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Synthesis, Characterization, and In Vitro Cytotoxicity of
Triorganotin 3,5-Di-tert-butyl-4-hydroxybenzoates

Wenchao Ding,1 Zhi Liu,1 Laijin Tian,1 and Xiangao Quan2

1Department of Chemistry, Qufu Normal University, Qufu, P. R. China
2School of Pharmaceutical Science, Jining Medical University, Rizhao, P. R. China

The triorganotin 3,5-di-tert-butyl-4-hydroxybenzoates, 3,5-(t-
Bu)2-4-HO-C6H2COOSnR3 (R = c-C6H11, 1; C6H5, 2; C6H5CH2,
3; C6H5C(CH3)2CH2, 4), have been synthesized and characterized
by elemental analysis, IR, and 1H and 13C NMR spectra. The crys-
tal structures of 1 and 4 have been determined by X-ray single
crystal diffraction and show that the tin atom possesses a distorted
tetrahedral geometry. Intermolecular O−H···O hydrogen bond in
1 connects neighboring molecules into a cyclic tetramer. The in vitro
cytotoxicity of the compounds against the human tumor cell lines
A549 was found to be higher than that of cis-platin used clinically.

Keywords crystal structure, cytotoxicity, organotin carboxylate,
3, 5-di-tert-butyl-4-hydroxybenzoic acid

INTRODUCTION
Organotin carboxylates have been receiving increasing atten-

tion, not only because of their structural interest but also because
of their varied applications.[1] Some examples find wide use as
catalysts and stabilizers, and certain derivatives are used as bio-
cides, antifouling agents, and wood preservatives.[2,3] In recent
years, investigations have been carried out to test their anti-
tumor activity and it has been observed that several triorganotin
species show potential as antineoplastic agents.[4,5] In general,
the organotin moiety, ligand (carboxylic acid), and coordina-
tion number of the tin atom appear to play an important role
in anti-tumor activity.[5] To synthesize new organotin esters of
carboxylic acid having biological activity is a optimized strat-
egy to find the organotin anti-tumor agents. 3,5-di-tert-butyl-4-
hydroxybenzoic acid is an important pharmaceutical intermedi-
ate,[6,7] and its organotin esters are not reported in the literature,
to our knowledge. In order to explore the chemistry and cytotoxi-
city of triorganotin esters of 3,5-di-tert-butyl-4-hydroxybenzoic
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acid, we have synthesized and characterized some triorganotin
3,5-di-tert-butyl-4-hydroxybenzoates (Scheme 1).

EXPERIMENTAL

Materials and Physical Measurements
All chemicals were of reagent grade and were used without

further purification. Carbon and hydrogen analyses were deter-
mined using a Perkin-Elmer 2400 Series II elemental analyzer.
Melting points were measured on a WRS-1A digital melting
point. IR spectra were recorded on a Nicolet 470 FT-IR spec-
trophotometer using KBr discs in the range 4000–400 cm−1.
1H and 13C NMR spectral data were collected using a Bruker
Avance DMX500 NMR spectrometer with CDCl3 as solvent
and TMS as internal standard.

Synthesis of the Title Complexes 1–4
To a suspension of triorganotin hydroxide (2 mmol) in 50 ml

of toluene was added 3,5-di-tert-butyl-4-hydroxybenzolic acid
(0.50 g, 2 mmol). The reaction mixtures were heated under reflux
for 5 h with a Dean–Stark separator, and then allowed to cool
to room temperature. The solution was filtered and the solvent
was removed under reduced pressure. The resulting white solid
was recrystallized from ethanol. The yield, m.p., and spectral
data for compounds 1–4 are as follows.

3,5-(t-Bu)2-4-HO-C6H2COOSnCy3 (1)
Yield 82%, m.p. 131–132◦C. Anal. Found: C, 66.06; H, 7.43.

