

Eur. J. Med. Chem. 37 (2002) 607-616

www.elsevier.com/locate/ejmech

Preliminary communication

Cinnamic acid derived oxazolinium ions as novel cytotoxic agents

Lilach Hedvati, Abraham Nudelman *, Eliezer Falb, Boris Kraiz, Regina Zhuk, Milon Sprecher*

Chemistry Department, Bar Ilan University, Ramat Gan 52900, Israel

Received 19 November 2001; accepted 22 March 2002

Abstract

Substituted cinnamoyl chlorides, 11, were converted into (2-hydroxyethyl)-oxazolinium chlorides 14, N,N-bis-(2-chloroethyl)amides 16 and (2-chloroethyl)-oxazolinium chlorides 17. Although derivatives 14 which possess electron-donating substituents (Me or MeO) were more potent than those substituted by electron-withdrawing groups (NO₂, Cl or CF₃), the difference in cytotoxic actin was not significant. Modification of the lipophilic character in a series of alkoxy-substituted derivatives 14 led to more active compounds, where 14t that possesses a 4-octyloxy-phenyl-substituent was the most potent and displayed cytotoxic activity in the μ M range. It is assumed that the oxazolinium salts act as alkylating agents, and undergo nucleophilic attack on the methylene adjacent to the ring oxygen where the oxazolinium ring parallels the aziridinium ring intermediate found in classical alkylating agents. © 2002 Published by Éditions scientifiques et médicales Elsevier SAS.

Keywords: Cinnamic acid; Cytotoxic agents; Oxazolinium salts

1. Introduction

Clinically useful chemotherapeutic nitrogen mustards, **2**, such as mechloretamine, cyclophosphamide, ifosfamide, melphalan and chlorambucil, are commonly prepared from the corresponding substituted-N,N-bis-(2-hydroxyethyl)amines **1** when treated with SOCl₂ or PCl₅. The mechanism by which they elicit their biological activity involves initial intramolecular nucleophilic displacement of a chloride to give reactive aziridinium intermediates **3** that serve as alkylating species (Fig. 1). The potency of the nitrogen mustards is frequently a function of the nucleophilicity of the nitrogen atom [1].

When the R group is strongly electron withdrawing, the nucleophilicity of the nitrogen atom may diminish to a point where the aziridinum intermediate **3** does not form readily and compound **2** thus becomes inactive as an alkylating agent. In the series of N,N-bis-(2chloroethyl)anilines, it was shown that deactivation by p-NO₂ or p-MeSO₂ substituents leads to long half life and low potency. However, when the R group is electron donating, the nitrogen atom becomes highly nucleo-

philic and the aziridinium intermediate 3 forms readily. In such cases the nitrogen mustard 2 may be unacceptably toxic due to a lack of in vivo alkylating selectivity [2], as found in *p*-amino-substituted-aniline mustard. High alkylating potency was also observed with *p*-MeO and p-Me substituents [3–5]. In these aniline mustards the antitumour activity parallels toxicity and both properties correlate with the electronic parameters (σ) of the substituents on the phenyl ring and their hydrophobic constants (π). QSAR studies showed the dominant role played by the electronic factor, whereas the role of the hydrophobic character of the substituent is not yet clear [6]. N,N-bis-(2-chloroethyl)amides 5 of aliphatic acids were prepared from the corresponding acyl chlorides and bis-(2-chloroethyl)amine [7-9]. N-Methanesulfonyl-N,N-bis-(2-iodoethyl)amides were obdisplacement of the corresponding tained by N,N-bis-(2-methanesulfonate)sulfonamides with iodide [10]. Amides 5 were reported to be less active as well as less toxic than the corresponding amines due to the diminished nucleophilic character of the nitrogen atom. Although bis-(2-chloroethyl)amides of aromatic acids 5 could have been expected to become alkylating agents upon in vivo hydrolysis to the active N.N-bis-(2chloroethyl)amine 6, they were found to be inactive

* Correspondence and reprints

E-mail address: nudelman@mail.biu.ac.il (A. Nudelman).

Fig. 1. General mechanism of action of nitrogen mustards.

Fig. 2. Rearrangement and deactivation of *N*,*N*-(bis-2-chloroethyl)-arylamides.

since they rearranged to esters 9 via an intermediate oxazolinium ion 7 (Fig. 2). Attempts to obtain stable

bis-(2-chloroethyl)amides from the corresponding cinnamic acids failed [11-13]. Thus, a balance between electron withdrawing and donating power of the R group is sought, that will reduce the nucleophilicity of the nitrogen atom, but only to such an extent that it will not impair the formation of a reactive aziridinium ion [14-16].

The aim of these investigations was to evaluate substituted-cinnamyl-bis-(2-chloroethyl)amides as potential alkylating agents, taking advantage of the possibility of modifying the nucleophilicity of the amido nitrogen atom by introducing a variety of electron withdrawing and donating substituents on the aromatic ring.

2. Chemistry

Two alternative pathways have been described for the preparation of N,N-bis-(2-chloroethyl)amides: (a) treatment of N,N-bis-(2-hydroxyethyl)amides with thionyl chloride or (b) coupling of an acid chloride with N,N-bis-(2-chloroethyl)amine. Reaction of a cinnamoyl chloride **11** with diethanolamine gave the corresponding N,N-bis-(2-hydroxyethyl)cinnamamides **12**, analogs of diol precursors of nitrogen mustards (Fig. 3)

 $\begin{array}{l} \underline{a} \; 2\text{-NO}_2, \underline{b} \; 3\text{-}\; \text{NO}_2, \underline{c} \; 4\text{-}\; \text{NO}_2, \underline{d} \; 2\text{-}C\text{I}\text{-}5\text{-}\text{NO}_2, \underline{e} \; 3\text{-}\text{NO}_2\text{-}4\text{-}\text{Cl}, \underbrace{f} \; 2\text{-}\text{CF}_3, \underline{p} \; 3\text{-}\text{CF}_3, \underline{b} \; 4\text{-}\; \text{CF}_3, \underline{i} \; 2\text{-}\text{Me}, \underbrace{i} \; 4\text{-}\; \mathbf{b} \; \mathbf{b} \; \mathbf{b} \; \mathbf{c} \;$

Fig. 3. Synthesis of N,N-(bis-2-chloroethyl)-cinnamides (16) and oxazolinium salts (14 and 17).

L. Hedvati et al. / European Journal of Medicinal Chemistry 37 (2002) 607-616

Table 1 1 H-NMR and 13 C-NMR chemical shifts of compounds 14, 16 and 17

Compound	Solvent	¹ H-NMR					¹³ C-NMR					
		CH ₂ N	CH_2OH	CH_2O	CHCO	ArCH	CH ₂ N	CH ₂ OH	CH_2O	CHCO	ArCH	CNO
14r	DMSO	3.08, 3.30	3.71	4.42	6.46	7.78	48.63 + 50.33	57.15	59.35	115.90	144.98	165.94
14s	DMSO	3.06, 3.29	3.70	4.40	6.47	7.78	45.77+49.15	56.22	59.36	114.50	145.02	166.01
14t	DMSO	3.07, 3.30	3.69	4.40	6.47	7.74	45.53+49.11	56.21	59.37	114.51	145.00	166.03
		CH_2Cl+CH_2N	CHCO	ArCH			CH_2Cl	CH_2N	CHCO	ArCH	CNO	
16j	CDCl ₃	3.61-3.94	6.72	7.70			41.79+41.90	50.01 + 50.06	115.19	144.24	166.94	
16n	CDCl ₃	3.64-3.92	6.71	7.71			41.72+42.03	50.14+51.18	113.68	143.86	167.40	
160	CDCl ₃	3.73-3.96	6.71	7.69			41.9	50.17+51.22	114.12	144.11	167.06	
16p	CDCl ₃	3.68-3.98	6.76	7.65			41.7	49.86+51.03	115.59	146.10	166.71	
		$CH_2N\!+\!CH_2Cl$	$\rm CH_2O$	CHCO		ArCH	CH_2Cl	CH_2N	CH_2O	CHCO	ArCH	CNO
17u	DMSO	3.91-4.5	4.43	6.47		7.81	39.52	47.67+48.19	59.37	114.54	145.22	166.08
17v	CDCl ³ /	3.6-4.1	4.66	6.36		7.82	37.83	46.10+48.29	58.52	113.54	145.22	165.75
	Acetone-d ⁶											
17w	CDCl ³ / Acetone-d ⁶	3.35–3.78	4.60	6.30		7.70	38.33	46.78+48.92	59.22	113.94	146.19	166.76

