The Stereochemistry of the Epoxypropyl Side-chain of Asperlin

Tony K. M. Shing* and M. Aloui

Department of Chemistry, The Victoria University of Manchester, Manchester M13 9PL, U.K.

The absolute configuration of the oxirane moiety in asperlin is shown to be $(6 S, 7 R)$ by an unambiguous synthesis of its ($6 R, 7 S$)-diastereoisomer from d-glucose involving a tandem epoxide formation and intramolecular Wadsworth-Emmons-Horner olefination.

Asperlin, a 5-acetoxy-5,6-dihydro-6-(1,2-epoxypropyl)-2pyrone isolated ${ }^{1}$ from cultures of fungus Aspergillus nidulans, has been demonstrated to possess antibiotic and antitumour activity. ${ }^{2}$ Earlier n.m.r. spectroscopic ${ }^{3,4}$ and synthetic studies ${ }^{4}$ of asperlin have shown that the 4,5 -substituents \dagger of the lactone ring had the l -threo configuration and the exocyclic epoxypropyl moiety was trans. These data have reduced the possible structures of asperlin to absolute configuration (1) or its 6,7-diastereoisomer (2); it has not proven feasible to determine the structure of asperlin by X-ray crystallography because the only form of the compound available consists of twinned crystals. ${ }^{5}$ Recently, using spin relaxation rates and n.O.e. experiments, Perlin and Dais ${ }^{5}$ have indicated that asperlin was the ($6 R, 7 S$)-diastereoisomer, i.e. (2). We now report, starting from D-glucose, an unambiguous synthesis of (2) which is diastereoisomeric to asperlin, thereby establishing by exclusion that the natural material is the $(6 S, 7 R)$-diastereoisomer (1).

The strategy for the enantiospecific construction of (2), shown in Scheme 1, involves a tandem epoxide formation and intramolecular Wadsworth-Emmons-Horner ${ }^{6}$ olefination (this would guarantee the Z-geometry of the double bond) of the lactol (3) which is readily derived from D -glucose.

The acetonide (4), ${ }^{7}$ obtained from D-glucose in two steps, was partially hydrolysed and then esterified to give the dimethanesulphonate (5) (m.p. $123-124^{\circ} \mathrm{C}$). ${ }^{8}$ The primary methanesulphonate in (5) was displaced with lithium alu-

(1)

(2)

Scheme 1

(7) $R=H$

(9)

(3)

(2)

Scheme 2. Reagents: i, aq. $\mathrm{MeOH}, \mathrm{HCl}$; ii, $\mathrm{MeSO}_{2} \mathrm{Cl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; iii, LiAlH_{4}, THF; iv, $\mathrm{Pd}(\mathrm{OH})_{2}, \mathrm{H}_{2}, \mathrm{EtOH} ; \mathrm{v},(\mathrm{MeO})_{2} \mathrm{P}(\mathrm{O}) \mathrm{CH}_{2}-$ $\mathrm{CO}_{2} \mathrm{H},\left(\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{~N}\right)_{2} \mathrm{C}, \mathrm{CH}_{2} \mathrm{Cl}_{2} ;$ vi, $(\mathrm{MeCO})_{2} \mathrm{O}, \mathrm{BF}_{3} ;$ vii, $\mathrm{SnCl}_{4}, \mathrm{MeCN}$, then aq. HCONMe 2 ; viii, $\mathrm{LiCl}, 1,8$-diazabicyclo[5.4.0]undec-7-ene, MeCN .
minium hydride to form the deoxy-derivative (6), $\ddagger\{\mathrm{m} . \mathrm{p}$. $82-84^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}-25.4^{\circ}$ (c 4.4, acetone) $\}$ which was debenzylated to the alcohol (7), $\left\{\right.$ m.p. $56-58^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}-22.0^{\circ}$ (c 2.9 , acetone) $\}$. Esterification of (7) with dimethylphosphonoacetic acid gave the phosphonate (8), $\left\{[\alpha]_{\mathrm{D}}-8.4^{\circ}\right.$ (c 3.4, acetone) $\}$,

[^0]which was acetolysed to yield the diacetate (9), $\left\{[\alpha]_{\mathrm{D}}+17.4^{\circ}\right.$ (c 9.3, acetone) $\}$. The anomeric acetoxy group in (9) was selectively ${ }^{9}$ hydrolysed to the lactol (3) $\left\{[\alpha]_{\mathrm{D}}+13.3^{\circ}\right.$ (c 1.9, acetone) $\}$, which on mild base treatment ${ }^{10}$ was transformed into the target epoxy-lactone (2), $\S\left\{\right.$ m.p. $55-57^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}$ $+172^{\circ}(c 1, \mathrm{EtOH}), R_{\mathrm{F}} 0.45$ (silica gel t.l.c., diethyl ether) $\}$, with spectroscopic data (mass, i.r., ${ }^{1} \mathrm{H}$ n.m.r.) similar to those of an authentic sample of asperlin. \mathbb{T} Since asperlin had m.p. $71-73^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}+345^{\circ}(c 0.5, \mathrm{EtOH}),{ }^{1}$ and $R_{\mathrm{F}} 0.50$ (diethyl ether), (2) must be its diastereoisomer. The absolute configuration (1) is therefore assigned to asperlin.