Calcd. for C33H54O3Sn: C, 66.33; H, 7.65%. IR (KBr)
cm−1: 3600, 3367 (O-H), 3050 (Ar-H), 2921, 2848 (C-
H), 1620 [ν(COO−)as)], 1598, 1565, 1445, 1422 (Ar),
1332 (vs) (ν(COO−)s), 1257, 1230 (C-O). 1H NMR
(CDCl3) δ: 7.96 (2H, s, Ar-H), 5.56 (1H, s, OH), 1.46
(18H, s, 6CH3), 1.98–1.96 (9H, m), 1.75–1.63 (15H, m),
1.37–1.32 (9H, m) (Cy). 13C NMR (CDCl3) δ: 172.12
(C = O), 157.64, 135.84, 127.60, 124.22 (Ar), 34.66
(C(CH3)3), 33.89 (1J(13C-119Sn) = 336 Hz, C-α), 31.18
(2J(13C-119Sn) = 15 Hz, C-β), 30.48 (C(CH3)3), 29.02
(3J(13C-119Sn) = 64 Hz, C-γ ), 27.04 (C-δ).

3,5-(t-Bu)2-4-HO-C6H2COOSnPh3 (2)
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SCH. 1. Preparation of triorganotin 3,5-di-tert-butyl-4-hydroxybenzoates 1–4.

Yield 78%, m.p. 178–179◦C. Anal. Found: C, 65.86; H, 5.89.
Calcd. for C33H36O3Sn: C, 66.13; H, 6.05%. IR (KBr)
cm−1: 3598 (O-H), 3067, 3056 (Ar-H), 2958, 2872 (C-
H), 1614 (ν(COO−)as), 1595, 1565, 1480, 1430 (Ar),
1337 (ν(COO−)s), 1262, 1239(C-O). 1H NMR (CDCl3)
δ: 8.00 (2H, s, Ar-H), 7.79 (6H, dd, J = 2.4, 7.4 Hz,
J(119Sn-H) = 65.5 Hz, H-2 in Ph), 7.47–7.44 (9H, m,
H-3 and H-4 in Ph), 5.63 (1H, s, OH), 1.45 (18H, s,
6CH3). 13C NMR (CDCl3) δ: 171.56 (C = O), 157.58,
135.87, 127.61, 124.34 (Ar), 137.84 (2J(13C-119Sn) = 47
Hz, o-C in Ph), 137.17 (1J(13C-119Sn) = 632 Hz, i-C in
Ph), 130.55 (4J(13C-119Sn) = 12 Hz, p-C in Ph), 128.86
(3J(13C-119Sn) = 62 Hz, m-C in Ph), 34.72 (C(CH3)3),
30.48 (C(CH3)3).

3,5-(t-Bu)2-4-HO-C6H2COOSn(CH2Ph)3 (3)
Yield 72%, m.p. 104–105◦C. Anal. Found: C, 67.56; H, 6.48.

Calcd. for C36H42O3Sn: C, 67.41; H, 6.60%. IR (KBr)
cm−1 3607 (O-H), 3057 (Ar-H), 2957, 2872 (C-H), 1624
(ν(COO−)as), 1596, 1492, 1452 (Ar), 1323 (ν(COO−)s),
1259, 1237(C-O) cm−1. 1H NMR (CDCl3) δ: 7.92 (2H,
s, Ar-H), 7.15 (6H, t, J = 7.6 Hz, H-3 in Ph), 7.04 (3H,
t, J = 7.3 Hz, H-4 in Ph), 6.82 (6H, d, J = 7.3 Hz,
H-2 in Ph), 5.66 (1H, s, OH), 2.68 (6H, s, J(119Sn-H)
= 71.0 Hz, CH2Sn) 1.49 (18H, s, 6CH3). 13C NMR
(CDCl3) δ: 171.96 (C = O), 157.88, 135.92, 127.66,
124.34 (Ar), 138.36, 129.32, 128.94, 124.88 (Ph), 34.74
(C(CH3)3), 30.46 (C(CH3)3), 24.49 (1J(13C-119Sn) =
366 Hz, CH2Sn).

3,5-(t-Bu)2-4-HO-C6H2COOSn(CH2C(CH3)2Ph)3 (4)
Yield 83%, m.p. 122–123◦C. Anal. Found: C, 70.66; H, 7.89.