[17]. Subsequent reaction of 12 with SOCl₂ in acetonitrile, in most cases gave mono-chloride products 14, where only one of the two OH groups was replaced. Attempts to replace the second OH even under drastic conditions including reflux in the presence of an excess of SOCl₂, most frequently failed. Only in the single case of 12h did both OH groups undergo replacement by Cl to give 17h. Titration of the 17h showed that one chloride was ionic and the other covalent. Interestingly, the IR spectra (KBr pellets) of the diols 12 showed the presence of two distinct OH absorptions at 3386-3344 and 3288-3245 cm⁻¹, respectively, attributed to two kinds of H-bonded OH groups. The chloride in compounds 14 was also found to be ionic. Compounds 14, probably because of their ionic character, readily precipitated from the acetonitrile media in the course of the reaction. Other oxazolinium salts have also been reported to precipitate from acetonitrile [18]. The formation of 14 probably took place by cyclisation of an intermediate imido-yl-onium chloride, its chlorosulphite precursor or an amide 13, involving displacement of chloride or chlorosulphite by one of the OH groups [19], or displacement of the chloride by the amido oxygen. Analogous cyclisations to oxazolines [20] or unstable oxazolinium ions [21,22], as well as a single example of an oxazolinium cinnamyl derivative [23], have been reported. However, when 12b was treated with $SOCl_2$ in pyridine, an unexpected cyclisation took place to give the eight-membered sulphite 18b.

The desired N,N-bis-(2-chloroethyl)-cinnamamides 16 could be prepared by treatment of 11 with N,N-bis-(2-chloroethyl)amine in the presence of triethylamine and working up the reaction after 0.5 h [24]. However, when the reaction mixtures were stirred for 1–3 h at 50 °C the products obtained were the oxazolinium salts 17 (Fig. 3). Compounds 14, 16 and 17 were readily distinguished by their characteristic ¹H- and ¹³C-NMR spectra (Table 1). Oxazolinium salts 17 were found to be stable at room temperature for more than 2 years, when stored in sealed vials.

3. Biological data

Biological evaluation of compounds 14 was carried out in the Preclinical Antitumor Drug Discovery Screen of the National Cancer Institute (NCI) [25,26]. The data revealed that the most active compound was 14g, which was substituted by a CF₃ group at the 3-position. Derivatives substituted with electron withdrawing groups, i.e. NO₂, Cl, CF₃ at the 2- and 4-positions, were the least active. This observation supports the notion that a decrease in electron withdrawing ability by the aromatic substituent would result in an increase in biological activity. In fact, compounds possessing electron-donating substituents were indeed found to be more active than those possessing electron-withdrawing substituents. Several of them were active against one or more tumour cell lines at 10^{-4} M concentration. The most active derivative, 14m, displayed activity against 31 out of the 56 cell lines evaluated. In general, the highest activity was observed against leukaemia cell lines. Compound 14q bearing a strong electron donating OH group, displayed poor activity in comparison with derivatives substituted by less polar alkyl or alkoxy groups. This fact may be attributed to the higher hydrophilicity of 14q that interferes with its ability to cross cell membranes.

Although derivatives possessing Me or MeO substituents were more potent than those substituted by NO₂, Cl and CF₃ groups, the difference in potency was not significant. When the difference in the activity of compounds possessing electron donating or withdrawing substituents is small, as found in the present case, Topliss' empirical approach suggests modification in their lipophilic character [27]. Therefore, a series of alkoxy oxazolinium salts 14r-w of progressively increasing chain length and lipophilicity of the alkyl group, were prepared. The most active derivative in this series 14t, having the 4-octyloxy-substituent, displayed activity at 10⁻⁶ M concentration (Fig. 4), whereas the analogs 14m, 14r and 14s having 4-methoxy, 4-propoxy and 4-butoxy-substituents, respectively, were active only at a maximum of 10⁻⁵ M concentrations. Subsequent modifications involving elongation of the alkyl chain to 12, 16 and 18 carbons while at the same time replacing the 2-hydroxyethyl-substituent on nitrogen with a 2-chloroethyl group led to compounds less active than 14t.

4. Conclusions

It may thus be concluded that in this series of oxazolinium derivatives the lipophilic character of the 4-alkoxy-substituent is the controlling factor in cytotoxic activity, and the 4-octyloxy-substituent displayed an optimal balance of electron donating and lipophilic characteristics. It is assumed that the oxazolinium salts act as alkylating agents, and undergo a nucleophilic attack on the methylene adjacent to the ring oxygen. In this respect the oxazolinium ring parallels the aziridinium ring intermediate found in classical alkylating agents.

5. Experimental

5.1. General chemistry

¹H-NMR and ¹³C-NMR spectra were obtained on Bruker AC-200, DPX-300 and DMX-600 spectrometers. For CDCl₃ and acetone- d_6 solutions, chemical shifts are expressed in ppm downfield from Me₄Si used as internal standard; for D₂O solutions the HOD peak was taken as δ 4.80 (¹H-spectra). Multiplicities in the ¹³C-NMR spectra were determined by off-resonance decoupling. Mass spectra were obtained on a Finnigan 4021 spectrometer operating in chemical ionisation (CI), desorption chemical ionisation (DCI) or HRMS (high-resolution) modes. Melting points were determined on a Fisher–Johns apparatus. Analyses indicated by the symbols of the elements were within \pm 0.4% of the theoretical values.

5.1.1. Alkylation of methyl 4-hydroxycinnamate (15q) to methyl 4-alkoxycinnamates 15

5.1.1.1. General procedure. To **15q** (1.7 g, 10 mmol) in 50% KOH (10 mmol, 1.35 mL), CH_2Cl_2 (10 mL), an alkyl iodide (11 mmol) and a surfactant (aliquat or $Bu_4N^+ Br^- 1\%$ mole) were added and the mixture was refluxed for 72 h. The organic layer was separated and evaporated to dryness. The residue was extracted (ether $-H_2O \times 3$), washed with brine, dried (MgSO₄) and evaporated to give the products as yellow oils, containing some residual alkyl iodide that was removed under high vacuum (yields ca. 75%).

5.1.2. Methyl 4-propoxycinnamate (15r)

The crude yellow oil obtained was crystallised from EtOH, m.p. 87 °C; ¹H-NMR (CDCl₃) δ 1.04 (t, 3H, J = 8 Hz, Me), 1.48 (sextet, 2H, CH_2 Me), 3.79 (s, 3H, CO₂Me), 3.96 (t, 2H, J = 8 Hz, CH_2 O), 6.26 (d, 1H, J = 16 Hz, $CHCO_2$), 6.84 and 7.47 (AA'XX' system, J = 8 Hz, 4H, ArH), 7.65 (d, 1H, J = 16 Hz, ArCH); ¹³C-NMR (CDCl₃) δ 10.5 ($MeCH_2$), 22.5 (MeCH₂), 51.6 (OMe), 69.6 (CH₂O), 114.8 (C-3 and C-3'), 115.1 (CHCO₂), 126.9 (C-1), 129.7 (C-2 and C-2'), 144.6 (ArCH), 161.1 (C-4), 167.9 (CO₂); MS (CDI, CH₄) m/z 221 ([MH]⁺, 100), 189 ([MH]⁺-MeOH, 20), 179 ([MH]⁺-C₃H₆, 20); HRMS (DCI, CH₄) Calc. for C₁₃H₁₇O₃ ([MH]⁺): 221.1178. Found: 221.1240.

