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Abstract: An efficient short enantioselective total synthesis of (–)-
linderol A was achieved via a five-step reaction with 30% overall
yield, starting from 4-methoxyphloroacetophenone.
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(–)-Linderol A [(–)-1, Figure 1], a monoterpene-substitut-
ed chalcone with four successive asymmetric carbons at
the 6 (R), 5a (R), 9a (S) and 9 (R) positions, was isolated
in 1995 from the fresh bark of Lindera umbellata (Lau-
raceae) by Sashida and co-workers.1 They also reported
the potent inhibitory activity of this natural product on the
melanin biosynthesis of B-16 melanoma cells without
causing any cytotoxicity on the cultured cells.1

Figure 1 Structure of (–)-linderol A [(–)-1]

Its first total synthesis in racemic series was reported by
Ohta and co-workers.2 The critical step of their strategy
was a tandem reaction of a 3-ethoxycarbonylcoumarin de-
rivative with dimethylsulfoxonium methylide to give the
2-ethoxycarbonylcyclopenta[b]benzofuran-3-ol deriva-
tive. Further they applied a stereoconvergent approach to
dibenzofuran derivatives from benzo[b]cyclobuta[d]pyr-
an derivatives to the second-generation synthesis of (±)-
linderol A.3

Although they considerably improved the synthetic route
to linderol A by decreasing the number of steps from
twenty to twelve and increasing the overall yield from
7.64% to 25%, to the best of our knowledge, no asymmet-
ric synthesis of (–)-linderol A has ever been described.

To fulfill this goal, we envisaged the total synthesis of the
optically active natural product in a minimum of steps,
starting from an easily available commercial reagent. Our
retrosynthetic approach is outlined in Scheme 1. The
hexahydrodibenzofuran ring can be obtained from a ste-

reospecific intramolecular epoxide opening with pheno-
late anion (via ester hydrolysis of 2) before the
introduction of the chalcone chain.

The endocyclic epoxide 2 could be formed from acetylat-
ed 3 using an epoxidation that would be diastereoselective
because of the steric bulk on the adjacent side of the alk-
ene. Furthermore, the first key step of our strategy is a ter-
penylation of 4-methoxyphloroacetophenone (4) with an
allylic cation generated from the suitable chiral monoter-
pene (–)-a-phellandrene.

Scheme 1 Retrosynthetic approach

Terpenylation using (–)-a-phellandrene was previously
described by Crombie and co-workers for the synthesis of
(3S,4R)-(+)-linderatin, a monoterpenylated dihydrochal-
cone.4 The procedure was slightly modified for our
reagent (Scheme 2): treatment of 4-methoxyphloroace-
tophenone (4)5 with (–)-a-phellandrene in the presence of
p-toluenesulfonic acid in toluene at room temperature for
one hour gave the monoterpenylated compound 3 in 76%
yield after silica gel column chromatography. As expect-
ed, the relative configuration between H3 and H4 is trans
(confirmed by 1H NMR data: J3,4 = 8.8 Hz).

The corresponding diacetate product 5 was prepared in
good yield from 3 by acetylation in pyridine at 70 °C for
24 hours. Compound 5 was characterized by its spectro-
scopic data (NMR and MS) and its optical rotation was
also determined.6

To finalize our synthesis, we have been inspired by the
works developed by Razdan et al. to build the chosen tri-
cyclic system with control of asymmetric centers (see
Scheme 3).7 Diacetate compound 5 was allowed to react
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at room temperature with m-chloroperbenzoic acid in
methylene chloride for 1 hour, giving a mixture of the two
diastereomeric epoxides 2 and 2¢ (94%), favoring the de-
sired compound 2 in a ratio of 2.6:1 (evaluated by 1H
NMR spectrum). According to this diastereomeric ratio,
the yield for 2 is actually 68%. Epoxidation of 5 occurs
preferentially on the less substituted face; the low selec-
tivity can be explained by the presence of the isopropyl
group on the same face.

The nature of endocyclic epoxides (2 and 2¢) was correlat-
ed on the basis of the 1H NMR spectra: at d = 3.07 and
3.61 ppm (d, 1 H, J = 10.7 Hz, C3H) and at d = 2.82 and
2.92 ppm (s, 1 H, C2H). These data were in agreement
with the literature.7

Scheme 3 Ring closure via epoxide opening

The unseparated epoxides 2 and 2¢, in the presence of 2%
sodium hydroxide in methanol–water (1:1) at room tem-
perature for one hour, led in good yields to the hexahy-
drodibenzofuran derivative 6 after deacetylation and
resulting phenolate attack on the oxirane.

The transformation of 2 to 6 involves an intramolecular
trans opening of the epoxide at the less hindered site, fix-
ing the relative stereochemistry of the fused furan ring at
C5a and C9a protons as cis. The configuration of the C6
quaternary carbon bearing the hydroxyl group is R. Com-
pound 6 was fully characterized by its spectroscopic data
(IR, NMR, and MS).8 The two bridgehead hydrogens ex-

hibited a 3J5a,9a coupling constant of 5.5 Hz suggesting co-
planarity.

Considering epoxide 2¢ as a nonproductive starting mate-
rial for ring opening, the exact yield is 87% starting from
2 (see Scheme 3).

(–)-Linderol A was finally obtained after introduction of
the chalcone side chain by treatment of 6 with benzalde-
hyde in the presence of NaOH in methanol at 80 °C
(66%).

The spectroscopic properties of the synthetic (–)-1 (NMR
and MS) were identical to those previously reported1,2 and
the optical rotation ([a]D –27, c = 0.833, CHCl3) was in
agreement with that reported for the natural compound
{[a]D –22.7 (CHCl3; no precise concentration given in the
literature)}.1

Yamashita et al. have confirmed the absolute configura-
tion of (–)-1 after racemic resolution and found –32.8 (c
1.0, CHCl3) as the specific rotation.9

In conclusion, we have completed the first enantioselec-
tive total synthesis of (–)-linderol A after five steps in
30% overall yield. Two key reactions have been used, ter-
penylation and a stereospecific intramolecular epoxide
opening with a phenolate anion.

Improvement of each reaction step, and especially the
asymmetric epoxidation, is currently under investigation
in order to optimize our synthesis.
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