Synthesis of 1-arylcyclopropylphosphonates*

N. S. Gulyukina, A. V. Varakuta, and I. P. Beletskaya*

Department of Chemistry, M. V. Lomonosov Moscow State University, 1 Leninskie Gory, 119992 Moscow, Russian Federation. Fax: +7 (495) 939 3618. E-mail: beletska@org.chem.msu.ru

A simple method for the synthesis of 1-arylcyclopropylphosphonates was proposed. The method involves treatment of 1-arylethenylphosphonic acids or their esters with diazomethane followed by thermolysis of intermediate 3-aryl-4, 5-dihydro-3H-pyrazol-3-ylphosphonates.

Key words: cyclopropylphosphonates, 4,5-dihydro-3*H*-pyrazol-3-ylphosphonates, vinylphosphonates, diazomethane, [2+3] cycloaddition, organophosphorus compounds.

Interest in cyclopropylphosphonates and cyclopropylphosphonic acids is due to their known biological activities. For instance, some compounds of this class have been found to be antagonists for the NMDA receptor,¹ inhibitors of alanine racemase and aminocyclopropanecarboxylate deaminase,² and insectoacaricides.³

Several approaches to the design of the cyclopropane ring in cyclopropylphosphonates have been documented. This is mostly done *via* reactions of olefins with diazophosphonate.^{1,4–17} Reactions of vinylphosphonate with diazo compounds are employed in substantially fewer studies.^{18–25} In both cases, the reaction is carried out in both the presence^{1,7–17,25} and in the absence of a catalyst.^{4,5,18–24}

Other methods include reactions of vinylphosphonates with Fischer carbene complexes,^{26,27} dihalocarbenes,^{3,28} or sulfur ylides;^{24,29–32} nucleophilic addition of substituted α -halomethylphosphonate anions to the Michael acceptors followed by intramolecular S_N^2 cyclization;^{33–39} intramolecular cyclization of alkylphosphonate anions containing a leaving group in the γ -position;^{2,40–44} Lewis acid-promoted [2+1] cycloaddition of 1-seleno-2silylethene to 1-(methoxycarbonyl)vinylphosphonates.⁴⁵

The proposed synthetic routes lead to a sufficiently broad variety of structures. When choosing target molecules with potential biological activity, two basic principles are guided. First, phosphorus analogs of cyclopropanecarboxylic acids with already known activity are intensively synthesized. For instance, *P*-analogs of $(\pm)-(Z)-N,N$ -diethyl-2-aminomethyl-1-phenylcyclopropanecarboxamide (antidepressant Minalcipran),³⁸ chrysanthemic acid,⁹ and (–)-*allo*-norcoronamic acid⁴⁴ have been obtained.

According to the other approach, known biologically active acyclic phosphonates are modified by introduction

* Dedicated to Academician G. A. Abakumov on the occasion of his 70th birthday.

of the cyclopropane fragment to restrict the skeleton conformationally. For instance, cyclopropyl analogs of D-2-amino-5-phosphonopentanoic acid (NMDA antagonist),¹ 3-amino-2-(4-chlorophenyl)propylphosphonic acid (GABA_B antagonist Phaclophen),^{30,32,35} and the nucleotide (*E*)-9-(4-phosphonobut-3-enyl)adenine^{31,43} exhibiting antiretroviral activity have been obtained.

In this context, the synthesis of 1-arylcyclopropylphosphonates, which are conformationally constrained analogs of 1-arylethylphosphonic acids, are of interest. The latter are phosphorus analogs of 2-arylpropionic acids (a well-known class of nonsteroidal antiinflammatory and analgesic drugs such as naproxen and ibuprofen) and exhibit negative inotropic, ⁴⁶ Ca²⁺-antagonistic, ^{46,47} neuroprotective, ⁴⁷ and psychotropic activities, ⁴⁷ inhibit cyclooxygenase, ⁴⁸ and serve as haptens of reactive immunization. ^{49,50} Here we studied the cyclopropanation of 1-arylethenylphosphonic acids⁵¹ with diazomethane as the simplest synthetic route to 1-arylcyclopropylphosphonates.

Results and Discussion

A reaction of diethyl 1-phenylethenylphosphonate (1a) with diazomethane (2 equiv.) in ether for 3 h gave diethyl 3-phenyl-4,5-dihydro-3H-pyrazol-3-ylphosphonate (2a) as the sole product (Scheme 1). In the ³¹P NMR spec-

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1820-1826, September, 2007.

1066-5285/07/5609-1884 © 2007 Springer Science+Business Media, Inc.

trum of the reaction mixture, the signal of the starting compound **1a** at δ_P 17.7 disappears; instead, a new signal appears at δ_P 19.8.

The structure of product **2a** isolated in quantitative yield was proved by elemental analysis and spectroscopic methods. The IR spectrum exhibits a characteristic set of bands corresponding to the diethoxyphosphoryl fragment: a band at 1260 cm⁻¹ (P=O stretching vibrations), a broad band at 980 cm⁻¹ (C–C stretch), and two very strong bands at 1030 and 1060 cm⁻¹ (O–C stretch).⁵² The stretching vibrations of the endocyclic N=N bond give rise to a weak band at 1560 cm⁻¹. 4,5-Dihydro-3*H*-pyrazol-3-ylphosphonates can undergo prototropic isomerization into 4,5-dihydro-1*H*-pyrazol-5-ylphosphonates.^{8,19,20,53} However, this is not the case with product **2a** because its IR spectrum contains no intense absorption

bands in the range characteristic of v(N–H) and v(C=N) (usually, 1595–1635 cm⁻¹).^{19,20,53} The ¹³C (Table 1) and ¹H NMR spectra (Table 2) of product **2a** show two sets of signals for the diastereotopic ethoxy groups. The ¹³C NMR spectrum exhibits a characteristic doublet at δ_C 98.02 (¹ J_{CP} = 148.0 Hz) for the quaternary C atom. Four complex multiplets correspond to the protons of the fivemembered heterocycle. The two low-field multiplets (δ_H 4.58 and 4.79) probably relate to the strongly coupled CH₂N protons, while the two high-field multiplets (δ_H 1.84 and 2.67) relate to the CH₂CP protons. The considerable difference in the chemical shifts of the latter is due to the vicinity of the asymmetric center.