5.1.3. Methyl 4-butoxycinnamate (15s)

¹H-NMR (CDCl₃) δ 0.89 (t, 3H, J = 8 Hz, Me), 1.3–1.9 (m, 4H, CH_2CH_2Me), 3.79 (s, 3H, CO_2Me), 3.99 (t, 2H, J = 8 Hz, CH_2O), 6.30 (d, 1H, J = 16 Hz, $CHCO_2$), 6.89 and 7.46 (AA'XX' system, J = 8 Hz, 4H, ArH), 7.65 (d, 1H, J = 16 Hz, ArCH); ¹³C-NMR (CDCl₃) δ 13.8 ($MeCH_2$), 19.2 ($MeCH_2$), 29.4 (CH_2CH_2O), 51.6 (OMe), 67.9 (CH_2O), 114.9 (C-3 and C-3'), 115.0 ($CHCO_2$), 126.9 (C-1), 129.7 (C-2 and C-2'), 144.7 (ArCH), 161.1 (C-4), 167.9 (CO_2); MS (CDI, CH_4) m/z 235 ($[MH]^+$, 100), 203 ($[MH]^+$ –MeOH, 54), 179 ($[MH]^+-C_4H_8$, 25), 147 ($[MH]^+$ – $C_5H_{12}O$, 18); HRMS (DCI, CH_4) Calc. for $C_{14}H_{19}O_3$ ($[MH]^+$): 235.1334. Found: 235.1330.

5.1.4. Methyl 4-octyloxycinnamate (15t)

¹H-NMR (CDCl₃) δ 0.89 (t, 3H, J = 8 Hz, Me), 1.2–1.44 (m, 10H), 1.82 (quintet, 2H, J = 8 Hz, CH₂CH₂CH₂O), 3.79 (s, 3H, Me), 3.98 (t, 2H, J = 8Hz, CH₂O), 6.3 (d, 1H, J = 16 Hz, CHCO₂), 6.89 and 7.46 (AA'XX' system, J = 8 Hz, 4H, ArH), 7.67 (d, 1H, J = 16H, ArCH); ¹³C-NMR (CDCl₃) δ 14.1 ($MeCH_2$), 22.6, 26.0, 28.2, 28.7, 29.20 (Me(CH₂)₅), 32.8 (CH₂CH₂O), 51.54 (OMe), 68.1 (CH₂O), 114. (C-3 and C-3'), 115.0 (CHCO₂), 126.5 (C-1), 129.7 (C-2 and C-2'), 144.8 (ArCH), 161.4 (C-4), 167.8 (CO₂); MS (DCI, CH₄) m/z 291 ([MH]⁺, 100), 259 ([MH]⁺ -MeOH, 25), 178 ([MH]⁺- C_6H_{17} , 30), 113 (C_8H_{17} , 26); HRMS (DCI, CH₄) Calc. for $C_{18}H_{26}O_3$ ([MH]⁺): 291.1960. Found: 291.1960.

5.1.5. Conversion of methyl 4-hydroxycinnamate (15q) to ethyl 4-alkoxycinnamate (15')

5.1.5.1. General procedure. To a stirred solution of Na (20 mmol) in dry EtOH (20 mL), methyl 4-hydroxycinnamate (3.56 g, 20 mmol), and an alkyl bromide (20 mmol) were added. The mixture was refluxed for 24 h, then cooled and extracted (EtOAc $-H_2O$, Na₂CO₃). The organic layer was dried (MgSO₄) and evaporated. The product, purified by silica gel column chromatography (hexane followed by Et₂O), was obtained as a white solid in ca. 95% yield after evaporation of the solvent.

5.1.6. Ethyl 4-dodecyloxycinnamate (15'u)

M.p. 53 °C; ¹H-NMR (CDCl₃) δ 0.90 (t, 3H, J = 7Hz, $Me(CH_2)_{11}$), 1.18–1.50 (m, 18H, $Me(CH_2)_9$), 1.33 (t, 2H, J = 7 Hz, CO_2CH_2Me), 1.81 (sextet, 2H, J = 7Hz, OCH_2CH_2), 3.97 (t, 2H, J = 7 Hz, OCH_2), 4.25 (q, 2H, J = 7 Hz, CO_2CH_2Me), 6.30 (d, 1H, J = 16 Hz, CHCO₂), 6.88 and 7.45 (AA'XX' system, 4H, J = 8 Hz, ArH), 7.64 (d, 1H, J = 16 Hz, ArCH); ¹³C-NMR (CDCl₃) δ 14.1 and 14.3 (two Me), 22.5 (C₁₁), 26.0 and 29.2–29.7 (C₂–C₉), 31.9 (C-₁₀), 60.3 (CO₂CH₂Me), 68.1 (CH₂O), 114.8 (C-3 and C-3'), 115.5 (CHCO₂), 126.9 (C-1), 129.7 (C-2 and C-2'), 144.3 (ArCH), 161.0 (C-4), 167.4 (CO₂); MS (DCI, CH₄) m/z 361 ([MH]⁺, 100), 315 ([MH]⁺–C₂H₆O, 18), 193 ([MH]⁺–C₁₁H₂₃, 27); HRMS (DCI, CH₄) Calc. for C₂₃H₃₇O₃ ([MH]⁺): 361.2743. Found: 361.2760.

5.1.7. Ethyl 4-hexadecyloxycinnamate (15'v)

M.p. 59 °C; ¹H-NMR (CDCl₃) δ 0.88 (t, 3H, J = 7 Hz, $Me(CH_2)_{15}$), 1.20–1.32 (m, 26H, Me($CH_2)_{13}$), 1.33 (t, 2H, J = 7 Hz, CO₂CH₂Me), 1.81 (sextet, 2H, J = 7 Hz, OCH₂ CH_2), 3.97 (t, 2H, J = 7 Hz, OCH₂), 4.25 (q, 2H, J = 7 Hz, CO₂ CH_2 Me), 6.30 (d, 1H, J = 16 Hz, CHCO₂), 6.88 and 7.45 (AA'XX' system, 4H, J = 8 Hz, ArH), 7.64 (d, 1H, J = 16 Hz, ArCH); ¹³C-NMR (CDCl₃) δ 14.1 and 14.3 (two Me), 22.7 (C₁₅), 26.0 and 29.1–29.7 (C₂–C₁₃), 31.9 (C₁₄), 60.3 (CO₂ CH_2 Me), 68.1 (CH₂O), 114.8 (C-3 and C-3'), 115.5 (CHCO₂), 126.9 (C-1), 129.6 (C-2 and C-2'), 144.3 (ArCH), 160.94

Fig. 4. Dose response curves for 4,5-dihydro-2-[2-(4-octyloxyphenyl)ethene]-3-(2-hydroxyethyl) oxazolinium chloride 14t.

(C-4), 167.4 (CO₂); MS (DCI, CH₄) m/z 417 ([MH]⁺, 100), 371 ([MH]⁺-MeCH₂OH, 11), 193 ([MH]⁺-C₁₆H₃₃, 12); HRMS (DCI, CH₄) Calc. for C₂₇H₄₅O₃ ([MH]⁺): 417.3369. Found: 417.3410.

5.1.8. Ethyl 4-octadecyloxycinnamate (15'w)

M.p. 63 °C; ¹H-NMR (CDCl₃) δ 0.88 (t, 3H, J = 7Hz, $Me(CH_2)_{17}$), 1.21–1.54 (m, 30H, $Me(CH_2)_{15}$), 1.34 (t, 2H, J = 7 Hz, CO_2CH_2Me), 1.78 (sextet, 2H, J = 7Hz, OCH_2CH_2), 3.98 (t, 2H, J = 7 Hz, OCH_2), 4.26 (q, 2H, J = 7 Hz, CO_2CH_2Me), 6.30 (d, 1H, J = 16 Hz, CHCO₂), 6.89 and 7.47 (AA'XX' system, 4H, J = 8 Hz, ArH), 7.65 (d, 1H, J = 16 Hz, ArCH); ¹³C-NMR (CDCl₃) δ 14.0 and 14.3 (two Me), 22.6 (C₁₇), 25.9 and 29.1–29.8 (C₂–C₁₅), 31.8 (C₁₆), 60.2 (CO₂CH₂Me), 68.0 (CH₂O), 114.7 (C-3 and C-3'), 115.4 (CHCO₂), 126.8 (C-1), 129.6 (C-2 and C-2'), 144.3 (ArCH), 160.9 (C-4), 167.24 (CO₂); MS (DCI, CH₄) m/z 445 ([MH]⁺, 100), 399 ([MH]⁺, MeCH₂OH, 18), 193 ([MH]⁺C₁₈H₃₅, 28); HRMS (DCI)CH₄) Calc. for C₂₉H₄₉O₃ ([MH]⁺): 445.3682. Found: 445.3690.

