Synthetic Communications[®], 38: 1896–1908, 2008 Copyright © Taylor & Francis Group, LLC ISSN: 0039-7911 print/1532-2432 online DOI: 10.1080/00397910801997488

Simple Procedure for the Synthesis of 5,7-Diarylpyrido[2,3-*d*]pyrimidine Derivatives catalyzed by KF-Alumina

Xiang-Shan Wang^{1,2}, Mei-Mei Zhang², Qing Li¹, Chang-Sheng Yao¹, and Shu-Jiang Tu^{1,2}

¹School of Chemistry and Chemical Engineering, Xuzhou Normal University, Xuzhou Jiangsu, China
²Key Laboratory of Biotechnology for Medical Plant, Xuzhou Normal University, Xuzhou Jiangsu, China

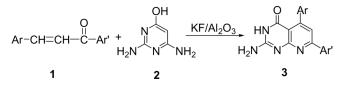
Abstract: A simple KF/Al_2O_3 -catalyzed reaction of 1,3-diaryl-2-propen-1-one and 2,6-diamino-4-hydroxylpyrimidine in ethyl alcohol gave aromatized 5,7diarylpyrido[2,3-*d*]pyrimidine derivative by air oxidation. On the other hand, the unaromatized intermediate products were isolated under dry nitrogen successfully. A possible reaction mechanism with two pathways to lose water was proposed based on the further experimental results; one of them was confirmed by ¹H NMR spectra of isolated intermediate product.

Keywords: Air oxidation; KF-Al₂O₃; pyrido[2,3-d]pyrimidine; Synthesis

INTRODUCTION

The utility of fluoride salts as potential bases in a variety of synthetic reactions has been recognized in recent years.^[1] In particular, potassium fluoride coated with alumina (KF-alumina) has been a versatile solid-supported reagent developed by Ando et al. for alkylation.^[2] Over the years, the reagent has found application in a large number of organic reactions. In our previous article,^[3] we have reported the synthesis of pyr-ido[2,3-*d*]pyrimidine from aldehyde, malononitrile, or cyanoacetate with

Received October 12, 2007


Address correspondence to Xiang-Shan Wang, School of Chemistry and Chemical Engineering, Xuzhou Normal University, Xuzhou Jiangsu 221116, P. R. China. E-mail: xswang1974@yahoo.com 6-aminouracil successfully using this reagent. Pyrido[2,3-*d*]pyrimidines and their derivatives were reported to possess biological and pharmacological activities, such as antifolate activity,^[4] antibacterial activity,^[5] antimicrobial activity,^[6] anti-inflammatory and analgesic activity,^[7] antileishmanial activity,^[8] anticonvulsant activity,^[9] and anti-aggressive activity.^[10] These prompted us to synthesize these compounds through another simple route. Herein we report a highly efficient method for synthesis of 5,7-diarylpyrido[2,3-*d*]pyrimidine derivatives by the reaction of 1,3-diaryl-2-propen-1-one and 2,6-diamino-4-hydroxylpyrimidine catalyzed by KF-Al₂O₃.

RESULTS AND DISCUSSION

When the 1,3-diaryl-2-propen-1-one (1) and 2,6-diamino-4-hydroxylpyrimidine (2) were treated with KF-Al₂O₃ in ethyl alcohol at 80 °C, the desired 5,7-diarylpyrido[2,3-*d*]pyrimidine derivatives (3) were obtained (Scheme 1) with high yields, which were the further aromatization products.

We began our study of the reaction shown in Scheme 1 by optimizing the reaction conditions for preparation of **3**. A summary of the optimization experiment is provided in Table 1. The results showed that at room temperature, no reaction took place (Table 1, Entry 1). The reaction was first carried out in EtOH in the absence of KF/Al_2O_3 ; only trace of **3a** was observed (Table 1, entry 3). Similar reactions were then attempted in the presence of KF/Al_2O_3 with 50, 100, and 150 mg. From Table 1 (entries 4, 5 and 6), we could see using of just 100 mg of $KF-Al_2O_3$ at 80 °C in EtOH was sufficient to push the reaction forward. Higher amounts of the catalyst did not improve the results to a greater extent. In addition, MeCN and DMF were also tested as the reaction solvents. In these cases, product **3a** was formed in slightly lower yield (Table 1, entries 7 and 8).

To demonstrate the efficiency and scope of the present method, a variety of 1,3-diaryl-2-propen-1-ones were subjected to reaction with 2,6-diamino-4-hydroxyl pyrimidine at the same reaction conditions. As

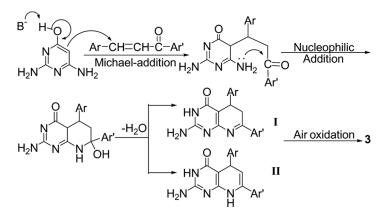
Scheme 1. The reaction of 1,3-diaryl-2-propen-1-one and 2,6-diamino-4-hydro-xylpyrimidine catalyzed KF-Al₂O₃.