Calcd. for C45H60O3Sn: C, 70.41; H, 7.88%. IR (KBr)
cm−1: 3623 (O-H), 3052 (Ar-H), 2959, 2926, 2873 (C-
H), 1642 (ν(COO−)as), 1599, 1497, 1443 (Ar), 1328
(ν(COO−)s), 1261, 1235(C-O). 1H NMR (CDCl3) δ:
7.98 (2H, s, Ar-H), 7.30 (6H, t, J = 7.4 Hz, H-3 in
Ph), 7.22 (3H, t, J = 7.3 Hz, H-4 in Ph), 7.17 (6H, d,
J = 7.4 Hz, H-2 in Ph), 5.61 (1H, s, OH), 1.51 (18H,
s, 6CH3), 1.28 (18H, s, 6CH3), 1.27 (6H, s, J(119Sn-
H) = 50.8 Hz, (CH2)3Sn).13C NMR (CDCl3) δ: 171.25
(C = O), 157.52, 135.46, 127.80, 124.24 (Ar), 151.27,
128.57, 126.02, 125.54 (Ph), 38.00 (2J(119Sn-13C) = 20
Hz, Ph-C), 37.53 (1J(119Sn-13C) = 352 Hz, CH2Sn),

34.61 (C(CH3)3), 32.87 (3J(119Sn-13C) = 42 Hz, CH3),
30.49 (C(CH3)3).

Crystal Structure Determination of 1 and 4
The colorless single crystals of 1 and 4 were obtained from

dichloromethane-hexane (1:1, V/V) by slow evaporation at
room temperature. Diffractions measurements were performed
on a Bruker Smart Apex imaging-plate area detector fitted with
graphite monochromatized Mo-Kα radiation (0.71073 Å) using
the ϕ and ω scan technique. The data reductions were performed
using SAINT program and empirical corrections for absorption
effects were made using the SADABS program.[8] The struc-
tures were solved by direct methods and refined by a full-matrix
least squares procedure based on F2 using SHELXL-97.[8] The
non-hydrogen atoms were refined anisotropically and hydrogen
atoms were placed at calculated positions in the riding model
approximation, with C−H = 0.93 Å for aromatic H atoms, C−H
= 0.96 Å for methyl H atoms, C−H = 0.97 Å for methylene
H atoms, C−H = 0.98 Å for methine H atoms, and O−H =
0.82 Å for hydroxy H atoms. Crystallographic parameters and
refinements were listed in Table 1.

In Vitro Cytotoxicity
Cytotoxic activity was assayed against the human tumor cell

lines (lung tumor cell). The samples were prepared by dissolving
compounds in C2H5OH and by diluting the solution obtained
with water. In the assays, the final concentration of C2H5OH
was less than 0.1% (the concentration used was found to be
non-cytotoxic against the tumor cell.). In vitro cytotoxicities of
the compounds were measured by the MTT assay according to
the literature.[9] The experiments were repeated three times for
each test. The dose causing 50% inhibition of cell growth (IC50)
was calculated by NDST software.[10]

RESULTS AND DISCUSSION
Four organotin compounds 1–4 were prepared by azeotropic

removal of water from the reaction between the triorganotin
hydroxide and 3,5-di-tert-butyl-4-hydroxybenzoic acid in the
molar ratio 1:1 in toluene (Scheme 1). The compounds are white
crystals, air stable and soluble in common organic solvents such
as benzene, trichloromethane, acetone, and methanol.
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84 W. DING ET AL.

TABLE 1
Crystal data and structure refinement for 1 and 4

Compound 1 4

Formula C33H54O3Sn C45H60O3Sn
Formula weight 617.45 767.62
Crystal system Tetragonal Monoclinic
Space group I41/a P21/c
a/Å 20.053(2) 14.920(3)
b/Å 20.053(2) 27.862(6)
c/Å 33.815(5) 19.950(4)
β/◦ 90 90.90(3)
V/Å−3 13598(3) 8292(3)
Z 16 8
Temperature/K 295(2) 295(2)
Crystal size /mm 0.38 × 0.24 × 0.22 0.23 × 0.12 × 0.10
Dc/g·cm−3 1.206 1.230
µ/mm−1 0.779 0.652
F(000) 5216 3232
θmax 25.5 25.5
Reflns meas. 36988 60936
Reflns unique, Rint 6346, 0.074 14992, 0.048
Reflns with I>2σ (I) 3094 12232
Weighting scheme [σ 2(F2) + (0.0948P)2]−1 [σ 2(F2) + (0.0420P)2 + 3.4338P]−1

R indices [I>2σ (I)] R = 0.058, wR = 0.151 R = 0.045, wR = 0.095
R indices (all data) R = 0.129, wR = 0.183 R = 0.059, wR = 0.100

ρmin, 
ρmax/e Å−3 –0.470, 0.405 –0.528, 0.546

Crystal Structure of Compounds 1 and 4
The molecular structures of 1 and 4 are shown in Figures 1

and 2, respectively. The selected bond lengths and bond angles
are listed in Tables 2 and 3. Compounds 1 and 4 crystallize in
tetragonal space group I41/a and monoclinic space group P21/c,
respectively. In 4, the asymmetric unit contains two independent
molecules which are labeled as molecules 4A and 4B, respec-
tively, and do not differ from each other significantly.