5.1.9. Hydrolysis of methyl 4-alkoxycinnamates (15) to 4-alkoxycinnamic acids 10

5.1.9.1. General procedure. A methyl 4-alkoxycinnamate (10 mmol) in EtOH (10 mL) was added to NaOH (5 M, 20 mL, 100 mmol). The solution was refluxed for 4 h during which the salt precipitated. The mixture was cooled, acidified (conc. HCl), extracted (EtOAc $-H_2O$), dried (MgSO₄), and evaporated to dryness. The acids were obtained as solids in quantitative yield.

5.1.10. 4-Propoxycinnamic acid (10r)

M.p. 155 °C; ¹H-NMR (CDCl₃) δ 1.03 (t, 3H, J = 8 Hz, Me), 1.82 (sextet, 2H, J = 8 Hz, CH₂CH₂Me), 3.93 (t, 2H, J = 8 Hz, OCH₂), 6.42 (d, 1H, J = 16 Hz, CHCO₂), 6.87 and 7.47 (AA'XX' system, 4H, J = 8 Hz, ArH), 7.66 (d, 1H, J = 16 Hz, ArCH); ¹³C-NMR (CDCl₃) δ 10.4 (Me), 22.5 (CH₂CH₂O), 69.7 (CH₂O), 114.8 (C-3 and C-3'), 116.2 (CHCO₂), 129.8 (C-2 and C-2'), 145.2 (ArCH), 161.0 (C-4), 171.8 (CO₂); MS (DCI, CH₄) m/z 207 ([MH]⁺, 100), 189 ([MH]⁺-H₂O, 36), 165 ([MH]⁺-C₃H₆, 9); HRMS (DCI, CH₄) Calc. for C₁₂H₁₅O₃ ([MH]⁺): 207.1021. Found: 207.1020.

5.1.11. 4-Butoxycinnamic acid (10s)

M.p. 152 °C; ¹H-NMR (CDCl₃) δ 0.98 (t, 3H, J = 7 Hz, Me), 1.50 (sextet, 2H, J = 7 Hz, CH₂CH₂Me), 1.79 (quintet, 2H, J = 16 Hz, CH₂CH₂CH₂), 4.00 (t, 2H, J = 7 Hz, OCH₂), 6.31 (d, 1H, J = 16 Hz, CHCO₂), 6.91 and 7.50 (AA'XX' system, 4H, J = 8 Hz, ArH), 7.74 (d, 1H, J = 16 Hz, ArCH); ¹³C-NMR (CDCl₃) δ 13.82 (Me), 19.20 (MeCH₂), 31.25 (CH₂CH₂O), 67.89 (CH₂O), 114.38 (C-3 and C-3') 114.91 (CHCO₂), 126.64 (C-1) 130.10 (C-2 and C-2'), 146.82 (ArCH), 161.66

(C-4), 172.16 (CO₂); MS (DCI, CH₄) m/z 221 ([MH]⁺, 100), 203 ([MH]⁺–H₂O, 30), 165 ([MH]⁺–C₄H₈, 12); HRMS (DCI, CH₄) Calc. for C₁₃H₁₇O₃ ([MH]⁺): 221.1178. Found: 221.1140.

5.1.12. 4-Octyloxycinnamic acid (10t)

M.p. 150 °C; ¹H-NMR (CDCl₃) δ 0.88 (br t, 3H, J = 6 Hz, Me), 1.2-1.65 (m, 10H, Me(CH_2)₅), 1.79 (quintet, 2H, J = 6 Hz, OCH₂ CH_2), 3.99 (t, 2H, J = 6 Hz, OCH₂), 6.31 (d, 1H, J = 16 Hz, $CHCO_2$), 6.90 and 7.50 (AA'XX' system, 4H, J = 8 Hz, ArH), 7.40 (d, 1H, J = 16 Hz, ArCH); ¹³C-NMR (CDCl₃) δ 14.08 ($MeCH_2$), 22.64, 25.98, 29.12, 29.21, 29.34 (Me(CH_2)₅), 31.79 (CH_2CH_2O), 68.79 (CH₂O), 114.38 (CHCO₂), 114.88 (C-3 and C-3'), 126.55 (C-1), 130.07 (C-2 and C-2'), 146.74 (ArCH), 161.37 (C-4), 172.11 (CO₂); MS (DCI, CH₄) m/z 277 ([MH]⁺, 100), 259 ([MH]⁺-H₂O, 26), 165 ([MH]⁺-C₈H₁₆, 12); HRMS (DCI, CH₄) Calc. for C₁₇H₂₅O₃ ([MH]⁺): 277.1804. Found: 277.1800.

5.1.13. 4-Dodecyloxycinnamic acid (10u)

M.p. 128 °C; ¹H-NMR (CDCl₃) δ 0.88 (t, 3H, J = 7 Hz, $Me(CH_2)_{11}$), 1.85–1.91 (m, 18H, Me($CH_2)_9$), 1.79 (sextet, 2H, J = 7 Hz, OCH₂ CH_2), 3.99 (t, 2H, J = 7 Hz, OCH₂), 4.25 (q, 2H, J = 7 Hz, CO₂ CH_2 Me), 6.31 (d, 1H, J = 16 Hz, CHCO₂), 6.90 and 7.49 (AA'XX' system, 4H, J = 8 Hz, ArH), 7.74 (d, 1H, J = 16 Hz, ArCH); ¹³C-NMR (CDCl₃) δ 14.13 (Me), 22.70 (C₁₁), 26.00 and 29.1–29.7 (C₂–C₉), 31.93 (C₁₀), 68.22 (CH₂O), 114.39 (CHCO₂H), 114.91 (C-3 and C-3'), 126.58 (C-1), 130.10 (C-2 and C-2'), 146.80 (ArCH), 161.41 (C-4), 172.18 (CO₂H); MS (DCI, CH₄) m/z 333 ([MH]⁺, 100), 315 ([MH]⁺–H₂O, 24), 193 ([MH]⁺–C₁₁H₂₃, 7); HRMS (DCI, CH₄) Calc. for C₂₁H₃₃O₃ ([MH]⁺): 333.2430. Found: 333.2420.

5.1.14. 4-Hexadecyloxycinnamic acid (10v)

M.p. 125 °C; ¹H-NMR (CDCl₃) δ 0.88 (t, 3H, J = 7 Hz, $Me(CH_{2})_{15}$), 1.30–1.58 (m, 26H, $Me(CH_{2})_{13}$), 1.85 (sextet, 2H, J = 7 Hz, OCH_2CH_2), 3.99 (t, 2H, J = 7 Hz, OCH_2), 6.31 (d, 1H, J = 16 Hz, $CHCO_2$), 6.90 and 7.49 (AA'XX' system, 4H, J = 8 Hz, ArH), 7.74 (d, 1H, J = 16 Hz, ArCH); ¹³C-NMR (CDCl₃) δ 14.10 (Me), 22.68 (C₁₅), 26.01 and 29.2–29.7 (C₂–C₁₃), 31.93 (C₁₄), 68.25 (CH₂O), 114.30 (CHCO₂H), 114.96 (C-3 and C-3'), 126.65 (C-1), 130.07 (C-2 and C-2'), 146.77 (ArCH), 161.43 (C-4), 171.53 (CO₂H); MS (DCI, CH₄) m/z 389 ([MH]⁺, 100), 371 ([MH]⁺–H₂O, 18), 193 ([MH]⁺–C₁₆H₃₃, 13); HRMS (DCI, CH₄) Calc. for C₂₅H₄₁O₃ ([MH]⁺): 389.3056. Found: 389.3060.