Treatment of 1-arylethenylphosphonic acids (1b-f) with diazomethane (4-5 equiv.) gave the corresponding dimethyl 3-aryl-4,5-dihydro-3*H*-pyrazol-3-ylphosphon-

Table 1. ¹³C NMR spectra of 3-aryl-4,5-dihydro-3*H*-pyrazol-3-ylphosphonates 2a-f

Com-	R	Ar	¹³ C NMR (CDCl ₃), δ (<i>J</i> /Hz)				
pound			P(O)(OR) ₂	Pyrazoline ring			Ar*
				$\underline{C}H_2CP$	CH ₂ N	СР	
2a	CH ₂ Me	$4 \underbrace{\bigcirc}_{5 6}^{3 2} \underbrace{\stackrel{1}{\underset{5 6}{1}}}_{1 2}$	15.89 (Me); 15.94 (Me); 62.86 (d, ${}^{2}J_{C,P} = 7.7$, CH ₂); 63.66 (d, ${}^{2}J_{C,P} = 6.9$, CH ₂)	27.34	77.36	98.02 (d, ${}^{1}J_{C,P} = 148.0$)	^{126.93} (d, C(2), C(6), ³ $J_{C,P}$ = 4.6); 127.55 (C(4)); 128.04 (C(3), C(5)); 137.55 (d, C(1), ² $J_{C,P}$ = 4.6)
2b	Me	$4 \underbrace{\langle \bigcirc \\ 5 \\ 5 \\ 6 \\ }^{3 2} \underbrace{1}_{1}$	53.75 (d, ${}^{2}J_{C,P} = 7.6$); 54.55 (d, ${}^{2}J_{C,P} = 7.6$)	27.60	77.65	98.22 (d, ${}^{1}J_{C,P} = 147.5$)	127.15 (d, C(2), C(6), ${}^{3}J_{C,P} = 4.2$); 128.01 (C(4)); 128.50 (C(3), C(5)); 137.56 (d, C(1), {}^{2}J_{C,P} = 5.1)
2c	Me	$Cl \xrightarrow{4} \overbrace{5}^{3} \xrightarrow{2}_{6}^{2}$	53.85 (d, ${}^{2}J_{C,P} = 5.9$); 54.51 (d, ${}^{2}J_{C,P} = 7.6$)	27.56	77.85	97.78 (d, ¹ J _{C,P} = 148.4)	128.50 (d, C(2), C(6), ${}^{3}J_{C,P} = 4.2$); 128.66 (C(3), C(5)); 134.05 (C(4)); 136.13 (d, C(1), ${}^{2}J_{C,P} = 6.7$)
2d	Me	$- \underbrace{4 \underbrace{3}_{5}_{6}}^{3} \underbrace{2}_{5}_{6}$	53.48 (d, ${}^{2}J_{C,P} = 7.7$); 54.40 (d, ${}^{2}J_{C,P} = 6.9$)	27.36	77.43	97.85 (d, ¹ <i>J</i> _{C,P} = 147.2)	22.08 (Me); 29.88 (CH); 44.73 (CH ₂); 126.69 (d, C(2), C(6), ${}^{3}J_{C,P} = 3.8$); 129.04 (C(3), C(5)); 134.49 (d, C(1), ${}^{2}J_{C,P} = 5.4$); 141.38 (C(4))
2e	Me	$4 \underbrace{\bigcirc}_{5' 6'}^{3' 2'} \underbrace{\bigcirc}_{6 5}^{2 3} \underbrace{4}_{6 5}$	53.69 (d, ${}^{2}J_{C,P} = 6.9$); 54.43 (d, ${}^{2}J_{C,P} = 6.9$)	27.43	77.60	98.00 (d, ¹ <i>J</i> _{C,P} = 148.0)	126.82, 126.99 (C(2), C(6), C(2'), C(6')); 127.36 (C(4')); 127.43 (d, C(3), C(5), ${}^{3}J_{C,P} = 4.6$); 128.63 (C(3'), C(5')); 136.38 (d, C(4), ${}^{2}J_{C,P} = 6.1$); 140.06, 140.65 (C(1), C(1'))
2f	Me	$\begin{array}{c} 6 \\ 7 \\ 8 \\ 8 \\ 8 \\ 8 \\ 1 \end{array} \begin{array}{c} 8 \\ 3 \\ 2 \\ 8 \\ 1 \\ 3 \\ 2 \\ 1 \\ 3 \\ 2 \\ 1 \\ 3 \\ 2 \\ 1 \\ 3 \\ 2 \\ 1 \\ 3 \\ 2 \\ 1 \\ 3 \\ 2 \\ 1 \\ 3 \\ 2 \\ 1 \\ 3 \\ 2 \\ 1 \\ 3 \\ 2 \\ 1 \\ 3 \\ 2 \\ 1 \\ 3 \\ 2 \\ 1 \\ 3 \\ 2 \\ 1 \\ 3 \\ 2 \\ 1 \\ 3 \\ 2 \\ 1 \\ 3 \\ 2 \\ 1 \\ 3 \\ 2 \\ 1 \\ 3 \\ 2 \\ 1 \\ 3 \\ 2 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	53.76 (d, ${}^{2}J_{C,P} = 6.9$); 54.56 (d, ${}^{2}J_{C,P} = 6.9$)	27.70	77.66	98.24 (d, ¹ J _{C,P} = 148.0)	124.92 (C(3)); 126.04 (d, C(1), ${}^{3}J_{C,P} = 6.9$); 126.35, 126.39, 127.49, 128.18 (2C) (C(4), C(5), C(6), C(7), C(8)); 132.66, 132.87 (C(8a), C(8b)); 134.91 (d, C(2), {}^{2}J_{C,P} = 5.4)

* The signals for the C atoms of the aromatic ring were assigned with consideration for known⁵⁴ substituent increments.