Entry	Catalyst amount (mg)	Temp. (°C)	Solvent	Yields $(\%)^b$
1	100	0	EtOH	0
2	100	50	EtOH	72
3	0	80	EtOH	trace
4	50	80	EtOH	65
5	100	80	EtOH	78
6	150	80	EtOH	78
7	100	80	CH ₃ CN	74
8	100	90	DMF	76

Table 1. Yields of product 3a at different reaction conditions^a

^aReaction condition: 10 mL solvent, 2 mmol 1, 2 mmol 2. ^bIsolated yields.

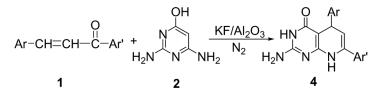
shown in Table 2, we can see the reactions proceeded smoothly to afford the corresponding products **3** in good yields. All the products were characterized by ¹H NMR, IR spectra, and elemental analysis.


According to the structure of **3**, a sequential reaction of the Michael addition reaction, intramolecular nucleophilic addition, and aromatization may take place during the formation of the product (Scheme 2).

Entry	Ar	Ar'	Products	Time (h)	Yields $(\%)^b$
1	C ₆ H ₅	4-CH ₃ OC ₆ H ₄	3a	10	79
2	2-Thiophenyl	C ₆ H ₅	3b	9	81
3	3-ClC ₆ H ₄	$4-ClC_6H_4$	3c	8	86
4	C_6H_5	$4-ClC_6H_4$	3d	8	81
5	$4-ClC_6H_4$	$4-ClC_6H_4$	3e	10	80
6	$3-CH_3C_6H_4$	C_6H_5	3f	12	79
7	C_6H_5	$4 - FC_6H_4$	3g	9	84
8	$2-ClC_6H_4$	$4-ClC_6H_4$	3h	9	85
9	C_6H_5	$2-ClC_6H_4$	3i	9	82
10	$3-NO_2C_6H_4$	C_6H_5	3j	8	83
11	$4-ClC_6H_4$	$4-BrC_6H_4$	3k	8	84
12	$4-CH_3OC_6H_4$	C ₆ H ₅	31	10	80

Table 2. KF/Al_2O_3 -catalyzed reactions of 1,3-diaryl-2-propen-1-ones and 2,6-diamino-4-hydroxylpyrimidine^{*a*}

^{*a*}Reaction condition: 10 mL EtOH, 2 mmol 1, 2 mmol 2, 100 mg KF-Al₂O₃, 80°C.


^bIsolated yields.

Scheme 2. The possible reaction mechanism.

From Scheme 2, two possible pathways were proposed to lose the water, giving the two unaromatized intermediate products I or II. It was reported^[11] that the dihydropyrido[2,3-*d*]pyrimidine derivatives were unstable to their corresponding aromatization products by air oxidation automatically. To prevent the air oxidation and obtain the unaromatized intermediates, we tested the same reaction under dry nitrogen (Scheme 3). To our delight, the desired intermediate II was isolated, which was confirmed by ¹H NMR spectra. The spectrum of **4a** was shown in Fig. 1. Obviously, it was typical AM system for protons on the positions of 5 and 6, not ABX system, so the structure of the intermediate was II rather than I. The results of unaromatized 5,7-diarylpyrido[2,3-*d*]pyrimidine derivatives are summarized in Table 3.

If the unaromatized intermediate product 4f was treated in EtOH at 80 °C for 10 h (Scheme 4), it gave the corresponding 3f in 72% yield. This result indicated that the air oxidation took place in the formation of products 3.

Scheme 3. The reaction of 1,3-diaryl-2-propen-1-one and 2,6-diamino-4-hydro-xylpyrimidine under N_2 .

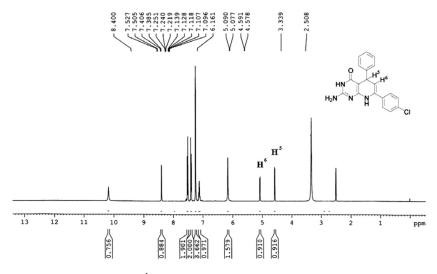
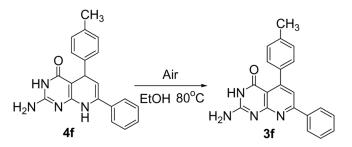


Figure 1. ¹H NMR of compound 4a (400 MHz).