We thank Professor A. S. Perlin for an authentic sample of asperlin, Professor J. K. Sutherland for discussion, and the Algerian government for a scholarship (to M. A.).

Received, 5th July 1988; Com. 8/02685H

References

1 A. D. Argoudelis and J. F. Zieserl, Tetrahedron Lett., 1966, 1969.
2 A. D. Argoudelis, J. H. Coats, and R. R. Herr, Antimicrob. Agents Chemother., 1965, 801; S. P. Owen and B. K. Bhuynan, ibid., 1965, 804.
3 S. Lesage and A. S. Perlin, Can. J. Chem., 1978, 3117.
4 S. Lesage and A. S. Perlin, Can. J. Chem., 1978, 2889.
5 P. Dais and A. S. Perlin, Can. J. Chem., 1985, 1009.
6 G. W. J. Fleet and T. K. M. Shing, J. Chem. Soc., Chem. Commun., 1983, 849. I. Gosney and A. G. Rowley in 'Organophosphorus Reagents in Organic Synthesis,' ed. J. I. G. Cadogan, Academic Press, New York, 1979.
7 G. W. J. Fleet and T. K. M. Shing, J. Chem. Soc., Chem. Commun., 1984, 835.
8 J. S. Brimacombe and O. A. Ching, Carbohydr. Res., 1968, 8, 82.
9 A. Banaszek, X. B. Cornet, and A. Zamojski, Carbohydr. Res., 1985, 144, 342.
10 M. A. Blanchette, W. Choy, J. T. Davis, A. P. Essenfeld, S. Masamune, W. R. Roush, and T. Sakai, Tetrahedron Lett., 1984, 2183.
§ The biological activity of this new 2-pyrone will be reported later.
TI Selected spectroscopic data for (2): ${ }^{1} \mathrm{H}$ n.m.r. $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta$ $1.34\left(\mathrm{~d}, 3 \mathrm{H}, J_{8,7} 5.1 \mathrm{~Hz}, 8-\mathrm{H}\right), 2.15\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}\right), 3.00\left(\mathrm{dd}, 1 \mathrm{H}, J_{6,7}\right.$ $\left.2.2, J_{6.5} 4.9 \mathrm{~Hz}, 6-\mathrm{H}\right), 3.04(\mathrm{dq}, 1 \mathrm{H}, 7-\mathrm{H}), 4.35$ (dd, $1 \mathrm{H}, J_{5.4}$ $3.6 \mathrm{~Hz}, 5-\mathrm{H}), 5.50\left(\mathrm{dd}, 1 \mathrm{H}, J_{4.3} 5.2 \mathrm{~Hz}, 4-\mathrm{H}\right), 6.22\left(\mathrm{~d}, 1 \mathrm{H}, J_{2.3} 9.8 \mathrm{~Hz}\right.$, $2-\mathrm{H}), 6.86$ (dd, 1H, 3-H).

For authentic asperlin: ${ }^{1} \mathrm{H}$ n.m.r. $\left(\mathrm{CDCl}_{3}\right) \delta 1.39\left(\mathrm{~d}, 3 \mathrm{H}, J_{8,7} 5.0 \mathrm{~Hz}\right.$, $8-\mathrm{H}), 2.14\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}\right), 3.04-3.10(\mathrm{~m}, 2 \mathrm{H}, 7,6-\mathrm{H}), 4.10(\mathrm{dd}, 1 \mathrm{H}$, $\left.J_{5.6} 6.9, J_{5.4} 2.8 \mathrm{~Hz}, 5-\mathrm{H}\right), 5.31\left(\mathrm{dd}, 1 \mathrm{H}, J_{4.3} 5.7 \mathrm{~Hz}, 4-\mathrm{H}\right), 6.22(\mathrm{~d}, 1 \mathrm{H}$, $\left.J_{2,3} 9.7 \mathrm{~Hz}, 2-\mathrm{H}\right), 7.07(\mathrm{dd}, 1 \mathrm{H}, 3-\mathrm{H})$.

[^0]: \ddagger All new compounds gave satisfactory analytical and spectral data.

