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Abs t rac t :  A new synthetic route to diastetereomedcally pure 1,3-imidazolidin-2-thiones via a 
tandem of (3,3)--sigmatropie rearrangement of chiral thiocyanates followed by stereo~lective 
intramolecular amine addition to arising isothiocyanates is reported. The semiempirical AM1 
calculations demonstrate that the observed diastereoseleetivity is entirely consistent with the energy 
difference between diastereomefic transition states of heterocyclisation step. 
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The usefulness of chiral 1,2-diamines as auxiliaries and controller groups in asymmetric dihydroxylation 1, 

conjugate addition 2, olefination 3, allylation 4, epoxidation s or aldol condensation 6 is well documented. Although the t ,2- 

diamino unit is a constituent of natural products only an astonishingly small number of stereocontmlled syntheses 

have been developed for them 7. Recently we have reported the excellent diastereoselectivity in 1,2-asymmetric 

induction 8 for the Paladium(ll) catalyzed aza-Claisen 
I~IHBo¢ ~IHBoc 

rearrangement of allylic tdchioroacetimidates 2 leading to antM ~2- = .- 

diamines (Scheme 1). ,,.k.lnoac~d= . . . .  - . . . .  

This paper concerns a new and simple approach to highly N - ~ F -  NHCOCC~ 
S¢~.~ 1 2 CC~ 

stereosslective preparation of 1,3-imidazolldin-2-thiones, as 

useful precursor for syn-l,2-diamines, by novel tandem of (3,3)-sigmatropic rearrangement of chiral allylic 

thiocyanates followed by stereoselective intramolecular amine addition to adsing isothiocyanates. 

The starting thiocyanates 4a-e 9 were prepared by SN2 displacement of O-mesyl group in 3a-e, derived from allylic 

alcohols ta.e, 1° by thiocyanate group (KSCN/CH3CN) in 85-90% overall yields (Scheme 2). The thermal 

rearrangement of thiocyanate 4a was carded out at 80°C in xylene under N2 for 3h with high yield of isothiocyanates 

6a and 6a (92%), but only poor diastereoselectivity (ant/-6a:syn-6a=60:40) 1~. The prolonged heating of reaction 

mixture (26h) unexpectedly led to the formation of 1-t-butoxycarbonyl-4(S)-vinyl-5(S)-methyl-l,3-imidazolidin-2- 

thione 7a as a single reaction product in 89% yield. To investigate the variability of this synthetic method, the different 

allylic thiocyanates 4b-e were examined. In all cases the heating of thiocyanates 4b-e in xylene at 80°C for 3h 

afforded the mixture of isothiocyanates Sb-e and 6b-e (syn/anti~1:1). Further heating at the same temperature for 26- 

44h (Method A) led to intramolecular addition of amine to NCS group with stereoselective formation of 

imidazolidines 7b-e 12 (Table). In contrast with these results, the treatment of anti-Sa and syn-6a (crude mixture 60:40, 

obtained by rearrangement of thiocyanate 4a) with sodium hydride (1 equiv.) in THF at 0°C for 1 h afforded the 

mixture of diastereoisomers 7a and 8a in essentially the same ratio. 
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Table: l-t-Butoxycarbonyl-4(S)-vinyl-5(S)-l ,3-imidazolidin-2-thiones 7a-e. 

Ratio Method A a Method B b 
Compd. R 7:8 

4a Me 99.5 : 0.5 
4b Et 99.4 : 0.6 

4¢ /-Pr 99.5:0.5 
4(I Bn 99.5 : 0.5 

4e bBu 99 : 1 

~ J  of 7 

89 

87 

84 

8O 

84 

Period Yield of 7 Period 
(hq (~) (hr) 
26 89 3 
30 90 3 
36 89 3 

29 85 3 
44 88 3 

"All reaction were carded out at 80°C in x ~ene. =All reaction were carried out at 80"C in 
xylene in the presence of 0.20 mol% 2-hydroxyl~ine 

We have found that the presence of catalytic amount of 2-hydroxypyddine 13 (0.20 mol%, Method B) significantly 

reduces the reaction time (from 26-44h to 3h) with the conservation of the high diastereoselectivity of the reaction. 14 

The reaction of imidazolidines 7a-e and 8a with TFA/H20 (95:5, 15 min.) afforded the corresponding cyclic 

thioureas 9a-e and 10a (Scheme 3). The reaction stereochemistry was determined by NOE difference expedments of 

cyclic thioureas 9a and 10a. Irradiation of the methyl protons 15 in 10a resulted in a 9% NOE on vinyl CH signal, 

indicating a c/s relationship between these two substituents and thus 4R,5S configuration. Irradiation of the methyl 

protons in 9a resulted in almost 0% NOE on vinyl CH, indicating a trans relationship between these substltuents and 

thus the 4S,5S configuration of 9a. ~e 
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The observed stereochemistry of these reactions can be rationalized by calculated transition states A and B in 

Scheme 2. Unfavorable interaction between the R group and vinyl group in the transition state A is in agreement with 

experimentally observed, very low yield of cis-isomer. Consequently, the preferred product is formed through 

transition state B in which the stedc interactions between R and vinyl moiety is significantly reduced. The reversible 

rearrangement thiocyanate<-~isothiocyanate 17 is a reason for complete conversion of diastereoisomers 5a-e to 6a-e 

via the corresponding thiocyanates 4a-e and preferred formation of 7a-e. 
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Figure 1. The geometry of the disfavored transition 
state (Sa->Sa) according to AM1 calculation. 

B 

Figure 2. The geometry of the favored transition 
state (6a->7a) according to AMI calculation. 

The calculated transition structures '8 (AM1 method) for intramolecular cyclization 5a->Sa (transition state A with AHr = 

22,63 kcal/mol, Figure 1) and 6a->7a (transition state B with AHr= 20,03 kcal/mol, Figure 2) are in agreement with 

experimental observations. The calculated energy difference is 2.6 kcal/mol in favour of transition state B and 

predicts the exclusive formation of diastereomer 7a. 

In summary we have developed a novel tandem of (3,3)-sigmatropic rearrangement of chiral allylic thiocyanates, 

followed by stereocontrolled intramolecular addition of amine to NCS group, leading to diastereomerically pure 1,3- 

imidazolidin-2-thiones. The scope and limitation of this methodology as well as modification of this reaction for the 

synthesis of chiral 1,3-oxazolidines will be reported in due course. 
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