Com-	¹ H NMR, δ (J/Hz)					
pound	P(O)(OR) ₂	Pyrazoline ring		Ar*	δ	
		CH ₂ CP (m, 1 H)	CH ₂ N (m, 1 H)			
2a	1.16 (t, 3 H, Me, ${}^{3}J_{H,H} = 7.1$); 1.26 (t, 3 H, Me, ${}^{3}J_{H,H} = 7.0$); 3.84 (m, 1 H, CH ₂); 3.95 (m, 1 H, CH ₂); 4.07 (m, 2 H, CH ₂)	1.84, 2.67	4.58, 4.79	7.30 (m, 1 H, H(4)); 7.38 (t, 2 H, H(3), H(5), ${}^{3}J_{H,H} = 7.2$); 7.69 (m, 2 H, H(2), H(6))	19.8	
2b	3.58 (d, 3 H, ${}^{3}J_{P,H} = 10.6$); 3.70 (d, 3 H, ${}^{3}J_{P,H} = 10.7$)	1.87, 2.67	4.61, 4.80	7.33 (m, 1 H, H(4)); 7.40 (m, 2 H, H(3), H(5)); 7.69 (m, 2 H, H(2), H(6))	22.1	
2c	3.62 (d, 3 H, ${}^{3}J_{P,H}^{,H} = 10.7$); 3.74 (d, 3 H, ${}^{3}J_{P,H} = 10.7$)	1.80, 2.66	4.61, 4.83	7.38 (d, 2 H, H(3), H(5), ${}^{3}J_{AB} = 8.7$); 7.63 (dd, 2 H, H(2), H(6), ${}^{3}J_{AB} = 8.7$, ${}^{4}J_{UB} = 2.4$)	21.6	
2d	3.56 (d, 3 H, ${}^{3}J_{P,H} = 10.5$); 3.71 (d, 3 H, ${}^{3}J_{P,H} = 10.7$)	1.86, 2.63	4.59, 4.77	0.89 (d, 6 H, CH ₃ , ${}^{3}J_{H,H} = 6.6$); 1.86 (m, 1 H, CH); 2.47 (d, 2 H, CH ₂ , ${}^{3}J_{H,H}$ 7.1); 7.17 (d, 2 H, H(3), H(5), ${}^{3}J_{AB} = 8.1$); 7.59 (dd, 2 H, H(2), H(6), ${}^{3}J_{AB} = 8.1$, ${}^{4}J_{HP} = 2.1$)	22.3	
2e	3.64 (d, 3 H, ${}^{3}J_{P,H} = 10.6$); 3.76 (d, 3 H, ${}^{3}J_{P,H} = 10.7$)	1.91, 2.69	4.64, 4.83	7.36 (m, 1 H, H(4')); 7.45 (m, 2 H, H(3'), H(5')); 7.60 (m, 2 H, H(2'), H(6')); 7.64 (d, 2 H, H(2), H(6), ${}^{3}J_{AB} = 8.5$); 7.76 (dd, 2 H, H(3), H(5), ${}^{3}J_{AB} = 8.5$, ${}^{3}J_{PH} = 2.3$)	22.1	
2f	3.56 (d, 3 H, ${}^{3}J_{P,H} = 10.6$); 3.75 (d, 3 H, ${}^{3}J_{P,H} = 10.7$)	1.96, 2.74	4.65, 4.81	7.47–7.51 (m, 2 H); 7.79–7.90 (m, 4 H); 8.14 (br.s, 1 H, H(1))	21.9	

Table 2. ¹H and ³¹P NMR spectra (CDCl₃) of 3-aryl-4,5-dihydro-3*H*-pyrazol-3-ylphosphonates 2a-f

* The signals for the protons of the aromatic ring were assigned with consideration for known⁵⁴ substituent increments.

ates (**2b**—**f**) (Scheme 2) also isolated in quantitative yields. Their compositions and structures were confirmed by elemental analysis and spectroscopic methods (see Experimental and Tables 1, 2).

Scheme 2

Ar = Ph (**b**), 4-ClC₆H₄ (**c**), 4-BuⁱC₆H₄ (**d**), 4-PhC₆H₄ (**e**), 2-naphthyl (**f**)

Reagents and conditions: CH_2N_2 , Et_2O , $20 \circ C$, 3 h; ~100% yield.

Photolysis^{4,5,19,20,24} or thermolysis^{18,20} of 4,5-dihydro-3*H*-pyrazol-3-ylphosphonates produces cyclopropylphosphonates through liberation of nitrogen. Compound **2a** was quantitatively decomposed in boiling *o*-xylene over 1 h (Scheme 3). The ³¹P NMR spectrum of the reaction mixture shows, along with a signal at δ_P 28.7 for diethyl 1-phenylcyclopropylphosphonate (**3a**), signals at δ_P 18.3 and 17.0 assigned to by-products: *E*- and *Z*-isomers of diethyl 1-phenylprop-1-enylphosphonate (the integral intensity ratio is 88 : 4 : 8).

Scheme 3

Reagents and conditions: Δ , 1 h, *o*-xylene.

The ¹H NMR spectrum contains signals for the Z-isomer at $\delta_{\rm H}$ 6.54 (dq, H_{olefin}, ${}^{3}J_{\rm H,\rm H}$ = 7.3 Hz, ${}^{3}J_{\rm P,\rm H}$ = 48.4 Hz) and 2.25 (dd, H_{allylic}, ${}^{3}J_{\rm H,\rm H}$ = 7.3 Hz, ${}^{4}J_{\rm P,\rm H}$ = 3.5 Hz) and signals for the *E*-isomer at $\delta_{\rm H}$ 6.98 (dq, H_{olefin}, ${}^{3}J_{\rm H,\rm H}$ = 6.9 Hz, ${}^{3}J_{\rm P,\rm H}$ = 23.1 Hz) and 1.73 (dd, H_{allylic}, ${}^{3}J_{\rm H,\rm H}$ = 6.9 Hz, ${}^{4}J_{\rm P,\rm H}$ = 3.3 Hz). Note that the thermolysis of 4,5-dihydro-3*H*-pyrazol-3-ylphosphonates sometimes leads only to acyclic unsaturated products.²²

In boiling toluene, compound **2a** decomposed slowly (after 1 h, its conversion was 57%); the selectivity of the process was virtually unchanged.