CONCLUSION

In conclusion, we found a convenient method for the synthesis of 5,7diarylpyrido[2,3-*d*]pyrimidine derivatives by the reaction of 1,3-diaryl-2propen-1-one and 2,6-diamino-4-hydroxylpyrimidine catalyzed by KF-Al₂O₃. This method has the advantage of an easy workup, milder

Entry	Ar	Ar'	Products	Time (min)	Yields $(\%)^b$
1	C ₆ H ₅	4-ClC ₆ H ₄	4 a	40	82
2	3,4-(CH ₃ O) ₂ C ₆ H ₃	C_6H_5	4 b	45	81
3	2-Thiophenyl	$4-ClC_6H_4$	4 c	50	83
4	$3-NO_2C_6H_4$	C_6H_5	4d	40	86
5	$3-NO_2C_6H_4$	$4-ClC_6H_4$	4 e	60	80
6	$4-CH_3C_6H_4$	C_6H_5	4 f	50	73
7	C_6H_5	C_6H_5	4 g	60	82
8	$4-ClC_6H_4$	C_6H_5	4h	40	88
9	$4-CH_3OC_6H_4$	C_6H_5	4 i	50	72

Table 3. KF-Al₂O₃-catalyzed reactions of 1,3-diaryl-2-propen-1-one and 2,6-diamino-4-hydroxylpyrimidine under nitrogen^a

^{*a*}Reaction condition: 10 mL EtOH, 2 mmol **1**, 2 mmol **2**, 100 mg KF-Al₂O₃, 80 °C. ^{*b*}Isolated yields.

Scheme 4. The subsequent aromatization in air.

reaction conditions, and good yields in the synthesis of these potential active compounds.

EXPERIMENTAL

Melting points were determined in open capillaries and are uncorrected. IR spectra were recorded on a Tensor 27 spectrometer in KBr. ¹H NMR spectra were obtained for solution in DMSO- d_6 with Me₄Si as internal standard using an Inova-400 spectrometer. Elemental analyses were carried out using a Perkin-Elmer 2400 II analyzer.

The 2,6-diamino-4-hydroxylpyrimidine was purchased from Aldrich Chemical Company, Inc. The starting materials of 1,3-diaryl-2-propen-1-one were prepared as references reported.^[12]

General Procedure for the 2-Amino-5,7-diarylpyrido[2,3-*d*] pyrimidine-4(3H)-one 3

A dry 100-mL flask was charged with 1,3-diaryl-2-propen-1-one **1** (2 mmol), 2,6-diamino-4-hydroxylpyrimidine **2** (2 mmol), KF/Al₂O₃ (100 mg), and EtOH (10 mL). The mixture was stirred at 80 °C for 8–12 h. Then after being cooled to room temperature, the solid material was filtered off. The crude product was purified by recrystallization from DMF and water, followed by keeping at 80°C for 2 h in a vacuum to give **3**.

Data

2-Amino-7-(4-methoxylphenyl)-5-phenylpyrido[2,3-*d*] pyrimidine-4(3*H*)-one **3a**

This compound was obtained as yellow powder, mp >300 °C; IR (KBr): ν_{max} 3329, 3154, 2929, 1647, 1610, 1509, 1455, 1301, 1249, 1207, 1123,

1108, 1032, 852, 832, 799, 766, 745; ¹H NMR (DMSO- d_6): δ 3.81 (s, 3H, CH₃O), 6.69 (b, 2H, NH₂), 7.04 (d, J = 8.8 Hz, 2H, ArH), 7.32 (s, 1H, ArH), 7.38 (s, 5H, ArH), 8.16 (d, J = 8.8 Hz, 2H, ArH), 10.91 (b, 1H, ArH). Anal. calcd. for C₂₀H₁₆N₄O₂: C, 69.76; H, 4.68; N, 16.27. Found: C, 69.87; H, 4.50; N, 16.33.

2-Amino-7-phenyl-5-thiophenylpyrido[2,3-d]pyrimidine-4(3H)-one 3b

This compound was obtained as yellow powder, mp >300 °C; IR (KBr): ν_{max} 3305, 3255, 3144, 3071, 2835, 1696, 1672, 1659, 1578, 1547, 1441, 1409, 1329, 1287, 1253, 1218, 1102, 889, 851, 777, 690; ¹H NMR (DMSO-*d*₆): δ 6.72 (b, 2H, NH₂), 7.17–7.13 (m, 1H, ArH), 7.35–7.51 (m, 6H, ArH), 7.69 (d, J = 4.8 Hz, 1H, ArH), 8.16–8.18 (m, 2H, ArH), 11.08 (b, 1H, NH). Anal. calcd. for C₁₇H₁₂N₄OS: C, 63.73; H, 3.78; N, 17.49. Found: C, 63.90; H, 3.68; N, 17.55.

2-Amino-7-(4-chlorophenyl)-5-(3-chlorophenyl)pyrido[2,3-*d*] pyrimidine-4(3*H*)-one **3**c

This compound was obtained as yellow powder, mp >300 °C; IR (KBr): ν_{max} 3088(b), 1680, 1573, 1549, 1475, 1408, 1357, 1284, 1233, 1162, 1121, 1091, 1011, 974, 877, 834, 820, 789, 710, 696; ¹H NMR (DMSO- d_6): δ 6.74 (b, 2H, NH₂), 7.34–7.47 (m, 5H, ArH), 7.56 (d, J = 8.4 Hz, 2H, ArH), 8.24 (d, J = 8.8 Hz, 2H, ArH), 11.02 (b, 1H, NH). Anal. calcd. for C₁₉H₁₂Cl₂N₄O: C, 59.55; H, 3.16; N, 14.62. Found: C, 59.68; H, 3.09; N, 14.78.

