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Apart from being a common structural unit in natural
products and pharmaceuticals,[1] the cyclopentenone ring
does represent a fundamental and versatile building block
for the construction of complex molecules.[2] Apart from a
number of reports,[3] the Pauson–Khand[4] and, to a lesser
extent, the Nazarov cyclization[5] are recognized by far as the
most efficient ways to access the cyclopentenone system.
However, some drawbacks occasionally limit the generality of
these procedures. The Nazarov cyclization suffers from the
availability of the divinylketone structures as well as the
occurrence of side reactions derived from the oxyallyl cation
intermediate. Regarding the popular Pauson–Khand reaction,
even though the intramolecular process is recognized as the
most efficient access to fused cyclopentenones, there are
significant drawbacks in the case of the intermolecular
reaction, the major one being the necessity of using highly
reactive or strained alkenes.[6, 7] In contrast, advances have
been made to replace the highly toxic carbon monoxide with
more friendly CO sources like aldehydes.[8]

Importantly, the asymmetric version of these processes
still requires additional development. The asymmetric Naz-
arov cyclization of a- and a’-functionalized divinylketones
(donor or acceptor groups) has been successfully performed
using metal- and organocatalysts.[9] Alternatively, while the
intramolecular asymmetric Pauson–Khand reaction has been
accomplished with different metal catalysts, the intermolec-
ular version still does represent a challenging goal.[4a] In this
context, only Riera, Verdager, and co-workers have reported
outstanding achievements using alkyne/[Co2(CO)4L*] com-
plexes and norbornadiene.[10, 11]

These facts inspired us to develop a complementary
Pauson–Khand cyclopentenone approach (Scheme 1) that is
based on 1) simplicity (short experimental protocol and
readily available substrates and reagents), and 2) the use of
recyclable [M(CO)6]

[12] as the source of CO. Overall, the
strategy requires a bromoalkene, [M(CO)6], and an alkyne to
generate the cyclopentene ring 3 by cyclization of the

corresponding alkenyl lithium 2 and alkynylcarbene complex
1 derivatives.[13]

A THF solution of the chromium alkynylcarbene 1,
readily made from terminal alkynes and [Cr(CO)6], was
added dropwise at �78 8C to a solution of the alkenyl
organollithium 2, which was generated by metalation of
bromoalkenes with tert-butyllithium. The reaction was kept at
�78 8C for one hour, warmed to room temperature, and then
stirred for two hours. The mixture was quenched with
aqueous ammonium chloride and demetalated (sunlight).
The aqueous layer was extracted (diethyl ether), and the
solvents were removed from the collected organic layers. The
resulting crude material was treated with concentrated HCl in
methylene chloride to hydrolyze the intermediate enol, thus
affording exclusively the cyclopentenones 3 in good yields
(50–85%) after chromatographic purification (Scheme 2).
The structure of compound 3 b was confirmed by X-ray
analysis.[14]

Scheme 2 shows the scope of this [3+2] cyclization. A
number of bromoalkenes were first tested with the alkynyl
carbenes 1 having aryl substituents with different electronic
structures (R1 = Ar; products 3 a–o). It was found that a- and
b-monosubstituted bromoalkenes work satisfactorily (3a–c);
moreover, both regioisomers are available by simply starting
with the appropriate bromoalkene (3a versus 3b). Interest-
ingly, the reaction with b,b-disubstituted and a,b,b-trisubsti-
tuted bromoalkenes takes place in higher yields, thus furnish-
ing the cyclopentenones 3d–g and spirocyclopentenone 3h
having an all-carbon-substituted quaternary center. This
protocol also enables access to the cyclopentane- and
cyclohexane-fused cyclopentenones 3 i–o in synthetically
useful yields. Finally, the reaction works fairly with hetero-
aryl-, cycloalkyl-, and trimethylsilyl-substituted metal car-
benes 1 (3p, 3q, and 3r, respectively).