We failed to separate the reaction mixture by distillation; for this reason, unsaturated by-products were removed by treatment with a solution of $KMnO_4$ in aqueous acetone. Subsequent distillation gave the analytically and spectroscopically pure target product **3a** in 78% preparative yield.

The IR spectrum of cyclopropylphosphonate **3a** retains the set of bands of the diethoxyphosphoryl fragment. The band at 1230 cm⁻¹ is due to the breathing vibrations of the cyclopropane ring and bands at 840 and 940 cm⁻¹ correspond to the deformation vibrations (see Ref. 52). In the ¹³C (Table 3) and ¹H NMR spectra (Table 4), one set of signals corresponds to equivalent ethoxy groups. The quaternary C atom is manifested as a doublet at $\delta_{\rm C}$ 21.12. The coupling constant ¹ $J_{\rm C,P}$ = 191.7 Hz is higher than that for compound **2a** in agreement with a known⁵⁴ increase in ¹ $J_{\rm C,P}$ for the C atom with a greater *s*-orbital contribution. The protons of the cyclopropane ring are manifested as two complex multiplets at $\delta_{\rm H}$ 1.06 and 1.49. The signals in the ¹H NMR spectra (see Table 4) were assigned by comparing the coupling constants $J_{\rm H,P}$ with consideration for the known^{19,54} ratio ${}^{3}J_{\rm HCCP-cis} > {}^{3}J_{\rm HCCP-trans}$. The ³¹P chemical shift is $\delta_{\rm P}$ 28.7 (see Table 4). This value falls in the range described for cyclopropylphosphonates ($\delta_{\rm P}$ 21–36).^{19,20,24,25} The absence of the pronounced anisotropic effect of the α -aromatic substituent is probably associated with a larger bond angle between the exocyclic bonds in cyclopropanes compared to a tetrahedral bond configuration.

A number of dimethyl 1-arylcyclopropylphosphonates (**3b**-**f**) were obtained and characterized analogously (see Tables 3, 4 and Experimental).

In conclusion, room-temperature reactions of 1-arylethenylphosphonic acids or their esters with diazomethane are regiospecific: [2+3] cycloaddition gives 3-aryl-4,5dihydro-3*H*-pyrazol-3-ylphosphonates. Thermolysis of the latter leads mainly to 1-arylcyclopropylphosphonates isolated in 53–79% yields (with respect to the two-step

Table 3. ¹³C NMR spectra of 1-arylcyclopropylphosphonates 3a-f

Com-	R	Ar	¹³ C NMR (CDCl ₃), δ (<i>J</i> /Hz)				
pound			P(O)(OR) ₂	Three-membered ring		Ar*	
				CH ₂	СР		
3a	CH ₂ Me	$4 \sqrt[3]{\frac{2}{5}} \frac{1}{6}$	16.24 (d, Me, ${}^{3}J_{C,P} = 6.1$); 62.15 (d, CH ₂ , ${}^{2}J_{C,P} = 6.9$)	11.34	21.12 (d, ${}^{1}J_{C,P} = 191.7$)	127.09 (C(4)); 128.02 (C(3), C(5)); 130.97 (C(2), C(6)); 138.62 (C(1))	
3b	Me	$4 \underbrace{\bigcirc}_{5 6}^{3 2} \underbrace{1}_{5 6}$	52.90 (d, ${}^{2}J_{C,P} = 6.8$)	11.14	20.38 (d, ${}^{1}J_{C,P} = 191.4$)	127.17 (C(4)); 128.10 (C(3), C(5)); 130.80 (C(2), C(6)); 138.29 (C(1))	
3c	Me	$Cl \xrightarrow{4} \bigcirc 5 \xrightarrow{5} 6$	53.01 (d, ${}^{2}J_{C,P} = 6.7$)	11.28	19.96 (d, ${}^{1}J_{C,P} = 191.4$)	128.31 (C(3), C(5)); 132.14 (d, C(2), C(6), ${}^{3}J_{C,P} = 3.0$); 133.08 (C(4)); 136.96 (C(1))	
3d	Me	$- \underbrace{4 \underbrace{3}_{5}_{5}_{6}}^{2} \underbrace{4}_{5}_{6}$	52.95 (d, ${}^{2}J_{C,P} = 6.9$)	11.21	20.01 (d, ${}^{1}J_{C,P} = 189.4$)	22.26 (Me); 29.99 (CH); 44.94 (CH ₂); 128.88 (C(3), C(5)); 130.50 (d, C(2), C(6), ${}^{3}J_{C,P} = 3.8$); 135.44 (C(1)); 140.70 (C(4))	
3e	Me 4	$\begin{array}{c} 3' & 2' \\ & & \\ & & \\ 5' & 6' \\ & & 6 \\ \end{array} \begin{array}{c} 2 & 3 \\ & & \\ 6 & 5 \\ \end{array} \begin{array}{c} 4 \\ & \\ 6 \\ & 5 \end{array}$	53.11 (d, ${}^{2}J_{C,P} = 6.8$)	11.37	20.18 (d, ${}^{1}J_{C,P} = 190.5$)	126.97 (4 C); 127.26 (C(4')); 128.68 (2 C); 131.26 (C(3), C(5)); 137.44, 140.20, 140.56 (C(1), C(1'), C(4))	
3f	Me	$\begin{array}{c}5\\6\\7\\8\\8\\8\\1\end{array}$	53.03 (d, ${}^{2}J_{C,P} = 6.1$)	11.37	20.66 (d, ${}^{1}J_{\rm C,P} = 191.7$)	125.93, 126.02, 127.46, 127.60, 127.75, 128.70, 129.72 (d, ${}^{2}J_{C,P} = 4.6$); 132.48, 133.05 (C(8a), C(8b)); 135.84 (C(2))	

* The signals for the C atoms of the aromatic ring were assigned with consideration for known⁵⁴ substituent increments.