2-Amino-7-(4-chlorophenyl)-5-phenylpyrido[2,3-*d*] pyrimidine-4(3*H*)-one **3d**

This compound was obtained as yellow powder, mp >300 °C; IR (KBr): ν_{max} 3468, 3306, 3221, 3067, 1663, 1597, 1549, 1524, 1458, 1385, 1254, 1239, 1181, 1092, 1043, 1012, 858, 833, 825, 788, 760, 742, 696; ¹H NMR (DMSO-*d*₆): δ 6.72 (b, 2H, NH₂), 7.42 (s, 5H, ArH), 7.56 (s, 1H, ArH), 7.34–7.47 (m, 5H, ArH), 7.60 (d, J = 8.4 Hz, 2H, ArH), 8.24 (d, J = 8.4 Hz, 2H, ArH), 10.98 (b, 1H, NH). Anal. calcd. for C₁₉H₁₃ClN₄O: C, 65.43; H, 3.76; N, 16.06. Found: C, 65.50; H, 3.59; N, 16.13.

2-Amino-5,7-di(4-chlorophenyl)pyrido[2,3-d]pyrimidine-4(3H)-one 3e

This compound was obtained as yellow powder, mp >300 °C; IR (KBr): $\nu_{\rm max}$ 3315, 3158, 1641, 1575, 1520, 1487, 1455, 1414, 1393, 1357, 1274,

1091, 1013, 831; ¹H NMR (DMSO- d_6): δ 6.73 (b, 2H, NH₂), 7.41–7.46 (m, 5H, ArH), 7.56 (d, J = 8.4 Hz, 2H, ArH), 8.23 (d, J = 8.4 Hz, 2H, ArH), 11.00 (b, 1H, NH). Anal. calcd. for C₁₉H₁₂Cl₂N₄O: C, 59.55; H, 3.16; N, 14.62. Found: C, 59.76; H, 3.10; N, 14.71.

2-Amino-5-(4-methylphenyl)-7-phenylpyrido[2,3-*d*] pyrimidine-4(3*H*)-one **3f**

This compound was obtained as yellow powder, mp >300 °C; IR (KBr): ν_{max} 3149(b), 3031, 2918, 2856, 1683, 1654, 1625, 1575, 1541, 1524, 1413, 1361, 1280, 1253, 1156, 1115, 812; ¹H NMR (DMSO-*d*₆): δ 2.38 (s, 3H, CH₃), 6.68 (b, 2H, NH₂), 7.20 (d, *J* = 8.0 Hz, 2H, ArH), 7.30 (d, *J* = 8.0 Hz, 2H, ArH), 7.35 (s, 1H, ArH), 7.49–7.51 (m, 3H, ArH), 8.16–8.18 (m, 2H, ArH), 10.93 (b, 1H, NH). Anal. calcd. for C₂₀H₁₆N₄O: C, 73.15; H, 4.91; N, 17.06. Found: C, 73.28; H, 4.77; N, 17.25.

2-Amino-7-(4-fluorophenyl)-5-phenylpyrido[2,3-*d*] pyrimidine-4(3*H*)-one **3**g

This compound was obtained as yellow powder, mp >300 °C; IR (KBr): ν_{max} 3315, 3141, 3081, 1692, 1673, 1657, 1605, 1575, 1547, 1512, 1492, 1415, 1357, 1285, 1234, 1157, 985, 845, 772, 691; ¹H NMR (DMSO d_6): δ 6.70 (b, 2H, NH₂), 7.30–7.39 (m, 8H, ArH), 8.24–8.32 (m, 2H, ArH), 10.94 (b, 1H, NH). Anal. calcd. for C₁₉H₁₃FN₄O: C, 68.67; H, 3.94; N, 16.86. Found: C, 68.55; H, 3.89; N, 16.70.

2-Amino-7-(4-chlorophenyl)-5-(2-chlorophenyl)pyrido[2,3-*d*] pyrimidine-4(3*H*)-one **3h**

This compound was obtained as yellow powder, mp >300 °C; IR (KBr): ν_{max} 3305(b), 3066, 1645, 1592, 1573, 1547, 1518, 1477, 1412, 1361, 1306, 1254, 1092, 1056, 1032, 1012, 834, 825, 744; ¹H NMR (DMSO- d_6): δ 6.24 (b, 2H, NH₂), 7.32–7.50 (m, 5H, ArH), 7.56 (d, J = 8.4 Hz, 2H, ArH), 8.23 (d, J = 8.4 Hz, 2H, ArH), 10.99 (b, 1H, NH). Anal. calcd. for C₁₉H₁₂Cl₂N₄O: C, 59.55; H, 3.16; N, 14.62. Found: C, 59.58; H, 3.23; N, 14.69.