5.1.15. 4-Octadecyloxycinnamic acid (10w)

M.p. 119 °C; ¹H-NMR (CDCl₃) δ 0.88 (t, 3H, J = 7 Hz, $Me(CH_2)_{17}$), 1.20–1.62 (m, 30H, $Me(CH_2)_{15}$), 1.78 (sextet, 2H, J = 7 Hz, OCH_2CH_2), 3.99 (t, 2H, J = 7 Hz, OCH_2), 6.31 (d, 1H, J = 16 Hz, $CHCO_2$), 6.90 and

7.49 (AA'XX' system, 4H, J = 8 Hz, ArH), 7.73 (d, 1H, J = 16 Hz, ArCH); ¹³C-NMR (CDCl₃) δ 14.12 (Me),22.70 (C₁₇), 26.00 and 29.1–29.7 (C₂–C₁₅), 31.94 (C₁₆), 68.22 (CH₂O), 114.09 (CHCO₂H), 114.91 (C-3 and C-3'), 126.59 (C-1), 130.06 (C-2 and C-2'), 146.70 (ArCH), 161.40 (C-4), 170.68 (CO₂H); MS (DCI, CH₄) m/z 399 ([MH]⁺, 100), 165 ([MH]⁺–C₁₈H₃₅, 20); HRMS (DCI, CH₄) Calc. for C₂₇H₄₅O₃ ([MH]⁺): 417.3369. Found: 417.3320.

5.1.16. Cinnamoyl chlorides 11

5.1.16.1. General procedure. A solution of a cinnamic acid derivative (8 mmol) and $SOCl_2$ in toluene (13 mL) was heated at 70 °C for 4–24 h. Evaporation of the solution gave ca. 80% of the corresponding acyl chloride.

5.1.17. Cinnamoyl amides 12

5.1.17.1. General procedure. A solution of the crude cinnamoyl chloride in dry dioxane (7 mL) was added dropwise (0.5 h) to a stirred, cooled (15 °C) solution of diethanolamine (1.2 g, 16 mmol) in dry dioxane (14 mL). The mixture was further stirred for 24 h, after which most of the solvent was evaporated. The residue was extracted (EtOAc $-H_2O \times 3$), dried (MgSO₄) and evaporated. The residue was purified by silica gel column chromatography (EtOAc), to give **12** in yields of ca. 12.5%.

5.1.18. N,N-Bis-(2-hydroxyethyl)-3-(4-propoxyphenyl)-2-propenamide (**12r**)

M.p. 100 °C; ¹H-NMR (CDCl₃) δ 1.04 (t, 3H, J = 7Hz, Me), 1.82 (sex, 2H, J = 7 Hz, CH₂CH₂Me), 3.65 (m, 4H, NCH₂), 3.85 (m, 4H, CH₂OH), 3.93 (t, 2H, J = 7 Hz, CH₂O), 6.79 (d, 1H, J = 16 Hz, CHCO₂), 6.85 and 7.44 (AA'XX' system, 4H, J = 8 Hz, ArH), 7.62 (d, 2H, J = 16 Hz, ArCH); ¹³C-NMR (CDCl₃) δ 10.49 (Me), 22.52 (MeCH₂), 52.32 and 51.36 (NCH₂), 61.54 and 61.28 (CH₂OH) 69.61 (CH₂O), 114.76 (C-3 and C-3'), 114.91 (CH₂O), 127.53 (C-1), 129.57 (C-2 and C-2'), 143.09 (ArCH), 160.67 (C-4), 169.26 (CO); MS (DCI, CH₄) m/z 294 ([MH]⁺, 100), 276 ([MH]⁺ $-H_2O$, 24), 252 ([MH]⁺ $-C_3H_6$, 6), 189 ([MH]⁺ $-C_4H_{11}NO_2$, 59); HRMS (DCI, CH₄) Calc. for C₁₆H₂₄NO₄ ([MH]⁺): 294.1705. Found: 294.1734.

5.1.19. N,N-Bis-(2-hydroxyethyl)-3-(4-butoxyphenyl)-2-propenamide (12s)

M.p. 94 °C; ¹H-NMR (CDCl₃) δ 0.98 (t, 3H, J = 7 Hz, Me), 1.49 (sex, 2H, J = 7 Hz, CH₂CH₂Me), 1.77 (quintet, 2H, J = 7 Hz, ¹³C-NMR (CDCl₃) δ 13.81 (Me), 19.22 (MeCH₂), 31.25 (CH₂CH₂O), 51.35 AND 52.29 (NCH₂), 61.20 and 61.37 (CH₂OH), 67.84 (CH₂O), 114.79 (C-3 and C-3'), 115.04 (CHCO), 127.59

(C-1), 129.56 (C-2 and C-2'), 143.01 (ArCH), 160.67 (C-4), 169.20 (CO); MS (DCI, CH₄) m/z 308 ([MH]⁺, 40), 243 ([MH]⁺-C₂H₆O₂, 10), 221 ([MH]⁺-C₄H₇O₂, 53), 203 ([MH]⁺-C₄H₁₁NO₂, 19), 179 ([MH]⁺-C₅H₇NO₃,10); HRMS (DCI, CH₄) Calc. for C₁₇H₂₆NO₄ ([MH]⁺): 308.1861. Found: 308.1878.

5.1.20. N,N-Bis-(2-hydroxyethyl)-3-(4-octyloxyphenyl)-2-propenamide (12t)

M.p. 85 °C; ¹H-NMR (CDCl₃) δ 0.98 (t, 2H, J = 7Hz, Me), 1.2–1.43 (m, 10H, (CH₂)₅Me), 1.56–1.86 (m, 4H, OCH₂CH₂CH₂), 3.61–3.72 (m, 4H, CH₂N), 3.82– 3.92 (m, 4H, CH_2OH), 3.97 (t, 2H, J = 7 Hz, CH_2O), 6.78 (d, 1H, J = 16 Hz, $CHCO_2$), 6.87 and 7.45 (AA'XX' system, 4H, J = 8 Hz, ArH), 7.65 (d, 1H,)J = 16 Hz, ArCH); ¹³C-NMR (CDCl₃) δ 14.07 (Me), 22.65, 26.03, 29.21, 29.22, 29.35 (Me(CH₂)₅), 31.81 (CH₂CH₂O), 51.32 and 52.88 (NCH₂), 61,25 and 61.49 (CH₂OH), 68.17 (CH₂O), 114.79 (C-3 and C-3'), 114.94 (CHCO), 127.57 (C-1), 129.56 (C-2 and C-2'), 143.10 (ArCH), 160.70 (C-4), 169.24 (CO); MS (DCI, CH₄) m/z 364 ([MH]⁺, 89), 346 ([MH]⁺-H₂O, 10), 318 ([MH]⁺-C₂H₆O, 5), 259 ([MH]⁺-C₄H₁₁NO₂, 100), 132 $(C_5H_{10}NO_3)$; HRMS (DCI, CH₄) Calc. for $C_{21}H_{34}NO_4$ ([MH]⁺): 364.2488. Found: 364.2500.

5.1.21. N,N-Bis-(2-hydroxyethyl)-3-(4-methoxyphenyl)-2-propenamide (**12n**)

M.p. 84 °C; ¹H-NMR (CDCl₃) δ 3.62 (br t, 4H, NCH₂), 3.8 (s, 3H, MeO), 3.83 (br t, 4H, CH₂OH), 6.72 (d, 1H, J = 16 Hz, CHCO₂), 6.84 and 7.43 (AA'XX' system, J = 8 Hz, ArH), 7.58 (d, 1H, J = 16 Hz, ArCH); ¹³C-NMR (CDCl₃) δ 51.30 and 52.28 (NCH₂), 55.34 (MeO), 61.17 and 61.34 (CH₂OH), 114.27 (C-3 and C-3'), 115.25 (CHCO₂), 127.63 (C-1), 129.56 (C-2 and C-2'), 142.88 (ArCH), 161.04 (C-4), 169.14 (CO); MS (DCI, CH₄) 266 ([MH]⁺, 46), 161 ([MH]⁺ -C₄H₁₁NO₂, 23); HRMS (DCI, CH₄) Calc. for C₁₄H₂₀NO₄ ([MH]⁺): 266.1392. Found: 266.1400.

