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In the last decade organocatalysis has developed into an
essential third branch of asymmetric catalysis that now
complements the fields of metal and enzyme catalysis and
provides widely applicable methods for efficient organic
synthesis.[1,2] Especially the combination and integration in
cooperative catalysis such as domino reactions[3] and the
recent efforts in combining organocatalysis with metal
activation[4] demonstrate that the potential of organocatalysis
for the development of new activation modes in selective
organic synthesis is still not fully uncovered. Moreover,
photocatalysis with visible light[5] is undoubtedly one of the
emerging strategies to meet the increasing demand for more
sustainable chemical processes. Building on seminal results
employing photoinduced electron-transfer processes,[6] which
often required UV light, a number
of powerful methods have been
developed recently applying organ-
ometallic complexes such as [Ru-
(bpy)3]

2+ and [Ir(ppy)2(dtb-bpy)]+

(bpy = bipyridine, ppy = 2-phenyl-
pyridine, dtb-bpy = 4,4’-di-tert-
butyl-2,2’-bipyridine).[5, 7] Of partic-
ular note is the cooperative combi-
nation of photocatalysis with an
organocatalytic cycle[8] offering one
of the rare catalytic methods for the
enantioselective a-alkylation of
aldehydes.[9,10]

However, the high cost and
potential toxicity of the ruthenium
and iridium salts as well as their
limited availability in the future are
disadvantages of these metal-based
methods. Stimulated by the attrac-
tiveness of using green light, the
most abundant part of solar light, we
speculated that a number of red to
orange dyes could also be used
successfully in photoredox catalysis,

and the choice of appropriate reaction conditions would
additionally allow for the cooperative merging with asym-
metric organocatalysis.

Herein, we present a versatile metal-free, purely organic
photoredox catalysis with visible light. As a first example of
our strategy we demonstrate the successful application of
simple, inexpensive organic dyes as effective photocatalysts
for the cooperative organocatalytic asymmetric intermolecu-
lar a-alkylation of aldehydes.[11]

Initial studies began with the screening of a number of red
and orange dyes (Scheme 1) for the photocatalytic reductive
dehalogenation of a-bromoacetophenone (E0 =�0.49 V
vs. SCE)[12] as a test reaction (Table 1).[6c,13] Following the
observation that classic organic dyes show striking similarities

to the widely employed organometallic ruthenium- and
iridium-containing photosensitizers, we chose our test candi-
dates based on their lmax, their redox potential E0, and their
precedented use as photosensitizers for semiconductor-based
photocatalysis or dye solar cells.[14, 15]

To achieve this desired transformation we investigated the
conditions reported by Stephenson and co-workers for the
photocatalytic dehalogenation of activated benzylic halides in
the presence of [Ru(bpy)3]

2+. In accordance with their results

Scheme 1. Absorption and redox properties of red and orange organic dyes used as photoredox
catalysts (lmax (CH3CN) in nm; 3 in CH2Cl2; E0 (dye/dyeC�) in V vs. SCE)[16] in comparison with
common organometallic photocatalysts. SCE: saturated calomel electrode.
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we noticed that also for our a-carbonyl bromide substrate the
use of 1.1 equiv of Hantzsch ester 7 as a hydride source was
beneficial to avoid potential side reactions.

While under these conditions a slow background reaction
also leads to detectable amounts of the debrominated product
(Table 1, entry 1), most of the simple organic dyes were
effective for this transformation under optimized conditions,
albeit with different yields. Whereas light proved essential for
this transformation (Table 1, entry 8), the reaction can be
conducted using different light sources. Fast conversion is
observed in ambient sunlight (Table 1, entry 9), however with
a slight decrease in product yield, potentially because of side
reactions that may occur at the higher reaction temperature
and at the UV portion of the solar spectrum.

Upon irradiation with green light[17] from high-power
LEDs with an emission of l� 530 nm, bleaching of the dyes
was minimized but still observable for alizarin 4, nile red (5),
and rhodamine B (6) indicating the slow degradation of the
photosensitizer. However, perylene 3 and the xanthene-based
dyes 1 and especially eosin Y (2) proved to be sufficiently
stable under the reaction conditions. Using eosin 2 as the
photocatalyst affords the defunctionalized product in a very
clean, high-yielding reaction as determined by both GC and
NMR studies using appropriate internal standards.[18] Owing
to its simplicity and favorable redox and photochemical
properties eosin Y (2) was selected as the photocatalyst for
our subsequent studies.[19]