2-Amino-7-(2-chlorophenyl)-5-phenylpyrido[2,3-*d*] pyrimidine-4(3*H*)-one **3**i

This compound was obtained as yellow powder, mp >300 °C;IR (KBr): $\nu_{\rm max}$ 3320, 3255, 3156, 1693, 1673, 1607, 1569, 1547, 1492, 1479, 1410, 1344, 1251, 1235, 1162, 881, 796, 778, 699; ¹H NMR (DMSO-*d*₆): δ 6.70

(b, 2H, NH₂), 7.40 (s, 5H, ArH), 7.45 (s, 1H, ArH), 7.51–7.55 (m, 2H, ArH), 8.16 (d, J = 7.2 Hz, 1H, ArH), 8.26 (d, J = 1.6 Hz, 1H, ArH), 10.97 (b, 1H, NH). Anal. calcd. for C₁₉H₁₃ClN₄O: C, 65.43; H, 3.76; N, 16.06. Found: C, 65.55; H, 3.60; N, 16.23.

2-Amino-5-(3-nitrophenyl)-7-phenylpyrido[2,3-*d*] pyrimidine-4(3*H*)-one **3**j

This compound was obtained as yellow powder, mp >300 °C; IR (KBr): ν_{max} 3393, 3161(b), 1678, 1650, 1607, 1581, 1547, 1527, 1434, 1404, 1347, 1310, 1243, 1173, 1098, 778, 740, 697, 688; ¹H NMR (DMSO-*d*₆): δ 6.75 (b, 2H, NH₂), 7.51 (s, 4H, ArH), 7.68–7.72 (m, 1H, ArH), 7.89 (d, J = 8.4 Hz, 1H, ArH), 8.21–8.28 (m, 4H, ArH), 11.03 (b, 1H, NH). Anal. calcd. for C₁₉H₁₃N₅O₃: C, 63.51; H, 3.65; N, 19.49. Found: C, 63.66; H, 3.59; N, 19.28.

2-Amino-7-(4-bromophenyl)-5-(4-chlorophenyl)pyrido[2,3-*d*] pyrimidine-4(3*H*)-one **3**k

This compound was obtained as yellow powder, mp >300 °C; IR (KBr): ν_{max} 3294, 3120, 1682, 1624, 1595, 1572, 1541, 1520, 1485, 1411, 1358, 1276, 1255, 1093, 1072, 1011, 959, 856, 838, 815, 758; ¹H NMR (DMSO-*d*₆): δ 6.60 (b, 2H, NH₂), 7.36 (d, *J* = 8.0 Hz, 2H, ArH), 7.42 (s, 1H, ArH), 7.56–7.60 (m, 4H, ArH), 8.22 (d, *J* = 8.4 Hz, 2H, ArH), 11.02 (b, 1H, NH). Anal. calcd. for C₁₉H₁₂BrClN₄O: C, 53.36; H, 2.83; N, 13.10. Found: C, 53.30; H, 2.69; N, 13.13.

2-Amino-5-(4-methoxylphenyl)-7-phenylpyrido[2,3-*d*] pyrimidine-4(3*H*)-one **3**l

This compound was obtained as yellow powder, mp >300 °C; IR (KBr): ν_{max} 3288, 3113, 1683, 1653, 1625, 1608, 1578, 1541, 1511, 1456, 1419, 1403, 1362, 1279, 1248, 1178, 1161, 1114, 1033, 861, 830, 775; ¹H NMR (DMSO-*d*₆): δ 3.81 (s, 3H, CH₃O), 6.66 (s, 2H, NH₂), 6.95 (d, J = 8.8 Hz, 2H, ArH), 7.37 (d, J = 8.8 Hz, 2H, ArH), 7.47–7.54 (m, 3H, ArH), 8.17–8.19 (m, 2H, ArH), 10.95 (b, 1H, NH). Anal. calcd. for C₂₀H₁₆N₄O₂: C, 69.76; H, 4.68; N, 16.27. Found: C, 69.92; H, 4.54; N, 16.20.

General Procedure for the 2-Amino-5,7-diaryl-5,8-dihydropyrido [2,3-d]pyrimidine-4(3H)-one 4

A dry 100-mL flask was charged with 1,3-diaryl- 2-propen-1-one 1 (2 mmol), 2,6-diamino-4-hydroxylpyrimidine 2 (2 mmol), KF/Al_2O_3

1904

Synthesis of 5,7-Diarylpyrido[2,3-d]pyrimidines

(100 mg), and EtOH (10 mL) under dry nitrogen, The mixture was stirred at 80 °C for 40–60 min. Then after being cooled to room temperature, the solid material was filtered off and the crude product was purified by recrystallization from 95% EtOH to give 4.