Com- pound	¹ H NMR, δ (<i>J</i> /Hz)					
	P(O)(OR) ₂	Three-mer	nbered ring	Ar*	δ	
		trans-HCCP (m, 2 H)	<i>cis</i> -HCCP (m, 2 H)			
3a	1.25 (t, 6 H, Me, ${}^{3}J_{H,H} = 7.1$); 4.04 (m, 4 H, CH ₂)	1.06 (³ <i>J</i> _{H,P} = 10.4)	1.49 (${}^{3}J_{\rm H,P} = 16.4$)	7.23 (m, 1 H, H(4)); 7.29 (m, 2 H, H(3), H(5)); 7.42 (m, 2 H, H(2), H(6))	28.7	
3b	3.68 (d, 6 H, ${}^{3}J_{HP} = 10.6$)	1.07 $(^{3}J_{\rm H,P} = 10.5)$	1.50 $(^{3}J_{\rm H,P} = 16.4)$	7.23 (m, 1 H, H(4)); 7.29 (m, 2 H, H(3), H(5)); 7.41 (m, 2 H, H(2), H(6))	31.4	
3c	$3.70 (d, 6 H, 3J_{H,P} = 10.6)$	1.04 $(^{3}J_{\rm H,P} = 10.4)$	1.50 $(^{3}J_{\rm H,P} = 16.3)$	7.26 (d, 2 H, H(3), H(5), ${}^{3}J_{AB} = 8.6$); 7.35 (dd, 2 H, H(2), H(6), ${}^{3}J_{AB} = 8.6$, ${}^{4}J_{HP} = 2.0$)	30.8	
3d	$3.68 (d, 6 H, 3J_{H,P} = 10.6)$	1.06 (${}^{3}J_{\rm H,P} = 10.5$)	1.48 $(^{3}J_{\rm H,P} = 16.3)$	0.89 (d, 6 H, Me, ${}^{3}J_{H,H} = 6.6$); 1.84 (m, 1 H, CH); 2.44 (d, 2 H, CH ₂ , ${}^{3}J_{H,H} = 7.2$); 7.07 (d, 2 H, H(3), H(5), ${}^{3}J_{AB} = 8.0$); 7.31 (dd, 2 H, H(2), H(6), ${}^{3}J_{AB} = 8.0$, ${}^{4}J_{HP} = 2.0$)	31.8	
3e	3.73 (d, 6 H, ${}^{3}J_{\rm H,P} = 10.6$)	1.12 (³ $J_{\rm H,P} = 10.4$)	1.54 (³ <i>J</i> _{H,P} = 16.3)	7.34 (m, 1 H, H(4')); 7.43 (m, 2 H, H(3'), H(5'); 7.48 (dd, 2 H, H(3), H(5), ${}^{3}J_{AB} = 8.2, {}^{4}J_{H,P} = 1.3$); 7.53 (d, 2 H, H(2), H(6), ${}^{3}J_{AB} = 8.2$); 7.57 (m, 2 H, H(2'), H(6'))	31.5	
3f	3.71 (d, 6 H, ${}^{3}J_{\rm H,P} = 10.5$)	1.18 (³ J _{H,P} = 10.4)	1.58 (${}^{3}J_{\rm H,P} = 16.4$)	7.43–7.49 (m, 2 H); 7.56 (d, 1 H, ${}^{3}J_{H,H} = 8.5$) 7.77–7.81 (m, 3 H); 7.84 (br.s, 1 H, H(1))	; 31.4	

Table 4. ¹H and ³¹P NMR spectra (CDCl₃) of 1-arylcyclopropylphosphonates 3a-f

* The signals for the protons of the aromatic ring were assigned with consideration for known⁵⁴ substituent increments.

Scheme 4

Conditions: Δ , *o*-xylene.

2, 3	Ar	Yield (%)		
		From ³¹ P NMR	Preparative	
b	Ph	86	53	
c	$4-ClC_6H_4$	86	68	
d	4-Bu ⁱ C ₆ H ₄	90	56	
e	$4 - PhC_6H_4$	89	79	
f	2-naphthyl	88	66	

process). Isomeric 1-arylprop-1-enylphosphonates are detected as by-products.

Experimental

¹H, ³¹P, and ¹³C NMR spectra were recorded on a Bruker Avance-400 spectrometer (400, 162, and 101 MHz, respectively). ¹H chemical shifts are referenced to SiMe₄ as the internal standard; ³¹P chemical shifts are referenced to 85% H₃PO₄ as the external standard; ¹³C chemical shifts are referenced to CDCl₃ (δ 77.0). IR spectra were recorded on a Carl Zeiss UR-20 spectrophotometer. Elemental analysis was carried out on a Carlo Erba automatic analyzer. Melting points were measured with an Electrothermal 9100 melting point apparatus in sealed capillaries.

Diethyl ether and *o*-xylene were dehydrated in a standard way. The starting diethyl 1-phenylethenylphosphonate (1a) and 1-arylethenylphosphonic acids (1b—f) were prepared as described earlier.⁵¹ A solution of diazomethane in ether was prepared according to a standard procedure.⁵⁵

Diethyl 3-phenyl-4,5-dihydro-3*H***-pyrazol-3-ylphosphonate** (2a). A round-bottom flask fitted with a magnetic stirring bar, a dropping funnel, and a drying tube packed with calcium chloride was charged with phosphonate 1a (1.718 g, 7.15 mmol) and anhydrous diethyl ether (5 mL). A 0.11 *M* solution of diazomethane (127 mL, 14 mmol, 2 equiv.) in anhydrous ether was added dropwise with stirring for 30 min and the solution was stirred for an additional 3 h. Volatile components were removed first in a rotary evaporator and then under high vacuum. Phosphonate 2a as a pale yellow oil was obtained in quantitative yield. Found (%): C, 55.30; H, 6.56; N, 9.84. C₁₃H₁₉N₂O₃P. Calculated (%): C, 55.31; H, 6.78; N, 9.92. IR (thin film), v/cm⁻¹: 1560 (N=N); 1260 (P=O); 1060 (O–C); 1030 (O–C); 980 (OC–C).

