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Application of sub-stoichiometric amounts of Grubbs’ second generation catalyst to the substrate
N-allyl-N-[2-(allylsulfanyl)phenyl]-4-methylbenzenesulfonamide afforded the ring-closed compound
6-[(4-methylphenyl)sulfonyl]-5,6-dihydro-2H-1,6-benzothiazocine, as well as the unexpected 2-allyl-4-
[(4-methylphenyl)sulfonyl]-3,4-dihydro-2H-1,4-benzothiazine. Use of similar conditions on an
analogous sulfoxide resulted in the expected product, 6-[(4-methylphenyl)sulfonyl]-5,6-dihydro-2H-
1,6-benzothiazocine 1-oxide, indicating that the sulfide was playing a key role in this novel transforma-
tion. Furthermore, the use of N-allyl-4-methyl-N-{2-[(2-methyl-2-propenyl)sulfanyl]phenyl}-benzene-
sulfonamide in the same reaction gave 2-(2-methyl-2-propenyl)-3,4-dihydro-2H-1,4-benzothiazine.

� 2012 Elsevier Ltd. All rights reserved.
Ring-closing metathesis (RCM) has become an established
methodology for the construction of medium-sized ring systems
containing various heteroatoms.1 Due to the extensive use of
metathesis catalysts, exemplified by the Grubbs’ first and second
generation catalysts, researchers occasionally report unforeseen
results from the use of RCM. These unexpected results represent
a wide selection of synthetic transformations including pre- and
post-metathetic isomerizations and oxidative rearrangements,
which have been reviewed by Alcaide and Almendros.2a,b Of inter-
est is that in terms of the amount of ruthenium carbene required,
examples of catalytic and stoichiometric reactions have been re-
corded. In addition, a number of these ruthenium-mediated side
reactions have found synthetic application.2c,d

In terms of the heteroatoms incorporated into ring systems
utilizing the RCM approach, the formation of sulfur-containing het-
erocycles has been less described than with atoms such as nitrogen
or oxygen.3 This may, in part, be due to the coordination of sulfur
with the metal carbene center, sometimes resulting in complex
reaction mixtures or in no reactions at all.

We have been interested in exploring the synthesis of
benzo-fused heterocycles,4 including six- and seven-membered
ll rights reserved.
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heterocycles containing sulfur in various oxidation states.5 For
example, we synthesized 1,4-benzoxathiin (3a) and 1,4-ben-
zodithiin (3b) by way of an isomerization-RCM strategy as
depicted in Scheme 1.5b

In this Letter, we report how the application of larger than usual
amounts of the Grubbs’ second generation catalyst (4)6 to N-allyl-
N-[2-(allylsulfanyl)phenyl]-4-methylbenzenesulfonamide (1c)
gave the unexpected product 2-allyl-4-[(4-methylphenyl)sulfo-
nyl]-3,4-dihydro-2H-1,4-benzothiazine (5) (Scheme 2) as one of
the two major products.7

During research into the application of metathesis to sulfur-
containing compounds the allyl sulfides 1a–c were treated with
the Grubbs’ second generation catalyst 4 (Scheme 3). Unfortu-
nately, when applying the RCM reactions on compounds 1a and
1b in an attempt to obtain the benzannulated heterocycles 6a
and 6b, respectively, no products were obtained. In fact, from
TLC analysis, it appeared that the substrates were transformed di-
rectly into polymeric material which we were unable to character-
ize. The same reaction performed on diene 1c gave rise to a fairly
complex mixture of products.

After evaluation of the crude 1H NMR spectrum of the latter
experiment involving 1c, in which evidence existed supporting
the existence of products other than the starting material, it was
decided to repeat this particular reaction with a larger quantity
of catalyst to investigate the mixture of products formed.
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Scheme 2. Formation of allyl-substituted benzo[1,4]thiazines.
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Scheme 3. Conditions for the attempted RCM to afford 6a,b: catalyst 4 (5–
15 mol %), CHCl3, see Ref. 5c for a description of the attempted synthesis of 6c.
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Scheme 4. Reagents and conditions: catalyst 4 (5 � 10% over 24 h = 50 mol %),
ClCH2CH2Cl, N2, 65–80 �C, 24 h.

Figure 1. Single crystal X-ray structure for compound 5 (ORTEP diagram drawn at
50% probability level).
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Scheme 5. Reagents and conditions: (i) catalyst 4 (20 mol %), 65–80 �C, 24 h (no
product observed); (ii) mCPBA (1.1 mol equiv), 0 �C to rt, CH2Cl2, N2, 18 h (92%); (iii)
catalyst 4 (10 mol %), CH2Cl2, N2, reflux, 20 h (95%).