Data

2-Amino-7-(4-chlorophenyl)-5-phenyl-5,8-dihydropyrido[2,3-*d*] pyrimidine-4(3*H*)-one **4a**

This compound was obtained as yellow powder, mp 230–232 °C; IR (KBr): ν_{max} 3330, 2927, 1639, 1527, 1465, 1406, 1371, 1256, 1236, 1203, 1179, 1159, 1071, 1043, 1024, 1010, 822, 769, 700; ¹H NMR (DMSOd₆): δ 4.58 (d, J = 5.2 Hz, 1H, CH), 5.09 (d, J = 5.2 Hz, 1H, CH=), 6.16 (b, 2H, NH₂), 7.10–7.14 (m, 1H, ArH), 7.22–7.25 (m, 4H, ArH), 7.40 (d, J = 8.4 Hz, 2H, ArH), 7.52 (d, J = 8.4 Hz, 2H, ArH), 8.40 (b, 1H, NH), 10.18 (b, 1H, NH). Anal. calcd. for C₁₉H₁₅ClN₄O: C, 65.05; H, 4.31; N, 15.97. Found: C, 64.90; H, 4.51; N, 15.89.

2-Amino-5-(3,4-dimethoxylphenyl)-7-phenyl-5,8-dihydropyrido [2,3-*d*]pyrimidine-4(3*H*)-one **4b**

This compound was obtained as yellow powder, mp 235–236 °C; IR (KBr): ν_{max} 3566, 3356, 3141, 1716, 1653, 1558, 1541, 1517,1457, 1418, 1316, 1259, 1180, 1138, 1026, 793, 735, 700; ¹H NMR (DMSO-*d*₆): δ 3.69 (s, 3H, CH₃O), 3.70 (s, 3H, CH₃O), 4.52 (d, J = 5.2 Hz, 1H, CH), 5.08 (d, J = 5.2 Hz, 1H, CH=), 6.14 (b, 2H, NH₂), 6.74 (d, J = 8.4 Hz, 1H, ArH), 6.84 (d, J = 8.4 Hz, 1H, ArH), 6.91 (s, 1H, ArH), 7.31–7.37 (m, 3H, ArH), 7.49–7.51 (m, 2H, ArH), 8.28 (b, 1H, NH), 10.16 (b, 1H, NH). Anal. calcd. for C₂₁H₂₀N₄O₃: C, 67.01; H, 5.36; N, 14.88. Found: C, 66.87; H, 5.54; N, 14.80.

2-Amino-7-(4-chlorophenyl)-5-(2-thiophenyl)-5,8-dihydropyrido [2,3-*d*]pyrimidine-4(3*H*)-one **4**c

This compound was obtained as yellow powder, mp 253–255 °C; IR (KBr): ν_{max} 3629, 3474, 3224, 3085, 2929, 1665, 1602, 1482, 1385, 1319, 1257, 1231, 1219, 1186, 1172, 1126, 1105, 1092, 1046, 1013, 860, 849, 827, 792, 772, 695, 669; ¹H NMR (DMSO- d_6): δ 4.88 (d, J = 5.2 Hz, 1H, CH), 5.17 (dd, J = 5.2 Hz, J' = 1.6 Hz, 1H, CH=), 6.20 (b, 2H, NH₂), 6.87–6.90 (m, 2H, ArH), 7.23 (dd, J = 4.8 Hz, J' = 1.2 Hz,

1H, ArH), 7.43 (d, J = 8.8 Hz, 2H, ArH), 7.54 (d, J = 8.8 Hz, 2H, ArH), 8.56 (b, 1H, NH), 10.25 (b, 1H, NH). Anal. calcd. for C₁₇H₁₃ClN₄OS: C, 57.22; H, 3.67; N, 15.70. Found: C, 57.10; H, 3.68; N, 15.92.

2-Amino-5-(3-nitrophenyl)-7-phenyl-5,8-dihydropyrido[2,3-*d*] pyrimidine-4(3*H*)-one **4d**

This compound was obtained as yellow powder, mp >300 °C; IR (KBr): ν_{max} 3327, 2927, 2729, 1645, 1526, 1466, 1406, 1349, 1257, 1236, 1209, 1187, 1161, 1096, 1044, 942, 918, 896, 852, 807, 772, 738, 701; ¹H NMR (DMSO-*d*₆): δ 4.78 (d, *J* = 5.2 Hz, 1H, CH), 5.08 (d, *J* = 5.2 Hz, 1H, CH=), 6.26 (b, 2H, NH₂), 7.34–7.38 (m, 3H, ArH), 7.51–7.53 (m, 2H, ArH), 7.56–7.60 (m, 1H, ArH), 7.75 (d, *J* = 7.2 Hz, 1H, ArH), 8.03 (dd, *J* = 8.4 Hz, *J'* = 1.2 Hz, 1H, ArH), 8.07 (s, 1H, ArH), 8.54 (b, 1H, NH), 10.24 (b, 1H, NH). Anal. calcd. for C₁₉H₁₅N₅O₃: C, 63.15; H, 4.18; N, 19.38. Found: C, 63.27; H, 4.22; N, 19.10.