Dimethyl 3-phenyl-4,5-dihydro-3*H***-pyrazol-3-ylphosphonate** (2b) was obtained analogously in quantitative yield from 1-phenylethenylphosphonic acid (1b) (1.291 g, 7.01 mmol) and 0.08 *M* diazomethane (350 mL, 28 mmol, 4 equiv.). White crystals turned yellow in air, m.p. 74–75 °C. Found (%): C, 52.14; H, 5.87; N, 11.08. $C_{11}H_{15}N_2O_3P$. Calculated (%): C, 51.97; H, 5.95; N, 11.02. IR (Nujol), v/cm⁻¹: 1555 (N=N); 1255 (P=O); 1070 (O–C); 1030 (O–C).

Dimethyl 3-(4-chlorophenyl)-4,5-dihydro-3H-pyrazol-3-ylphosphonate (2c) was obtained analogously in quantitative yield from 1-(4-chlorophenyl)ethenylphosphonic acid (1c) (2.000 g, 9.15 mmol) and 0.11 *M* diazomethane (325 mL, 36 mmol,

4 equiv.). Cream-colored crystals, m.p. 82-83 °C. Found (%): C, 46.06; H, 5.05; N, 9.47. C₁₁H₁₄ClN₂O₃P. Calculated (%): C, 45.77; H, 4.89; N, 9.70. IR (Nujol), v/cm⁻¹: 1560 (N=N); 1250 (P=O); 1070 (O-C); 1040 (O-C).

Dimethyl 3-(4-isobutylphenyl)-4,5-dihydro-3*H***-pyrazol-3-ylphosphonate (2d)** was obtained analogously in quantitative yield from 1-(4-isobutylphenyl)ethenylphosphonic acid (1d) (1.882 g, 7.83 mmol) and 0.1 *M* diazomethane (400 mL, 40 mmol, 5 equiv.). A pale yellow oil. Found (%): C, 58.37; H, 7.58; N, 9.79. $C_{15}H_{23}N_2O_3P$. Calculated (%): C, 58.06; H, 7.47; N, 9.03. IR (thin film), v/cm⁻¹: 1555 (N=N); 1260 (P=O); 1060 (O–C); 1020 (O–C).

Dimethyl 3-(biphenyl-4-yl)-4,5-dihydro-3*H***-pyrazol-3-yl-phosphonate (2e)** was obtained analogously in quantitative yield from 1-(biphenyl-4-yl)ethenylphosphonic acid (**1e**) (1.575 g, 6.05 mmol) and 0.17 *M* diazomethane (144 mL, 24 mmol, 4 equiv.). Pale yellow crystals, m.p. 81-82 °C. Found (%): C, 61.88; H, 5.96; N, 8.59. C₁₇H₁₉N₂O₃P. Calculated (%): C, 61.81; H, 5.80; N, 8.48. IR (thin film), v/cm⁻¹: 1560 (N=N); 1260 (P=O); 1065 (O–C); 1040 (O–C).

Dimethyl 3-(2-naphthyl)-4,5-dihydro-*3H***-pyrazol-3-ylphos-phonate (2f)** was obtained analogously in quantitative yield from 1-(2-naphthyl)ethenylphosphonic acid (**1f**) (1.906 g, 8.14 mmol) and 0.15 *M* diazomethane (220 mL, 33 mmol, 4 equiv.). A pale yellow oil. Found (%): C, 58.98; H, 5.82; N, 9.08. $C_{15}H_{17}N_2O_3P$. Calculated (%): C, 59.21; H, 5.63; N, 9.21. IR (thin film), v/cm⁻¹: 1555 (N=N); 1250 (P=O); 1050 (O–C); 1030 (O–C).

Diethyl 1-phenylcyclopropylphosphonate (3a). A solution of compound 2a (2.019 g, 7.15 mmol) in anhydrous o-xylene (160 mL) was refluxed for 3 h. The solvent was thoroughly removed under reduced pressure. The residue was dissolved in acetone (10 mL) and a saturated solution of KMnO₄ (50 mL) in aqueous acetone (1:5) was added dropwise with stirring for 7 h. The excess of KMnO₄ was decomposed by adding saturated aqueous Na₂SO₃ until the violet color vanished. The brown precipitate that formed was filtered off and washed with acetone. The combined filtrates were concentrated and the product was extracted with diethyl ether $(3 \times 20 \text{ mL})$. The organic extracts were dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was distilled in vacuo under dry argon. The yield of compound **3a** was 1.416 g (78%), a nearly colorless transparent oil, b.p. 140–150 °C (2 Torr). Found (%): C, 61.68; H, 7.48. C₁₃H₁₉O₃P. Calculated (%): C, 61.41; H, 7.53. IR (thin film), v/cm⁻¹: 1260 (P=O); 1230 (cyclopropane); 1070 (O-C); 1040 (O-C); 970 (OC-C); 940 (cyclopropane); 840 (cyclopropane).

Dimethyl 1-phenylcyclopropylphosphonate (3b) was obtained analogously from compound **2b** (1.782 g, 7.01 mmol) in boiling anhydrous *o*-xylene (160 mL). The yield was 0.845 g (53%), a colorless transparent oil, b.p. 136–140 °C (2 Torr). Found (%): C, 61.68; H, 7.48. $C_{13}H_{19}O_3P$. Calculated (%): C, 61.41; H, 7.53. IR (thin film), v/cm⁻¹: 1255 (P=O); 1220 (cyclopropane); 1070 sh (O–C); 1050 (O–C); 945 (cyclopropane); 845 (cyclopropane).

Dimethyl 1-(4-chlorophenyl)cyclopropylphosphonate (3c) was obtained analogously from compound **2c** (2.000 g, 6.93 mmol) in boiling anhydrous *o*-xylene (165 mL). The yield was 1.223 g (68%), a colorless oil, b.p. 120–130 °C (0.1 Torr). The oil crystallized on storage, m.p. 40–41 °C. Found (%): C, 50.78; H, 5.43. $C_{11}H_{14}ClO_3P$. Calculated (%): C, 50.69; H, 5.41.