The tin atoms in 1 and 4 are both four-coordinate and
possess a distorted SnC3O tetrahedral geometry. The Sn–C
distances (the mean of 2.142(8) Å for 1 and 2.150(4) Å
for 4) are similar to those found in other reported tricy-
clohexyltin and tris(2-methyl-2-phenylpropyl)tin carboxylates,
such as tricyclohexyltin 3-indoleacetate[11] and tris(2-methyl-
2-phenylpropyl)tin acetate.[12] The bond length of Sn(1)–O(1)
in 1 and 4 is 2.051(4) and 2.054(2), 2.074(2)Å, respectively,
which lies in the range of the Sn–O covalent bond length
(2.038−2.115 Å)[13] and is consistent with that reported in re-
lated compounds.[11,12] The Sn(1)···O(2) separation of 2.963(4)
Å for 1 and 3.014(2), 3.002(2) Å for 4 is not indicative of a
significant interaction between these atoms. The major stereo-
chemical role of atom O(2) is to distort the tetrahedral geometry
by opening up the C(7)–Sn(1)–C(13) angle to 118.7(3)◦ and re-
ducing the O(1)–Sn(1)–C(1) angle to 97.9(3)◦ for 1, and opening

up the C(1)–Sn(1)–C(11) angle to 117.19(14) and 117.91(18)◦

and reducing the O(1)–Sn(1)–C(1) angle to 100.76(11) and
100.02(13)◦ for 4. The monodentate mode of coordination of
3,5-di-tert-butyl-4-hydroxybenzoate is reflected in the disparate
two C–O bond lengths of carboxylate (C(19)–O(1) 1.310(6) Å

FIG. 1. Molecular structure of 1; hydrogen atoms are omitted for clarity.
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FIG. 2. Molecular structure of 4; hydrogen atoms are omitted for clarity.

and C(19)–O(2) 1.220(6) Å for 1, and the mean C(31)–O(1)
1.310(4) Å and C(31)–O(2) 1.219(4) Å for 4.

In the crystal structure of 1, neighboring molecules
are linked into a cyclic tetramer that is saddle-shaped
supramolecular structure by the hydrogen bond between phe-
nolic hydroxyl and adjacent carbonyl oxygen of carboxylate,
O(3)−H(3)···O(2) #1 [O(3)−H(3) 0.82 Å, H(3)···O(2)#1 2.02
Å, O(3)···O(2) #1 2.740(5) Å, O(3)−H(3)···O(2)#1 146.6◦, sym-
metry code #1: –x+5/4, y+3/4, –z+5/4] (Figure 3). How-
ever, the intermolecular hydrogen bond is not found in 4,
which is caused by the bulky 2-methyl-2-phenylpropyl on the
tin.

Spectroscopic Analysis
The compounds 1–4 do not show the broad ν (OH) band

at 3600 ∼ 2500 cm−1 and the ν (C = O) strong band at
1690 cm−1, indicating the deprotonations of the carboxylic
group of the ligand due to the formation of the oxygen-tin bond.
The existence of stretching vibration absorption of the pheno-
lic hydroxyl group at ∼3600 cm−1 proves that the phenolic
hydroxyl groups remain intact in 1–4. In organotin carboxy-
lates, IR spectroscopy can provide useful information concern-
ing the coordination mode of the carboxylate group. Gener-

ally, the difference between the νas(CO2) and νs(CO2) bands,

ν(CO2), of bidentate carboxylate group is below 200 cm−1,
while unidentate carboxylate is above 200 cm−1.[14,15] The mag-
nitudes (277–314 cm−1) of 
ν(CO2) in 1−4 indicate that the
carboxylate group is monodentate coordination to tin in the solid
state, which is agreement with the previous X-ray structures of
1 and 4.