A number of dehalogenations (Table 2) under our opti-
mized conditions showed that the reaction is also tolerant to
aromatic residues with electron-withdrawing substituents
(Table 2, entry 2). Polar functional groups such as esters are
tolerated and exclusive chemoselectivity for a-activated
substrates over aryl halides was observed for the defunction-
alization (Table 2, entries 3 and 4). In all cases the obtained
yields of the isolated products are equal or better than those
for the reported transition-metal-catalyzed counterpart[13]

proving the effectiveness of our operationally simple, inex-
pensive conditions.[20] It also should be noted that the
irradiation power of the employed LEDs and therefore the
applied energy to the reaction system is drastically less than
that of sunlight or typically applied fluorescent lightbulbs.[17]

Next we turned our attention to the application of organic
dyes as photoredox catalysts in the asymmetric organocata-
lytic C�C bond formations developed by MacMillan et al.[8]

As highlighted in Table 3 the transformations were found to
be both high-yielding and enantioselective when a combina-
tion of eosin Y (2) and MacMillan�s imidazolidinone catalyst
17 were applied. Even though our organic-dye-sensitized
conditions require somewhat longer reaction times,[21] we did
not observe product racemization, which further illustrates
the previously elucidated strict differentiation of the trans-
substituted catalyst between a-methylene aldehydes and a-
substituted products.[22] The enantioselectivity depends on the
reaction temperature (Table 3, entries 1, 4, and 5) and �5 8C
was found to be optimal. Performing the reaction under direct
sunlight led to faster conversion, albeit with a slight erosion in
enantioselectivity presumably because of the increased reac-
tion temperature (roughly 30 8C).

Our methodology is also compatible with the stereospe-
cific incorporation of polyfluorinated alkyl substituents
(Table 3, compound 21), which are important elements in
drug design to modulate specific properties.[23]

At present, the mechanistic picture of this reaction is not
complete. It is evident, however, that eosin Y acts as a
photoredox catalyst after its excitation with visible light and
population of its more stable triplet state finally enabling
single-electron transfer (SET; Scheme 2).[24] Similar to the
chemistry of Ru2+* both reductive and oxidative quenching
are known for excited eosin Y 3EY*.[25] Because our results
are comparable to those of MacMillan et al. we presume that

Table 1: Dehalogenation of a-bromoacetophenone.

Entry[a] Dye catalyst Yield [%][b]

1 none 40
2 [Ru(bpy)3

2+] (8)[c] 100
3 alizarin red S (4) 36
4 perylene 3 100
5 nile red (5) 100
6 fluorescein (1) 100
7 eosin Y (2) 100
8 eosin Y (2) 3[d]

9 eosin Y (2) 80[e]

10 rhodamine B (6) 80

[a] Standard conditions as described above. [b] GC yield determined
using a calibrated internal standard. [c] A blue high-power LED
(l�455 nm) was used instead. [d] Reaction was performed in the dark.
[e] Reaction was conducted in sunlight; full conversion was reached after
1 h of irradiation.

Table 2: Photocatalytic reductive dehalogenation with eosin Y using
Hantzsch ester 7 as a reduction equivalent.

Entry Substrate Product Yield [%][a]

1 100[b]

2 83

3 78 (78)[c]

4 89 (88)[c]

[a] Yield of isolated products. [b] Yield determined by GC and NMR using
appropriate calibrated internal standards. [c] Yields in brackets as
reported in Ref. [13].
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eosin Y acts a reductant—relying on the sacrificial oxidation
of a catalytic amount of the enamine as the initial electron
reservoir[26]—to furnish the electron-deficient alkyl radical by
means of SET with an alkyl halide. Addition of this radical to
the electron-rich olefin of the enamine that is simultaneously
generated within the organocatalytic cycle merges both
activation pathways. In the catalytic cycle the subsequent
oxidation of the amino radical to the iminium species
provides the electron for the reductive quenching of the
dye�s excited state 3EY*.[27]

Having successfully demonstrated the versatility of simple
organic dyes for photoredox catalysis we directed our efforts
to the determination of the quantum yield of the reaction to
gain further information on its efficiency.[28] We reproducibly
found values in the range of 6 to 9% indicating a more
complex reaction course than the proposed simplified mech-
anistic platform. To further prove this assumption we
conducted an additional GC-based yield determination after
keeping the initially irradiated sample in the dark for 3 h and
6 h. Here we found a significant increase of the yield which
might stem from the involvement of an amplifying “dark
reaction”.

In summary, we have developed a metal-free method
using inexpensive eosin Y as a powerful photocatalyst for
various photoredox transformations with a performance
comparable to that of noble-metal catalysts. The discovery
of a purely organic asymmetric cooperative photoredox
organocatalysis will facilitate applications of these useful
reactions in organic synthesis significantly as xanthene dyes
are readily accessible, cheap, and less toxic than transition-
metal complexes. This extension of highly versatile photo-
redox catalysis to classic organic dyes is expected to find
broadly useful across many applications.
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