2-Amino-7-(4-chlorophenyl)-5-(3-nitrophenyl)-5,8-dihydropyrido [2,3-*d*]pyrimidine-4(3*H*)-one **4e**

This compound was obtained as yellow powder, mp >300 °C; IR (KBr): ν_{max} 3216, 2927, 1653, 1599, 1525, 1471, 1412, 1389, 1348, 1256, 1180, 1094, 1049, 1013, 840, 806, 740, 678. ¹H NMR (DMSO-*d*₆): δ 4.77 (d, J = 5.2 Hz, 1H, CH), 5.11 (d, J = 5.2 Hz, 1H, CH=), 6.26 (b, 2H, NH₂), 7.42 (d, J = 8.4 Hz, 2H, ArH), 7.53 (d, J = 8.4 Hz, 2H, ArH), 7.55–7.60 (m, 1H, ArH), 7.74 (d, J = 7.6 Hz, 1H, ArH), 8.01–8.06 (m, 2H, ArH), 8.63 (b, 1H, NH), 10.27 (b, 1H, NH). Anal. calcd. for C₁₉H₁₄ClN₅O₃: C, 57.66; H, 3.57; N, 17.69. Found: C, 57.60; H, 3.68; N, 17.54.

2-Amino-5-(4-methylphenyl)-7-phenyl-5,8-dihydropyrido[2,3-*d*] pyrimidine-4(3*H*)-one **4f**

This compound was obtained as yellow powder, mp 223–224°C; IR (KBr): ν_{max} 3451, 3386, 3269, 3059, 2922, 1638, 1536, 1462, 1372, 1257, 1233, 1178, 1091, 1043, 1025, 813, 794, 776, 766, 699; ¹H NMR (400 MHz, DMSO- d_6 , δ , ppm): 2.22 (s, 3H, CH₃), 4.52 (d, J = 5.2 Hz, 1H, CH), 5.06 (d, J = 5.2 Hz, 1H, CH=), 6.18 (b, 2H, NH₂), 7.03 (d, J = 8.0 Hz, 2H, ArH), 7.12 (d, J = 8.0 Hz, 2H, ArH), 7.30–7.35 (m, 3H, ArH), 7.47–7.50 (m, 2H, ArH), 8.29 (b, 1H, NH), 10.19 (b, 1H, NH). Anal. calcd. for C₂₀H₁₈N₄O: C, 72.71; H, 5.49; N, 16.96. Found: C, 72.65; H, 5.58; N, 16.87.

Synthesis of 5,7-Diarylpyrido[2,3-d]pyrimidines

2-Amino-5,7-diphenyl-5,8-dihydropyrido[2,3-d]pyrimidine-4(3H)-one 4g

This compound was obtained as yellow powder, mp 243–245 °C; IR (KBr): ν_{max} 3468, 3376, 3278, 3063, 2877, 1639, 1596, 1529, 1491, 1465, 1396, 1370, 1259, 1235, 1202, 1180, 1158, 1135, 1094, 1064, 1030, 877, 798, 771, 756, 699; ¹H NMR (DMSO- d_6): δ 4.58 (d, J = 5.2 Hz, 1H, CH), 5.06 (d, J = 5.2 Hz, 1H, CH=), 6.21 (b, 2H, NH₂), 7.10–7.13 (m, 1H, ArH), 7.24–7.39 (m, 6H, ArH), 7.48–7.50 (m, 3H, ArH), 8.34 (b, 1H, NH), 10.24 (b, 1H, NH). Anal. calcd. for C₁₉H₁₆N₄O: C, 72.13; H, 5.10; N, 17.71. Found: C, 72.28; H, 5.40; N, 17.62.

2-Amino-5-(4-chlorophenyl)-7-phenyl-5,8-dihydropyrido[2,3-*d*] pyrimidine-4(3*H*)-one **4h**

This compound was obtained as yellow powder, mp 228–230°C; IR (KBr): ν_{max} 3325, 2927, 1640, 1524, 1488, 1461, 1410, 1372, 1283, 1256, 1204, 1179, 1159, 1089, 1015, 936, 828, 795, 770, 699; ¹H NMR (DMSO-*d*₆): δ 4.60 (d, J = 5.2 Hz, 1H, CH), 5.04 (dd, J = 5.2 Hz, J' = 1.6 Hz, 1H, CH=), 6.19 (b, 2H, NH₂), 7.25–7.37 (m, 7H, ArH), 7.49 (d, J = 8.0 Hz, 2H, ArH), 8.38 (b, 1H, NH), 10.21 (b, 1H, NH). Anal. calcd. for C₁₉H₁₅ClN₄O: C, 65.05; H, 4.31; N, 15.97. Found: C, 64.88; H, 4.30; N, 16.09.

2-Amino-5-(4-methoxylphenyl)-7-phenyl-5,8-dihydropyrido[2,3-*d*] pyrimidine-4(3*H*)-one **4i**

This compound was obtained as yellow powder, mp 185–186 °C; IR (KBr): ν_{max} 3329, 3154, 2929, 2834, 1648, 1509, 1456, 1301, 1250, 1207, 1174, 1108, 1032, 852, 832, 799, 767, 746, 696; ¹H NMR (DMSO-*d*₆): δ 3.69 (s, 3H, CH₃O), 4.53 (d, J = 5.2 Hz, 1H, CH), 5.05 (dd, J = 5.2 Hz, J' = 1.6 Hz, 1H, CH=), 6.18 (b, 2H, NH₂), 6.81 (d, J = 8.4 Hz, 2H, ArH), 7.16 (d, J = 8.4 Hz, 2H, ArH), 7.32–7.37 (m, 3H, ArH), 7.48–7.53 (m, 2H, ArH), 8.28 (b, 1H, NH), 10.24 (b, 1H, NH). Anal. calcd. for C₂₀H₁₈N₄O₂: C, 69.35; H, 5.24; N, 16.17. Found: C, 69.20; H, 5.38; N, 16.22.