IR (thin film), v/cm^{-1} : 1270 (P=O); 1230 (cyclopropane); 1070 (O-C); 1040 (O-C); 935 (cyclopropane); 860 (cyclopropane).

Dimethyl 1-(4-isobutylphenyl)cyclopropylphosphonate (3d) was obtained analogously from compound **2d** (2.431 g, 7.83 mmol) in boiling anhydrous *o*-xylene (165 mL). The yield was 1.229 g (56%), a nearly colorless transparent oil, b.p. 155–160 °C (2 Torr). Found (%): C, 63.72; H, 8.35. $C_{15}H_{23}O_3P$. Calculated (%): C, 63.82; H, 8.21. IR (thin film), v/cm⁻¹: 1265 (P=O); 1230 (cyclopropane); 1070 (O–C); 1040 (O–C); 935 (cyclopropane); 835 (cyclopropane).

Dimethyl 1-(biphenyl-4-yl)cyclopropylphosphonate (3e) was obtained analogously from compound **2e** (1.978 g, 5.99 mmol) in boiling anhydrous *o*-xylene (100 mL). The product was extracted with toluene (3×50 mL). The solvent was removed under reduced pressure and the residue was kept in high vacuum. The yield of compound **3e** was 1.426 g (79%), cream-colored crystals, m.p. 56–57 °C. Found (%): C, 67.47; H, 6.52. C₁₇H₁₉O₃P. Calculated (%): C, 67.54; H, 6.34. IR (Nujol), v/cm⁻¹: 1260 (P=O); 1225 (cyclopropane); 1070 (O–C); 1040 (O–C); 940 (cyclopropane); 865 (cyclopropane).

Dimethyl 1-(2-naphthyl)cyclopropylphosphonate (3f) was obtained analogously from compound **2f** (2.477 g, 8.14 mmol) in boiling anhydrous *o*-xylene (165 mL). The yield was 1.487 g (66%), a light yellow oil, b.p. 170 °C (0.1 Torr). Found (%): C, 65.13; H, 6.39. $C_{15}H_{17}O_3P$. Calculated (%): C, 65.21; H, 6.20. IR (thin film), v/cm⁻¹: 1265 (P=O); 1225 (cyclopropane); 1070 (O–C); 1040 (O–C); 940 (cyclopropane); 835 (cyclopropane).

This work was financially supported by the Russian Foundation for Basic Research (Project Nos 05-03-33013 and 04-03-39017-GFEN) and the INTAS (Project No. 05-1000008-8064).

References

- M. S. Dappen, R. Pellicciari, B. Natalini, J. B. Monahan, C. Chiorri, and A. A. Cordi, J. Med. Chem., 1991, 34, 161.
- 2. M. D. Erion and C. T. Walsh, *Biochemistry*, 1987, 26, 3417.
- O. A. Kolyamshin, V. V. Kormachev, and Yu. N. Mitrasov, *Zh. Obshch. Khim.*, 1993, 63, 1075 [*Russ. J. Gen. Chem.*, 1993, 63 (Engl. Transl.)].
- 4. H. J. Callot and C. Benezra, Can. J. Chem., 1972, 50, 1078.
- 5. C. Benezra and N. D. Tho, Tetrahedron Lett., 1974, 4437.
- T. Kato, N. Katagiri, and R. Sato, J. Org. Chem., 1980, 45, 2587.
- 7. D. Seyferth and R. S. Marmor, *Tetrahedron Lett.*, 1970, 2493.
- 8. D. Seyferth, R. S. Marmor, and P. Hilbert, J. Org. Chem., 1971, 36, 1379.
- 9. J. R. Reid and R. S. Marmor, J. Org. Chem., 1978, 43, 999.
- R. T. Lewis and W. B. Motherwell, *Tetrahedron Lett.*, 1988, 29, 5033.
- 11. J. D. Moore and P. R. Hanson, *Tetrahedron: Asymmetry*, 2003, **14**, 873.
- G. Simonneaux, F. De Montigny, C. Paul-Roth, M. Gulea, and S. Masson, *Tetrahedron Lett.*, 2002, 43, 3685.
- C. Paul-Roth, F. De Montigny, G. Rethore, G. Simonneaux, M. Gulea, and S. Masson, J. Mol. Cat. A: Chem., 2003, 201, 79.

