (m, 1 H), 
4.58–4.80 (m, 7 H), 5.4 (br s, 1 H), 6.34 (d, J = 2.43 Hz, 1 
H), 6.4 (dd, J = 2.44 Hz, 8.34 Hz, 1 H), 7.1 (d, J = 8.38 Hz, 
1 H), 7.23–7.37 (m, 15 H). 13C NMR (62.9 MHz): d 69.0, 
71.2, 73.1, 73.5, 73.6, 76.1, 77.01, 103.3, 109, 113.9, 127.7, 
127.9, 128.0, 128.5, 130.2, 137.8, 138.2, 154.6, 156.7. 
MALDI: m/z 505(M + Na+).
10: [a]D

20 = +30.1 (c 1, CHCl3); 
1H NMR (250 MHz): d 

3.53–3.92 (m, 6 H), 4.35–4.92(m, 17 H), 5.18 (br s, 1 H), 
5.34 (d, J = 3.6 Hz, 1 H), 6.37 (d, J = 2.18 Hz, 1 H), 6.42 (dd, 
J = 2.32 Hz, 8.24 Hz, 1 H), 7.12 (dd, J = 3.26 Hz, 7.06 Hz, 1 
H), 7.24–7.30 (m, 30 H). 13C NMR (62.9 MHz): d 68.4, 69.0, 
69.4, 70.9, 72.9, 73.3, 73.4, 74.5, 75.0, 75.5, 76.9, 80.0, 81.7, 
96.1, 103.7, 109.1, 112.7, 127.6, 127.7, 127.8, 127.9, 128.3, 
128.4, 131.1, 137.9, 138.0, 138.1, 138.3, 138.8, 154.9, 
156.9. MALDI: m/z 937 (M + Na+).
12: [a]D

20 = –27.1 (c 1, CHCl3); 
1H NMR (250 MHz): d 1.46 

(d, J = 6.48 Hz, 3 H), 3.69 (dd, J = 6.83 Hz, 8.08 Hz, 1 H), 
4.11–4.19 (m, 1 H), 4.65–4.88 (m, 6 H), 6.27 (d, J = 2.48 Hz, 
1 H), 6.40 (dd, J = 2.51 Hz, 8.39 Hz, 1 H), 7.15 (dd, J = 0.64 
Hz, 8.41 Hz, 1 H), 7.23–7.36 (m, 10 H). 13C NMR (62.9 
MHz): d 17.9, 71.5, 73.7, 74.4, 77.3, 79.1, 102.9, 109.0, 
114.7, 127.7, 127.87, 127.89, 127.9, 128.5, 129.8, 137.8, 
138.2, 155.0, 156.5. Cald: C, 76.57; H, 6.43. Found: C, 
76.25; H, 6.32.
15: [a]D

20 = +53.6 (c 0.5, CHCl3); 
1H NMR (600 MHz): d 

2.02, 2.12 (2 s, 6 H), 2.25–2.33 (m, 1 H), 2.4–2.5 (m, 1 H), 
2.9 (t, J = 6.7 Hz, 1 H), 3.77 (s, 3 H), 4.2–4.35 (m, 3 H), 
5.08–5.17 (m, 3 H), 5.8–5.9 (m, 1 H), 6.46 (d, J = 1 Hz, 1 H), 
6.53 (dd, J = 2.5 Hz, 8.4 Hz, 1 H), 6.98 (d, J = 8.5 Hz, 1 H). 
13C NMR (150.8 MHz): d 20.8, 21.0, 38.4, 41.5, 55.3, 63.3, 
68.0, 69.9, 101.2, 108.5, 118.0, 130.5, 134.8, 153.5, 159.4, 
170.4, 170.7. Calcd: C, 64.66; H, 6.63. Found: C, 64.95; H, 
7.0.
17: [a]D

20 = +29.6 (c 1, CHCl3); 
1H NMR (250 MHz): d 1.98, 

2.0, 2.1 (3 s, 9H), 2.77 (d, J = 6.9 Hz, 2 H), 3.75 (s, 3 H), 4.07 
(dd, J = 6.8 Hz, 11.8 Hz, 1 H), 4.23 (dd, J = 4.6 Hz, 11.8 Hz, 
1 H), 5.13–5.26 (m, 2 H), 6.92–7.2 (m, 4 H). 13C NMR (62.9 
MHz): d 20.6, 20.7, 21.0, 36.2, 62.2, 70.6, 72.0, 121.6, 
130.2, 133.6, 149.6, 169.3, 170.0, 170.4.

(13) Dufner, G. Ph.D. Dissertation; Universität Konstanz: 
Germany, 1997.

(14) Iida, H.; Tamazaki, N.; Kibayashi, C. J. Org. Chem. 1987, 
52, 1956.

(15) Sunazuka, T.; Tabata, N.; Nagamitsu, T.; Tomoda, H.; 
Omura, S. Tetrahedron Lett. 1993, 34, 6659.
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