ACKNOWLEDGMENTS

We are grateful to the Natural Science Foundation (06AXL010) of Xuzhou Normal University for financial support.

REFERENCES

- (a) Clark, J. H. Fluoride ion as a base in organic synthesis. *Chem. Rev.* 1980, 80, 429–452;
 (b) Blass, B. E. KF/Al₂O₃-mediated organic synthesis. *Tetrahedron* 2002, 58, 9301–9320.
- (a) Ando, T.; Yamawaki, J.; Kawate, T.; Sumi, S.; Hanafusa, T. Fluoride salts on alumina as reagents for alkylation of phenols and alcohols. *Bull. Chem. Soc. Jpn.* **1982**, *55*, 2504–2507; (b) Yamawaki, J.; Ando, T.; Hanafusa, T. N-Alkylation of amides and N-heterocycles with potassium fluoride on alumina. *Chem. Lett.* **1981**, *8*, 1143–1146.
- Wang, X. S.; Zeng, Z. S.; Shi, D. Q.; Wei, X. Y.; Zong, Z. M. KF/alumina catalyzed one-pot synthesis of pyrido[2,3-d] pyrimidine derivatives. *Synth. Commun.* 2004, 34, 4331–4438; (b) Wang, X. S.; Zeng, Z. S.; Shi, D. Q.; Wei, X. Y.; Zong, Z. M. Three component one-pot synthesis of pyrido[2,3d]pyrimidine derivatives catalyzed by KF/alumina. *Synth. Commun.* 2005, 35, 1921–1927.
- Rosowsky, A.; Mota, C. E.; Queener, S. F. Synthesis and antifolate activity of 2,4-diamino-5,6,7,8-tetrahydropyrido[4,3-*d*]pyrimidine analogs of trimetrexate and piritrexim. *J. Heterocycl. Chem.* 1995, *32*, 335–340.
- Nargund, L. V. G.; Reddy, Y. S. R.; Jose, R. Synthesis and antibacterial activity of pyrido[1,2-a]pyrimidin-4(1H)-ones. *Indian Drugs* 1991, 29, 45–46.
- Donkor, I. O.; Klein, C. L.; Liang, L.; Zhu, N.; Bradley, E.; Clark, A. M. Synthesis and antimicrobial activity of 6,7-annulated pyrido[2,3-d]pyrimidines. J. Pharm. Sci. 1995, 84, 661–664.
- Kolla, V. E.; Deyanov, A. B.; Nazmetdinov, F. Y.; Kashina, Z. N.; Drovosekova, L. P. Examining the anti-inflammatory and analgesic activity of 2-substituted 1-aryl-6-carboxy (carboethoxy)-7-methyl-4-oxo-1,4-dihydropyrido[2,3-d] pyrimidines. *Khim.-Farm. Zh.* 1993, *27*, 29–30.
- Satti, N. K.; Suri, K. A.; Sun, O. P.; Kapil, A. Synthesis and antileishmanial activity of some pyrido[1,2-a]pyrimidines and phenanthrolines. *Indian* J. Chem. Sect. B. 1993, 32B, 978–980.
- Deyanov, A. B.; Niyazov, R. K.; Nazmetdinov, F. Y.; Syropyatov, B. Y.; Kolla, V. E.; Konshin, M. E. Amides, nitriles of 2-arylamino-5-carboxy(carbethoxy)-6-methylnicotinic acids, and 1-aryl-6-carbethoxy-7-methyl-4-oxy-1,4-dihydropyrido-[2,3-d]pyrimidines: Synthesis and biological activity. *Khim.-Farm. Zh.* 1991, 25, 26–28.
- Saladowska, H.; Bartoszko-Malik, A.; Zawisza, T. Synthesis and properties of new derivatives of ethyl 7-methyl-2,4-dioxo-1,2,3,4-tetrahydropyrido [2,3-d]pyrimidine-5-carboxylate. *Farmaco* 1990, 45, 101–110.
- (a) Subba, R. A.; Mitra, R. B. Synthesis of heterocycles, part IV: Pyrido [2,3-d]pyrimidines. *Indian J. Chem.* 1981, 20B, 159–160; (b) Wawzonek, S. Synthesis of pyrido[2, 3-d]pyrimidine-2,4-diones. J. Org. Chem. 1976, 41, 3149–3151.
- 12. Fan, N. T. *The Handbook of Organic Synthesis*; Beijing Institute of Technology Press: Beijing, 1995; p. 758.

1908

Copyright of Synthetic Communications is the property of Taylor & Francis Ltd and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use.