A simple approach to understanding this stepwise cycli-
zation is shown in Scheme 3. First, the Michael-type addition
of 2 to 1 would form the metallated intermediate A.
Quenching with aqueous ammonium chloride would provide
the cis-metallatriene intermediate B (best represented as the
charged species), which spontaneously undergoes ring clo-
sure/metal elimination to the cyclopentadienylether 4.[15] In

Scheme 1. New cyclopentenone approach.
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this way, protonated (4 a) and deuteriated ([D]-4 a) adducts
were isolated with H2O and D2O, respectively.[16]

If one assumes the presence of A, additional functional-
ization at C2 might be feasible with other electrophiles

(Scheme 4). When a mixture of the carbene 1 and alkenyl
lithium 2 was stirred at low temperature, treated with CuBr
(1 equiv) at room temperature, and then with reactive

electrophiles (allyl iodide, NBS, bis(pyridine)iodonium tetra-
fluoroborate), the synthetically valuable cycloadducts 5a–c
and 4b were isolated in moderate to good yields (51–83 %).

The present methodology seems amenable for the asym-
metric cyclization by starting from the chiral nonracemic
tungsten carbenes 6 derived from (�)-8-phenylmenthol
(Scheme 5).[17] Our goal was to apply this protocol to the
enantioselective synthesis of cyclopentenones featuring an
all-carbon-substituted quaternary stereogenic center (R3,
R4¼6 H).[18] First, treatment of 6 with methyl- and ethyl-
substituted cycloalkenyllithium 2, under the experimental
protocol given for the carbenes 1, resulted in the formation of
cyclohexane- and cyclopentane-fused cyclopentenones
(4R,5R)-3 j–o in 45–70 % yield and greater than 94 % ee in

Scheme 3. Proposed mechanism for the formation of 3.

Scheme 4. Functionalization of the cyclopentenones at C2 to give the
products 5. NBS = N-bromosuccinimide.

Scheme 2. Cyclopentenones 3 obtained from alkynyl carbenes 1 and
vinyllithium compounds 2. PCP =p-chlorophenyl, PMP =p-methoxy-
phenyl, PTFP = p-trifluoromethylphenyl, THF = tetrahydrofuran.

Scheme 5. Chiral nonracemic cyclopentenones obtained from a tung-
sten carbene derived from (�)-8-phenylmenthol 6.
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most cases.[19] When the metal carbene 6 bears an electron-
rich aryl substituent (R1 = PMP) lower selectivity was
attained [(�)-3n] . In contrast, we found that either (Z)- or
(E)-2-phenylpropenyl lithium (or Z/E mixtures) underwent
cycloaddition with the enantiopure carbenes 6 (R1 = Ph,
PCP), thus leading to cyclopentenones (+)-(S)-3e,f in mod-
erate yield (48–55%) and high enantioselectivity (87–
92%).[19] Crystallization of (+)-3 f afforded a single crystal-
line isomer (> 99 % ee) whose structure was established by X-
ray analysis.[14]

Given the mechanistic model in Scheme 3, a possible
rational for the stereochemical induction is outlined
(Scheme 6). As a result of a p-stacking effect,[20] the 8-

phenylmenthyloxy group would block the bottom face of the
C3�C4 bond of the 1-metalla-1,3,5-hexatriene (intermediate
B’) thus forcing the C6�C2 bond formation to occur through
from the top face of the W�C2 carbene moiety. This approach
leads to the (4R,5R)-cycloalkane-fused cyclopentenones 3 j–o.
The convergent formation of (+)-(S)-3e,f could be under-
stood by previous cis-B’/trans-B’ equilibration with subse-
quent cyclization of the more stable trans species.[21]

In conclusion, a very simple two-step access to polysub-
stituted cyclopentenones from terminal alkynes, [M(CO)6],
and bromoalkenes is described. Importantly, this protocol
enhances to a great extent the challenging intermolecular
Pauson–Khand reaction, especially concerning the alkene
partner and the asymmetric cyclization. Significant features
that reflect the complementarity of the process described
herein to the Pauson–Khand reaction are: 1) different types
of bromoalkenes are productive and the regiochemistry is
completely predetermined, 2) whereas 2-substituted cyclo-
pentenones are obtained from terminal alkynes by the
Pauson–Khand reaction, the procedure described herein
yields 3-substituted cyclopentenones, 3) a halogen atom can
be easily installed at the strategic C2 position, thus allowing
additional functionalization, 4) enantiopure cyclopentenones,
particularly bicyclic cyclopentenones with an all-carbon-
substituted quaternary stereocenter at the bridgehead C5
carbon atom,[22] are readily available with high stereochemical
induction (up to 99% ee).
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