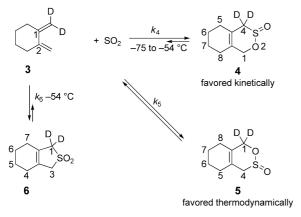
Hetero-Diels–Alder Reaction

Equilibrium and Kinetic Deuterium Isotope Effects on the Hetero-Diels-Alder Addition of Sulfur Dioxide**

*Frédéric Monnat, Pierre Vogel,** *Rubén Meana, and José A. Sordo**

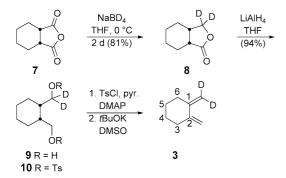
At room temperature butadiene and alkyl-substituted 1,3dienes that can adopt the *s-cis* conformation add to sulfur dioxide giving the corresponding sulfones (2,5-dihydrothiophene-1,1-dioxides),^[1] which are about 10 kcalmol⁻¹ more stable than the isomeric sultines (3,6-dihydro-1,2-oxathiin-2oxides).^{[2][3]} In the presence of acid catalysts and at temperatures below -40 °C the latter equilibrate with the 1,3-dienes, which results in hetero-Diels–Alder additions that are much faster than the corresponding cheletropic additions.^[4] The hetero-Diels–Alder addition of 1,2-dimethylidenecyclohexane (**1**) to SO₂ does not require promotion by an acid [Eq. (1)]. However, we have demonstrated that the reaction is


- [*] Prof. Dr. P. Vogel, Dr. F. Monnat Institute of Molecular and Biological Chemistry Swiss Institute of Technology, BCH 1015 Lausanne-Dorigny (Switzerland) Fax: (+41) 21-693-93-75 E-mail: pierre.vogel@epfl.ch.
 Prof. Dr. J. A. Sordo, R. Meana Laboratorio de Química Computacional Departamento de Química Física y Analítica Universidad de Oviedo Oviedo, Principado de Asturias (Spain) Fax: (+34) 98-523-78-50 E-mail: jasg@correo.uniovi.es
- [**] This work was supported by the Swiss National Science Foundation, the Centro Svizzero di Calcolo Scientifica (Manno), the SOCRATES (Oviedo/EPFL) program, the Société Vaudoise des Sciences Naturelles (Lausanne), and DGI (BQU2001-3600-C02-01, Madrid, Spain).
- Supporting information for this article is available on the WWW under http://www.angewandte.org or from the author.

3924 © 2003 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

DOI: 10.1002/anie.200351732

Angew. Chem. Int. Ed. 2003, 42, 3924-3927


promoted by SO₂ itself (rate law of second order in [SO₂]).^[5] The unstable sultine **2** resulting from that cycloaddition has been crystallized and analyzed by X-ray diffraction studies at -100 °C.^[6] High-level quantum calculations^[6,7] have suggested that the hetero-Diels–Alder addition of SO₂ to 1,2-dimethylidenecyclohexane is concerted and asynchronous, with the C–S bond formed to a greater extent than the C–O bond in the transition state. We confirm this hypothesis by measuring the kinetic deuterium isotope effect^[8] of the reactions of **1** and its dideuterated derivative **3** with SO₂. Diene **3** equilibrates with the two regioisomeric adducts **4** and **5** (Scheme 1). The experimental kinetic isotope effects are

Scheme 1. The reaction of SO₂ with 3.

compared with those estimated by quantum calculations. We have been able also to measure the deuterium isotope effect on the equilibrium $4 \rightleftharpoons 5$ and have found that it is opposite to the kinetic deuterium isotope effect on the regioselectivity of the addition. This is the first example of Diels-Alder additions for which kinetic and equilibrium isotope effects are compared.

Diene **3** (98 % D₂) was prepared as outlined in Scheme 2, starting with the reduction of *cis*-cyclohexane-1,2-dicarboxylic anhydride (**7**) with one equivalent of NaBD₄ in THF at 0°C. The resulting lactone **8** was reduced with LiAlH₄ to give diol **9**. Esterification with 4-toluenesulfonyl chloride (TsCl) gave **10**, which underwent double elimination of toluenesulfonic acid to provide **3** (26 % overall yield based on **7**).

Scheme 2. Synthesis of diene *3*. DMAP=dimethylaminopyridine, DMSO=dimethyl sulfoxide, pyr.=pyridine.