5.1.22. N,N-Bis-(2-hydroxyethyl)-3-(4-methylphenyl)-2-propenamide (12j)

M.p. 112 °C; ¹H-NMR (CDCl₃) δ 2.35 (s, 3H, Me), 3.59–3.69 (m, 4H, NCH₂), 3.80–3.90 (m, 4H, CH₂OH), 6.89 (d, 1H, *J* = 16 Hz, NCH₂), 7.14 and 7.39 (AA'XX' system, 4H, *J* = 8 Hz, ArH), 7.62 (d, 1H, *J* = 16 Hz, ArCH); ¹³C-NMR (CDCl₃) δ 21.40 (Me), 51.31 and 52.32 (NCH₂), 61.25 and 61.41 (CH₂OH), 116.62 (CHCO₂), 127.93 (C-2 and C-2'), 129.53 (C-3 and C-3'), 132.35 (C-1), 140.14 (C-4), 143.24 (ArCH), 169.04 (CNO), MS (DCI, CH₄) 250 ([MH]⁺, 100), 232 ([MH]⁺ -H₂O, 64), 161 ([MH]⁺-C₄H₁₁NO₂, 40); HRMS (DCI, CH₄) Calc. for C₁₄H₂₀NO₃ ([MH]⁺): 250.1443. Found: 250.1440.

5.1.23. N,N-Bis-(2-hydroxyethyl)-3-(3-methoxyphenyl)-2-propenamide (12m)

M.p. 60–63 °C; ¹H-NMR (CDCl₃) 3.60 (br t, 4H, NCH₂), 3.78 (s, 3H, MeO), 3.78–3.86 (m, 4H, CH₂OH), 6.86 (dd, 1H, J = 8 Hz, 1 Hz, CH-4), 6.92 (d, 1H, J = 16 Hz, NCH₂), 6.99 (br t, 1H, J = 1 Hz, CH-2), 7.07 (d, 1H, J = 8 Hz, CH-6), 7.24 (t, 1H, J = 8 Hz, CH-5), 7.56 (d, 1H, J = 16 Hz, ArCH); ¹³C-NMR (CDCl₃) 51.06 and 52.16 (NCH₂), 55.30 (MeO), 60.87 (two CH₂OH), 113.36 (CHCO), 115.27 (C-2), 118.10 (C-4), 120.48 (C-6), 136.38 (C-1), 142.94 (ArCH), 159.78 (C-3), 168.62 (CO); MS (DCI, CH₄) m/z 266 ([MH]⁺, 100), 248 ([MH]⁺–H₂O, 19) 161 ([MH]⁺, C₄H₁₁NO₂, 43), 106 (C₄H₁₂NO₂, 5); HRMS Calc. for C₁₄H₂₀NO₄ ([MH]⁺): 266.1392. Found: 266.1430.

5.1.24. Oxazolinium salts 14—cyclisation of an amide upon treatment with $SOCl_2$

A solution of a substituted propenamide 12 (0.5 mmol), MeCN (15 mL) and $SOCl_2$ (0.15 mL, 2 mmol) was refluxed for 6 h. The mixture was cooled and filtered to give the oxazolidinium salts in quantitative yield.

5.1.25. 4,5-Dihydro-2-[2-(4-propoxyphenyl)ethene]-3-(2-hydroxyethyl)-oxazolinium chloride (14r)

¹H-NMR (DMSO) δ 0.98 (t, 3H, J = 6 Hz, Me), 1.76 (sextet, 2H, J = 6 Hz, CH₂CH₂Me), 3.08 (t, 2H, J = 5.4 Hz, NCH₂), 3.30 (br t, 2H, NCH₂), 3.71 (t, 2H, J = 4.7 Hz, CH₂OH), 3.98 (t, 2H, J = 6.5 Hz, CH₂OAr), 4.42 (m, 2H, CH₂O), 6.48 (d, 1H, J = 16 Hz, CHCO₂), 6.99 and 7.68 (AA'XX' system, 4H, J = 8 Hz, ArH), 7.80 (d, 2H, J = 16 Hz, ArCH); ¹³C-NMR (DMSO) δ 10.21 (Me), 22.22 (MeCH₂), 48.63 and 50.33 (NCH₂), 57.15 (CH₂OH), 59.35 (CH₂O), 70.38 (CH₂OAr), 115.08 (C-3 and C-3'), 115.90 (CHCO), 127.69 (C-1), 130.04 (C-2 and C-2'), 144.98 (ArCH), 162.45 (C-4), 165.94 (CNO); MS (FAB) m/z 313 ([MH]⁺, 1.3), 294 ([MH]⁺-H₂O, 26).

5.1.26. 4,5-Dihydro-2-[2-(4-butoxyphenyl)ethene]-3-(2-hydroxyethyl)-oxazolinium chloride (14s)

¹H-NMR (DMSO) δ 0.92 (t, 3H, J = 6 Hz, Me), 1.43 (sextet, 2H, J = 6 Hz, CH₂CH₂Me), 1.70 (quintet, 2H, J = 7 Hz, CH₂CH₂O), 3.06 (t, 2H, J = 5.4 Hz, NCH₂), 3.29 (br t, 2H, NCH₂), 3.70 (m, 2H, CH₂OH), 4.0 (t, 2H, J = 6.4 Hz, CH₂OAr), 4.40 (br t, 2H, J = 5 Hz, CH₂O), 5.32 (t, 1H, J = 8 Hz, OH), 6.46 d, 1H, J = 16 Hz, CHCNO), 6.97 and 7.66 (AA'XX' system, 4H, J = 8 Hz, ArH), 7.78 (d, 1H, J = 16 Hz, ArCH); ¹³C-NMR (DMSO) δ 13.57 (Me), 22.40 (MeCH₂), 30.53 (MeCH₂CH₂) 45.77 and 49.15 (NCH₂), 56.22 (CH₂OH), 59.36 (CH₂O), 67.28 (CH₂OAr), 114.50 (CHCO), 114.78 (C-3 and C-3'), 127.69 (C-1), 130.10 (C-2 and C-2'), 145.02 (ArCH), 160.65 (C-4), 166.01 (CNO); MS (FAB) m/z 326 ([MH]⁺, 0.5), 308 ([MH]⁺ -H₂O, 3).

5.1.27. 4,5-Dihydro-2-[2-(4-octyloxyphenyl)ethene]-3-(2-hydroxyethyl)-oxazolinium chloride (14t)

¹H-NMR (DMSO) δ 0.87 (br t, 3H, Me), 1.20-1.37 (m, 12H, $(CH_2)_6$ Me), 3.07 and 3.30 (t, 4H, J = 6 Hz, NCH_2), 3.69 (quintet, 2H, J = 6 Hz, CH_2 OH), 4.02 (t, 2H, CH_2OAr), 4.40 (t, 2H, J = 6 Hz, CH_2O), 4.97 (t, 1H, J = 6 Hz, OH), 6.47 (d, 1H, J = 16 Hz, CHCNO) 6.99 and 7.68 (AA'XX' system, 4H, J = 8 Hz, ArH), 7.74 (d, 1H, J = 16 Hz, Ar*CH*); ¹³C-NMR (DMSO) δ 13.86 (Me), 22.40, 25.37, 28.46, 28.55, 28.61 (Me(CH₂)₅) 31.13 (CH₂CH₂O) 45.53 and 49.11 (NCH₂), 56.21 (CH₂OH), 59.37 (CH₂O), 67.58 (CH₂OAr), 114.51 (CHCO), 114.79 (C-3 and C-3'), 126.27 (C-1), 130.10 (C-2 and C-2'), 145.00 (ArCH), 160.66 (C-4), 166.03 (CNO); MS (FAB) m/z 382 $([MH]^+, 3), 364 ([MH]^+-H_2O, 13).$

5.1.28. N,N-Bis-(2-chloroethyl)-3-(substituted-phenyl)-2-propenamides (16)

5.1.28.1. General procedure. A solution of an cinnamoyl chloride 11 (3 mmol) in dry $CHCl_3$ (7 mL) was added dropwise (20 min) to a stirred solution of bis-(2-chloroethyl)amine hydrochloride (625 mg, 3.5 mmol) and Et_3N (1 mL, 7 mmol) in dry $CHCl_3$ (7 mL). The mixture was further stirred for 0.5 h and was then extracted with dilute HCl, H₂O and dilute NaHCO₃. The organic layer was washed with brine, dried (MgSO₄), and evaporated to dryness. The corresponding amides 16 were obtained as oils in 60–85% yield.