The 1H NMR spectra of the compounds show the expected
integration and peak multiplicities. The singlet appeared
at ∼7.95, 5.60, and 1.50 ppm is assigned to proton res-
onance of phenyl ring, hydroxyl group and tert-butyl of
3,5-di-tert-butyl-4-hydroxybenzoate ligand, respectively. The
13C resonances of the phenyl of ligand lie in the range of
157.64–124.22 ppm. The 13C chemical shift the carboxyl
carbon is at ca. 172 ppm. The coordination number of the
tin atom in organotins has been related to the 1J(119Sn-13C)
coupling constants.[16,17] The 1J(119Sn-13C) of the compounds
1–4 is 336, 632, 366, and 350 Hz, respectively, which is close
to that of the corresponding four-coordinate triorganotin car-
boxylates,[16,17] such as 2-HOC6H4N = NC6H4COOSnCy3,[18]

Ph3GeCH(o-C6H4Cl)CH2COOSn(CH2C(CH3)2Ph)3,[19] and
C6H5C6H4COOSnPh3,[20] suggesting that the tin atom in 1–4
is four-coordinated in CDCl3 solution.

TABLE 2
Selected bond lengths (Å) and angles (◦) for 1

Sn(1)-O(1) 2.051(4) Sn(1)-C(7) 2.170(8) C(19)-O(1) 1.310(6)
Sn(1)-C(1) 2.114(8) Sn(1)-C(13) 2.132(7) C(19)-O(2) 1.220(6)
O(1)-Sn(1)-C(1) 97.9(3) O(1)-Sn(1)-C(7) 102.6(2) C(1)-Sn(1)-C(7) 114.9(4)
O(1)-Sn(1)-C(13) 109.9(2) C(1)-Sn(1)-C(13) 110.3(5) C(13)-Sn(1)-C(7) 118.7(3)
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TABLE 3
Selected bond lengths (Å) and angles (◦) for 4

4A 4B 4A 4B

Sn(1)-O(1) 2.074(2) 2.054(2) Sn(1)-C(21) 2.157(4) 2.151(4)
Sn(1)-C(1) 2.158(3) 2.151(4) C(31)-O(1) 1.311(4) 1.309(4)
Sn(1)-C(11) 2.142(3) 2.142(4) C(31)-O(2) 1.220(4) 1.218(4)
O(1)-Sn(1)-C(11) 102.63(12) 102.06(12) O(1)-Sn(1)-C(1) 100.76(11) 100.02(13)
O(1)-Sn(1)-C(21) 103.58(12) 104.18(13) C(1)-Sn(1)-C(11) 117.19(14) 117.91(18)
C(11)-Sn(1)-C(21) 114.76(14) 113.71(18) C(1)-Sn(1)-C(21) 114.78(14) 115.54(14)

In Vitro Cytotoxicity
In order to evaluate the cytotoxicity of the synthesized organ-

otin carboxylates, we test their activity against a human tumor
cell lines A549. The IC50 of compounds 1-4 against A549 is 0.22
± 0.03, 0.08 ± 0.01, 0.46± 0.03, and 3.24 ± 0.12 µmol·l−1,
respectively, indicating that they are active against this tumor
cell, and their activity are higher than that of the reference
drug cis-platin (IC50 9.46 ± 0.43 µmol·l−1). The activity of
the compounds decreased in the order 2>1>3>4. The activ-
ity of compounds 1–4 against the A549 is similar to that of
the reported analogues, 3,4-(H2N)2C6H3COOSnPh3 (IC50 0.30
µmol·l−1) and 3,4-(H2N)2C6H3COOSn(C4H9-n)3 (IC50 0.57
µmol·l−1).[21] As these results are preliminary, further study
on the anti-tumor effects of these compounds is highly recom-
mended.

FIG. 3. The supramolecular structure of 1 formed by intermolecular hydrogen
bond. Cyclohexyl, tert-butyl, and H atoms except H3 are omitted for clarity
(color figure available online).

SUPPLEMENTARY MATERIAL
Crystallographic data for the structural analysis have been

deposited with the Cambridge Crystallographic Data Cen-
ter, CCDC Nos. 822995 and 822996. Copies of this infor-
mation may be obtained free of charge from The Director,
CCDC, 12 Union Road, Cambridge, CB2 1EZ, UK (fax:
44–1223-336–033; email: deposit@ccdc.cam. ac.uk or www:
http://www.ccdc.cam.ac.uk).
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