- P. Le Maux, I. Abrunhosa, M. Berchel, G. Simonneaux, M. Gulea, and S. Masson, *Tetrahedron: Asymmetry*, 2004, 15, 2569.
- 15. Y. Ferrand, P. Le Maux, and G. Simonneaux, *Org. Lett.*, 2004, **6**, 3211.
- 16. H. M. L. Davies and G. H. Lee, Org. Lett., 2004, 6, 2117.
- I. D. Titanyuk, I. P. Beletskaya, A. S. Peregudov, and S. N. Osipov, *J. Fluorine Chem.*, 2007, **128**, 723.
- A. N. Pudovik and R. D. Gareev, *Zh. Obshch. Khim.*, 1970, 40, 1025 [*J. Gen. Chem. USSR*, 1970, 40 (Engl. Transl.)].
- R. D. Gareev and A. N. Pudovik, *Zh. Obshch. Khim.*, 1979, 49, 728 [J. Gen. Chem. USSR, 1979, 49 (Engl. Transl.)].
- 20. R. D. Gareev, A. V. Chernova, E. A. Ishmaeva, E. A. Berdnikov, R. R. Shagidullin, E. N. Strelkova, G. M. Dorozhkina, I. I. Patsanovskii, and A. N. Pudovik, *Zh. Obshch. Khim.*, 1982, **52**, 2444 [*Russ. J. Gen. Chem.*, 1982, **52** (Engl. Transl.)].
- N. G. Khusainova, E. A. Irtuganova, and A. N. Pudovik, *Zh. Obshch. Khim.*, 2001, **71**, 370 [*Russ. J. Gen. Chem.*, 2001, **71**, 337 (Engl. Transl.)].
- 22. T. Minami, S. Tokumasu, R. Mimasu, and I. Hirao, *Chem. Lett.*, 1985, 1099.
- W. H. Midura, J. A. Krysiak, and M. Mikolajczyk, *Tetrahedron*, 1999, 55, 14791.
- 24. R. Takagi, M. Nakamura, M. Hashizume, S. Kojima, and K. Ohkata, *Tetrahedron Lett.*, 2001, 42, 5891.
- B. Bessieres, A. Schoenfelder, C. Verrat, A. Mann, P. Ornstein, and C. Pedreal, *Tetrahedron Lett.*, 2002, 43, 7659.
- 26. D. F. Harvey and M. F. Brown, *Tetrahedron Lett.*, 1990, **31**, 2529.
- 27. D. F. Harvey and M. F. Brown, J. Am. Chem. Soc., 1990, 112, 7806.
- O. A. Kolyamshin, V. V. Kormachev, and Yu. N. Mitrasov, *Zh. Obshch. Khim.*, 1990, **60**, 2170 [*Russ. J. Gen. Chem.*, 1990, **60** (Engl. Transl.)].
- 29. W. H. Midura, J. A. Krysiak, M. W. Wieczorek, W. R. Majzner, and M. Mikolajczyk, J. Chem. Soc., Chem. Commun., 1998, 1109.
- W. H. Midura and M. Mikolajczyk, *Tetrahedron Lett.*, 2002, 43, 3061.
- W. H. Midura, J. A. Krysiak, and M. Mikolajczyk, *Tetrahedron: Asymmetry*, 2003, 14, 1245.
- 32. M. Mikolajczyk, J. Organomet. Chem., 2005, 690, 2488.
- 33. C. Yuan, C. Li, and Y. Ding, Synthesis, 1991, 854.
- 34. L. Toke, Z. M. Jaszay, I. Petnehazy, G. Clementis, G. D. Vereczkey, I. Kovesdi, A. Rockenbauer, and K. Kovats, *Tetrahedron*, 1995, **51**, 9167.
- 35. S. Hanessian, L.-D. Cantin, S. Roy, D. Andreotti, and A. Gomtsyan, *Tetrahedron Lett.*, 1997, 38, 1103.
- 36. P. Jubault, S. Goumain, C. Feasson, and N. Collignon, *Tetrahedron*, 1998, **54**, 14767.

- S. Goumain, P. Jubault, C. Feasson, and J.-C. Quirion, *Tetrahedron Lett.*, 1999, 40, 8099.
- C. Duquenne, S. Goumain, P. Jubault, C. Feasson, and J.-C. Quirion, Org. Lett., 2000, 2, 453.
- 39. S. Goumain, H. Oulyadi, P. Jubault, C. Feasson, and J. Quirion, J. Chem. Soc., Perkin Trans. 1, 2001, 701.
- 40. P. J. Diel and L. Maier, Phosphorus Sulfur, 1984, 20, 313.
- 41. D. W. Hutchinson and D. M. Thornton, Synthesis, 1990, 135.
- 42. U. Groth, L. Lehmann, L. Richter, and U. Schöllkopf, Liebigs Ann. Chem., 1993, 427.
- 43. J. H. Hah, J. M. Gil, and D. Y. Oh, *Tetrahedron Lett.*, 1999, 40, 8235.
- 44. A. Hercouet, M. Le Corre, and B. Carboni, *Tetrahedron Lett.*, 2000, **41**, 197.
- 45. S. Yamazaki, T. Takada, T. Imanishi, Y. Moriguchi, and S. Yamabe, J. Org. Chem., 1998, 63, 5919.
- C. Bellucci, F. Gualtieri, S. Scapecchi, E. Teodori, R. Budriesi, and A. Chiarini, *Farmaco*, 1989, 44, 1167.
- N. A. Bondarenko, N. N. Lermontova, G. N. Bondarenko, N. S. Gulyukina, T. M. Dolgina, S. O. Bachurin, and I. P. Beletskaya, *Khim.-Farm. Zh.*, 2003, 37, 7 [*Pharm. Chem. J.*, 2003, 37, 226 (Engl. Transl.)].
- 48. K. W. Jung, K. D. Janda, P. J. Sanfilippo, and M. Wachter, *Bioorg. Med. Chem. Lett.*, 1996, 6, 2281.
- 49. C.-H. L. Lo, P. Wentworth, K. W. Jung, J. Yoon, J. A. Ashley, and K. D. Janda, *J. Am. Chem. Soc.*, 1997, **119**, 10251.
- A. Datta, P. Wentworth, J. P. Shaw, A. Simeonov, and K. D. Janda, J. Am. Chem. Soc., 1999, 121, 10461.
- N. S. Gulyukina, T. M. Dolgina, G. N. Bondarenko, I. P. Beletskaya, N. A. Bondarenko, J.-C. Henry, D. Lavergne, V. Ratovelomanana-Vidal, and J.-P. Genet, *Zh. Org. Khim.*, 2002, **38**, 600 [*Russ. J. Org. Chem.*, 2002, **38**, 537 (Engl. Transl.)].
- 52. D. Lin-Vien, N. B. Colthup, W. G. Fateley, and J. G. Grasseli, *Infrared and Raman Characteristic Frequencies of Organic Molecules*, Academic Press, San Diego, 1991, 503 pp.
- 53. R. D. Gareev, Yu. Yu. Samitov, and A. N. Pudovik, *Zh. Obshch. Khim.*, 1977, **47**, 278 [*J. Gen. Chem. USSR*, 1977, **47** (Engl. Transl.)].
- 54. B. I. Ionin, B. A. Ershov, and A. I. Kol'tsov, YaMR-spektroskopiya v organicheskoi khimii [NMR Spectroscopy in Organic Chemistry], Khimiya, Leningrad, 1983, 269 pp. (in Russian).

Received May 30, 2007; in revised form July 12, 2007