5.1.29. N,N-Bis-(2-chloroethyl)-3-(4-methylphenyl)-2-propenamide (**16***j*)

¹H-NMR (CDCl₃) δ 3.61–3.94 (m, 8H, four CH₂), 6.72 (d, 1H, *J* = 16 Hz, CHCNO), 7.17 and 7.41 (AA'XX' system, 4H, *J* = 8 Hz, ArH), 7.70 (d, 1H, *J* = 16 Hz, ArCH); ¹³C-NMR (CDCl₃) δ 41.79 and 41.90 (CH₂Cl), 50.01 and 50.06 (CH₂N), 55.39 (Me), 115.19 (CHCO), 127.93 (C-2 and C-2'), 129.59 (C-3 and C-3'), 132.07 (C-1), 140.39 (C-4), 144.24 (ArCH), 166.94 (CNO); MS (DCI, CH₄) *m*/*z* 286 ([MH]⁺, 14), 232 ([MH]⁺-HCl, 10), 161 ([MH]⁺-C₄H₈Cl₂N, 100), 142 (C₄H₈Cl₂N, 6); HRMS (DCI, CH₄) Calc. for C₁₄H₁₈Cl₂NO ([MH]⁺): 286.0765. Found: 286.0700.

5.1.30. N,N-Bis-(2-chloroethyl)-3-(4-methoxyphenyl)-2-propenamide (16n)

¹H-NMR (CDCl₃) δ 3.64–3.92 (m, 8H, four CH₂), 3.84 (s, 3H, MeO), 6.71 (d, 1H, *J* = 16 Hz, CHCNO), 6.91 and 7.49 (AA'XX' system, 4H, *J* = 8 Hz, ArH), 7.71 (d, 1H, *J* = 16 Hz, ArCH); ¹³C-NMR (CDCl₃) δ 41.72 and 42.03 (CH₂Cl), 50.14 and 51.18 (NCH₂), 113.68 (CHCO), 114.32 (C-3 and C-3'), 127.57 (C-1), 129.62 (C-2 and C-2'), 143.86 (ArCH), 161.21 (C-4), 167.10 (CNO); MS (DCI, CH₄) *m*/*z* 302 ([MH]⁺, 47), 266 ([MH]⁺-HCl, 18), 161 ([MH]⁺-C₄H₈Cl₂N, 100); HRMS (DCI, CH₄) Calc. for $C_{14}H_{18}Cl_2NO_2$ ([MH]⁺): 302.0715. Found: 302.0640.

5.1.31. N,N-Bis-(2-chloroethyl)-3-(2,4-dimethoxy-phenyl)-2-propenamide (16p)

¹H-NMR (CDCl₃) δ 3.73–3.96 (m, 8H, four CH₂), 3.92 (s, 3H, *p*-MeO), 3.93 (s, 3H, *m*-MeO) 6.71 (d, 1H, J = 16 Hz, CHCNO), 6.88 (d, 1H, J = 8 Hz, H-5), 6.88 (d, 1H, J = 8 Hz, H-2), 7.15 (dd, 1H, J = 8 Hz, 2 Hz, H-6), 7.69 (d, 1H, J = 16 Hz, ArCH); ¹³C-NMR (CDCl₃) δ 41.9 (two CH₂Cl), 50.17 and 51.22 (NCH₂), 56.01 (two MeO), 110.40 (C-2), 111.27 (C-5), 114.12 (CHCO), 122.01 (C-6), 127.94 (C-1), 144.11 (ArCH), 149.26 (C-4), 151.00 (C-3), 167.06 (CNO); MS (DCI, CH₄) m/z 332 ([MH]⁺, 4), 296 ([MH]⁺–HCl, 2), 190 ([MH]⁺–C₄H₈Cl₂N, 100); HRMS (DCI, CH₄) Calc. for C₁₅H₂₀Cl₂NO₃ ([MH]⁺): 332.0820. Found: 332.0820.

5.1.32. N,N-Bis-(2-chloroethyl)-3-(3,4,5-trimethoxy-phenyl)-2-propenamide (**16***p*)

¹H-NMR (CDCl₃) δ 3.68–3.98 (m, 8H, four CH₂), 3.87 (s, 3H, *p*-MeO), 3.88(s, 6H, two *m*-MeO), 6.75 (s, 2H, C-2 and C-5), 6.76 (d, 1H, *J* = 16 Hz, CHCNO), 7.65 (d, 1H, *J* = 16 Hz, ArCH); ¹³C-NMR (CDCl₃) δ 41.7 (two CH₂Cl), 49.86 and 51.03 (NCH₂), 56.12 (three MeO), 105.14 (C-2 and C-6), 115.59 (CHCO), 130.33 (C-4), 146.10 (ArCH), 153.32 (C-3 and C-5), 166.71 (CNO); MS (DCI, CH₄) *m*/*z* 362 ([MH]⁺, 4), 221 ([MH]⁺-C₄H₉Cl₂N, 100); HRMS (DCI, CH₄) Calc. for C₁₆H₂₂Cl₂NO₄ ([MH]⁺, 362.0926. Found: 332.0910.

5.1.33. Oxazolidinium chlorides 17

5.1.33.1. General procedure. A cinnamoyl chloride 11 (8 mmol) in CHCl₃ (10 mL) was added dropwise to a solution of bis-(2-chloroethyl)amine hydrochloride (1.43 g, 8 mmol), Et₃N (2.8 mL, 20 mmol) in CHCl₃ (10 mL). The mixture was stirred for 0.5-1 h at r.t. then extracted (HCl 3N, NaHCO₃). The organic layer was washed with brine, dried (MgSO₄) and heated for 1-3 h at 50 °C. Evaporation of the solvent gave the corresponding product 17 in ca. 70% yield.

5.1.34. 4,5-Dihydro-2-[2-(4-dodecyloxyphenyl)ethene]-3-(2-chloroethyl)-oxazolinium chloride (**17u**)

¹H-NMR (DMSO) δ 0.85 (t, 3H, J = 7 Hz, Me), 1.28–1.47 (m, 18H, $(CH_2)_9$ Me), 1.70 (quintet, 2H, J = 7Hz, CH_2 CH₂O), 3.91–4.5 (m, 8H, NCH₂CH₂Cl, CH_2 OAr, NCH₂CH₂O), 4.43 (t, 2H, J = 7 Hz, NCH₂CH₂O), 6.47 (d, 1H, J = 16 Hz, CHCNO), 6.97 and 7.67 (AA'XX' system, 4H, J = 8 Hz, ArH), 7.81 (d, 1H, J = 16 Hz, ArCH); ¹³C-NMR (DMSO) δ 13.95 (Me), 22.09 (C₁₁), 25.45 and 28.6–29.0 (C₂–C₉), 31.30 (C₁₀), 39.52 (CH₂Cl), 47.67 and 48.19 (NCH₂), 59.37 (CH₂O), 67.67 (CH₂OAr) 114.54 (CHCO), 114.87 (C-3 and C-3'), 126.43 (C-1), 130.20 (C-2 and C-2'), 145.22 (ArCH), 160.76 (C-4), 166.08 (CNO).