S

Y

isomerization

1a Y = O
1b Y = S

2a Y = O
2b Y = S

S

Y

RCM S

Y
3a Y = O
3b Y = S

Scheme 1. Formation of 1,4-benzodithiin and 1,4-benzoxathiin as described in Ref.
5b.
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Interestingly, the addition of sub-stoichiometric amounts of ruthe-
nium carbene 4 (50 mol % applied in several portions during the
course of the reaction) to substrate 1c again gave rise to a mixture
of products from which two compounds were isolated by careful
column chromatography (Scheme 4).8 The first product was the ex-
pected dihydro-2H-1,6-benzothiazocine 6c (34%),9 while the other
was determined to be allyl-substituted benzo[1,4]thiazine 59 in an
approximately equal yield of 30%. Due to its unusual features the
structure of compound 5 was unambiguously proved by a single
crystal X-ray study (Fig. 1).9 Of interest is that the substituted
benzo[1,4]thiazine scaffold has elicited much interest in medicinal
chemistry circles over the past decade,10 making the development
of potential new approaches to this substrate a worthwhile
venture.
Having already determined that this interesting reaction was
not occurring when 1-(allyloxy)-2-(allylthio)benzene (1a) (Y@O)
or 1,2-bis(allylthio)benzene (1b) (Y@S) (Scheme 2) was used as
starting material, it was decided to probe a number of factors in-
volved in the reaction. Firstly, reactions at lower temperature
(�5 �C, rt and 40 �C) indicated that a higher temperature was re-
quired. In our hands, keeping the temperature in the range of
65–80 �C gave the best results. Secondly, we found it necessary
to add larger than catalytic amounts of the Grubbs’ second gener-
ation carbene (typically 50%) as at lower catalyst concentrations,
while the product spots were evident on TLC, only very low yields
of the products were obtained on work-up followed by chromatog-
raphy. It was also established that the tosyl group was important,
as substrate 1d did not give the desired rearranged product (under
the conditions employed it also did not give the ring-closed prod-
uct) (Scheme 5). To probe whether the oxidation state of the sulfur
atom was important, oxidation of 1c to the sulfoxide 8 provided a
product which readily gave the benzannulated heterocycle 9, even
under fairly mild conditions of dichloromethane at reflux. In
addition, we had previously demonstrated that the sulfone version
of this compound afforded the 8-membered 5,6-dihydro-2H-1,
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6-benzothiazocine 1,1-dioxide in high yield under mild conditions
(Scheme 5).5c This set of results indicated strongly that the sulfide
was crucial to afford the rearrangement product 5.

We decided to further investigate this intriguing result with the
synthesis of substrate 12, the difference being that this time the S-
allyl group bears a 20-methyl group. To this end, 2-aminothiophe-
nol (7) was alkylated with 3-bromo-2-methylprop-1-ene to afford
10 in good yield. Tosylation and allylation of the aniline amino
group then gave the substituted bis-allyl compound 12. Applica-
tion of the Grubbs’ second generation catalyst (4) (50 mol %) affor-
ded the substituted benzothiazine 1411 in 18% yield, along with the
expected eight-membered dihydro-2H-1,6-benzothiazocine 13,12

presumably obtained by way of a normal metathetic cascade
(Scheme 6).

The use of sub-stoichiometric amounts of Grubbs’ catalyst 4
was a serious problem regarding the applicability of this method-
ology. We thus attempted to stabilize any important organometal-
lic species with a number of phosphine ligands as an additive, but
unfortunately to no avail. It should be noted that during the course
of the reactions the color of the mixtures became progressively
darker with time, a possible indication that insoluble ruthenium
‘black’ was being precipitated.
In terms of a postulated mechanism, it seems reasonable that
compound 1c is converted into the ylide 17 by the sulfur atom
trapping the ruthenium carbene via an intramolecular attack
(1c?15?16, Scheme 7). This would also account for the loss of
the methylene fragment observed in the product 5. There are then
various options resulting in the final product. It was first consid-
ered possible that the rearrangement of 1c into 5 occurs by way
of a [2,3]-sigmatropic rearrangement.13 In addition, it should be
mentioned that a [1,2]-carbon shift (a Stevens rearrangement) is
also possible.14 The involvement of a ruthenium-mediated p-allyl
species with a subsequent reductive elimination to give 5 could
also be conceivable.14a Finally, a novel pericyclic reaction leading
to the product can at this stage also not be ruled out. In view of
the importance of allyl-transfer reactions in organic synthesis it
is also envisaged that the unexpected reaction observed could lead
to the development of novel C-allylation reactions.15

Conclusion

In conclusion, we have disclosed an unusual rearrangement
product obtained when using the Grubbs’ second generation car-
bene (4) on N-allyl-N-[2-(allylthio)phenyl]-4-methylbenzenesulf-
onamide (1c) and the related compound 12. Despite the problem
that the utilization of non-catalytic amounts of 4 poses, it is envis-
aged that this interesting rearrangement, which results in the
potentially useful allyl-substituted benzo[1,4]thiazine 5 frame-
work, will receive further synthetic attention. We intend to synthe-
size other substrates to see if the mechanism of this novel
transformation can be elucidated, with a secondary aim of devel-
oping a catalytic version of this reaction.
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