5.1.35. 4,5-Dihydro-2-[2-(4-hexadecyloxyphenyl)ethene]-3-(2-chloroethyl)-oxazolinium chloride (17v)

¹H-NMR (CDCl₃/acetone- d_6) δ 0.88 (t, 3H, J = 7 Hz, Me), 1.13–1.54 (m, 28H, $(CH_2)_9$ Me), 1.79 (quintet, 2H, J = 7 Hz, CH_2 CH₂O), 3.56 (m, 2H, CH₂Cl), 3.56–4.10 (m, 4H, two NCH₂), 4.14 (t, 2H, J = 7 Hz, CH₂OAr), 4.66 (br t, 2H, NCH₂CH₂O), 6.36 (d, 1H, J = 16 Hz, CHCNO), 6.89 and 7.54 (AA'XX' system, 4H, J = 8Hz, ArH), 7.82 (d, 1H, J = 16 Hz, ArCH); ¹³C-NMR (CDCl₃/acetone- d_6) δ 13.12 (Me), 21.83 (C₁₅), 25.21 and 28.1–30.0 (C₂–C₁₃), 31.30 (C₁₄), 37.83 (CH₂Cl), 46.10 and 48.29 (NCH₂), 58.52 (CH₂O), 67.32 (CH₂OAr) 113.54 (CHCO), 114.12 (C-3 and C-3'), 126.06 (C-1), 129.27 (C-2 and C-2'), 145.22 (ArCH), 160.59 (C-4), 165.75 (CNO).

5.1.36. 4,5-Dihydro-2-[2-(4-octadecyloxyphenyl)ethene]-3-(2-chloroethyl)-oxazolinium chloride (**17**w)

¹H-NMR (CDCl₃/acetone- d_6) δ 0.78 (t, 3H, J = 7 Hz, *Me*), 1.02–1.43 (m, 30H, (*CH*₂)₁₅Me), 1.78 (quintet, 2H, J = 7 Hz, *CH*₂CH₂O), 3.35–3.78 (m, 6H, two NC*H*₂ and CH₂Cl), 3.88 (t, 2H, J = 7 Hz, CH₂OAr), 4.60 (br t, 2H, NCH₂*CH*₂O), 6.30 (d, 1H, J = 16 Hz, *CH*CO), 6.80 and 7.43 (AA'XX' system, 4H, J = 8 Hz, *ArH*), 7.70 (d, 1H, J = 16 Hz, Ar*CH*); ¹³C-NMR (CDCl₃/acetone- d_6) δ 14.07 (Me), 22.64 (C₁₇), 25.96 and 29.1–29.6 (C₂–C ₁₅), 31.87 (C₁₆), 38.33 (CH₂Cl), 46.78 and 48.92 (NCH₂), 59.22 (CH₂O), 68.11 (CH₂OAr) 113.94 (*C*HCO), 114.78 (C-3 and C-3'), 126.56 (C-1), 129.94 (C-2 and C-2'), 146.19 (Ar*C*H), 161.27 (C-4), 166.76 (CNO).

5.1.37. 1-(2-oxo-2λ₄-[1,3,2,6]dioxathiazocan-6-yl)-3-(3-nitro-phenyl)-Propenone (**18**)

To a solution of **12b** (100 mg, 0.35 mmol) [9] in dry pyridine (2 mL) SOCl₂ (53.8 μ L, 0.73 mmol) was added. The mixture was stirred for 3 days at r.t., it was then filtered and the filtrate was extracted with CH₂Cl₂. The organic phase was washed with water, separated, dried (MgSO₄) and evaporated to give an orange residue that after a few hours under high vacuum it solidified, 27 mg (23% yield). ¹H-NMR (DMSO) δ 3.60 (m, 1H), 3.75 (m, 1H), 4.0 (m, 4H), 4.70 (m, 2H), 6.91 (d, 1H, *J* = 11 Hz, H α), 7.60 (t, 1H, *J* = 6 Hz, H4), 7.80 (d, 1H, *J* = 11 Hz, H β), 7.81 (t, 1H, *J* = 6 Hz, H5), 8.21 (t, 1H, *J* = 6 Hz, H5), 8.40 (br s, 1H, H2). MS (CI, butane) *m*/*z* 327 ([MH]⁺, 100), 297 ([MH]⁺-H₂CO, 2), 281 ([MH]⁺-EtOH, 4), 263 ([MH]⁺-SO₂, 5).

Acknowledgements

Generous support for this work by the 'Marcus Centre for Pharmaceutical and Medicinal Chemistry' and the 'Bronia and Samuel Hacker Fund for Scientific Instrumentation' at Bar Ilan University, are gratefully acknowledged.

References

- J.G. Hardman, L.E. Limbird, P.B. Molinoff, R.W. Ruddon (Eds.), Goodman & Gilman's—The Pharmacological Basis of Therapeutics, ninth ed., McGraw-Hill, New York, 1996 chapter 51.
- [2] T.J. Bardos, N. Datta-Gupta, P. Hebborn, D.J. Triggle, J. Med. Chem. 8 (1965) 167–174.
- [3] B.D. Palmer, W.R. Wilson, S.M. Pullen, W.A. Denny, J. Med. Chem. 33 (1990) 112–121.
- [4] T.A. Gourdie, K.K. Valu, G.L. Gravatt, T.J. Boritzki, B.C. Baguley, L.P. Wakelin, W.R. Wilson, P.D. Woodgate, W.A. Denny, J. Med. Chem. 33 (1990) 1177–1186.
- [5] G.J. Atwell, M. Boyd, B.D. Palmer, R.F. Anderson, S.M. Pullen, W.R. Wilson, W.A. Denny, Anticancer Drug Res. 11 (1996) 553–567.
- [6] S.P. Gupta, Chem. Rev. 94 (1996) 1507-1551.
- [7] A.F. Childs, L.J. Goldsworthy, G.F. Harding, F.E. King, A.W. Nineham, W.L. Norris, S.G.P. Plant, B. Selton, A.L.L. Tompsett, J. Chem. Soc. (1948) 2174–2177.
- [8] Y. Kuwada, Chem. Pharm. Bull. 8 (1960) 77-78.
- [9] S. Hauptmann, A.W. Pöge, Pharmazie 28 (1973) 520-522.
- [10] C.H. Gaozza, J. Med. Chem. 8 (1965) 400-401.
- [11] R. Preussmann, Arzneim. Forsch. 8 (1957) 9-10.
- [12] R. Preussmann, Arzneim. Forsch. 12 (1962) 1119-1123.
- [13] W.C.J. Ross, J.G. Wilson, J. Chem. Soc. (1996) 3616-3622.

- [14] A. Panthanickal, C. Hansch, A. Leo, F.R. Quinn, J. Med. Chem. 21 (1978) 16–26.
- [15] E.J. Lien, G.L. Tong, Cancer Chemother. Rep. 57 (1973) 251– 261.
- [16] A. Panthanickal, C. Hansch, A. Leo, J. Med. Chem. 22 (1979) 1267–1269.
- [17] A. Nudelman, E. Falb, Y. Odesa, N. Shmueli-Broide, Arch. Pharm. 327 (1994) 619–625.
- [18] A.I. Meyers, E.W. Collington, J. Am. Chem. Soc. 92 (1970) 6676–6678.
- [19] J.W. Williams, C.H. Witten, J.A. Krynitsky, Org. Syn. Coll. III (1955) 818–820.
- [20] H.W. Heine, J. Am. Chem. Soc. 78 (1956) 3708-3710.
- [21] D.A. Tomalia, J.N. Paige, J. Org. Chem. 38 (1973) 422-430.
- [22] A.W. Pöge, S. Hauptmann, Pharmazie 27 (1972) 21-23.
- [23] I. Ishii, M. Katagiri, K. Sakazume, T. Misato, Nippon Nogei Kagaku Kaishi 40 (1966) 437–442 Chem. Abstr. 66 (1967) 92704w.
- [24] L.N. Volovel'skii, O.P. Vasilevskii, Fiziol. Biokhim. Patol. Endokr. Sist., Mater, Respub. Konf. (1970) 24–25 (Chem. Abstr. 80 (1974) 70496s).
- [25] M.R. Boyd, Principles & Practice of Oncology 3 (1989) 1-12.
- [26] M.R. Boyd, The NCI in vitro anticancer drug discovery screen. Concept, implementation, and operation, 1985–1995, in: B. Teicher (Ed.), Anticancer Drug Development Guide; Preclinical Screening, Clinical Trials and Approval, Humana Press, Totowa, NJ, 1997, pp. 23–42.
- [27] J.G. Topliss, J. Med. Chem. 15 (1972) 1006-1011.