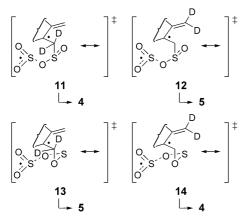
Angew. Chem. Int. Ed. 2003, 42, 3924-3927

www.angewandte.org

The rate laws d[**4**]/dt = k_4 [**3**][SO₂]², d[**5**]/dt = k_5 [**3**][SO₂]² (formation of regioisomeric sultines **4**, **5**), and d[**6**]/dt = k_6 [**3**] [SO₂]² (formation of sulfolene **6**) were followed between -75 and -54 °C and with a 10- to 40-fold excess of SO₂ in CD₂Cl₂. The third-order rate constants k_4 , k_5 , and k_6 are reported in Table 1. One finds a kinetic regioselectivity $k_4/k_5 = 1.11 \pm 0.01$ at -75 °C and 1.0798 ± 0.0003 at -54 °C. The thermodynamic

Table 1: Third-order rate constants $[M^2 s^{-1}]$ determined by ¹H NMR spectroscopy with toluene as an internal reference.

Т [К]	$k_4 \times 10^6$	$k_{5} \times 10^{6}$	$k_{6} \times 10^{9}$	k ₄ /k ₅
198	2.13 ± 0.15	1.91 ± 0.13	76.9 ± 0.5	1.11 ± 0.001
219.1	4.03 ± 0.16	3.73 ± 0.15	338 ± 3	1.0798 ± 0.003


regioselectivity given by [4]/[5] could not be measured at $-75 \,^{\circ}\text{C}$ because equilibrium was reached too slowly. At $-54 \,^{\circ}\text{C}$, however, it amounts to $[4]/[5] = 0.73 \pm 0.04$ (no change in this product ratio after more than 300 h at $-54 \,^{\circ}\text{C}$).

We have also measured the relative rate constants for the disappearance of dienes 1 and 3. The ratio of rate constants $k_2/2 k_4$ and $k_2/2 k_5$ give the kinetic deuterium isotope effect for the formation of sultines 4 and 5, respectively, where k_2 is the rate constant for the appearance of non-deuterated sultine 2. This was done by following the reactions of a 1:1 mixture of dienes 1 and 3 ([1+3] < 0.2 M, 2.5–3 M SO₂ in CD₂Cl₂) at $-75 \,^{\circ}$ C by ¹³C NMR spectroscopy (toluene as internal reference; because of the vicinal deuteration, the chemical shifts of C1 in 1 and 2 are different). The ratio $k_4/k_5 = 1.11 \pm 0.01$ (Table 1) led to $k_2/2 k_4 = 0.89 \pm 0.04 (k_H/k_D for the formation of 4)$ and $k_2/2 k_5 = 0.99 \pm 0.05 (k_H/k_D for the formation of 5)$ at $-75 \,^{\circ}$ C.

Equilibrium deuterium isotope effects have shown that C-D bonds at $sp^{3}(C)$ centers are lower in energy than those at sp²(C) centers .^[9] It was thus expected that the transition structure 11 (in which the C-S bond is formed to a greater extent than the C-O bond) should be more stable than 12 and the corresponding transition structure arising from the nondeuterated dienes. On the contrary, if the C-O bond should be formed first, transition structure 13 is expected to be more stable than 14 and the transition structures of the SO₂ addition to 1 (Scheme 3). Our experimental data $(k_4/k_5 = 1.1, k_2/2k_4 =$ 0.89, and $k_2/2k_5 = 0.99$ at -75 °C) are consistent only with transition structure 11, as predicted by quantum calculations.^[2] Although the calculations did not locate any intermediates along the reaction hypersurface of the hetero-Diels-Alder addition of butadiene $+2SO_{2}$ ^[5] we cannot exclude formally that 11 and 12 equilibrate with diradical or zwitterionic intermediates before the formation of sultines 4 and 5, respectively.

Isotope effects were computed by means of the QUIVER program,^[10] which employs the Bigeleisen–Mayer formulation^[11] within the transition-state-theory approximation.^[12] Scaling factors of 0.943 [MP2/6-31G(d)] and 0.9614 [B3LYP6-31G(d)] were used in the calculations.^[13] The kinetic deuterium isotope effects calculated are reported in Table 2 for the hetero-Diels–Alder addition of $1/3 + 2SO_2$ and of butadiene (15)/1,1-dideuterobutadiene (16) $+ 2SO_2$ following concerted mechanisms.

Communications

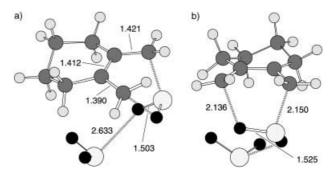
Scheme 3. Transition structures leading to products 4 and 5.

Calculations predict smaller $k_{\rm H}/k_{\rm D}$ values than those found experimentally, but the calculated kinetic regioselectivities k_4/k_5 are similar to the experimental values. This confirms that the C–S bond is formed to a greater extent than the C–O bond in the transition state of the hetero-Diels– Alder additions of sulfur dioxide (see Figure 1). Calculations made for the butadiene + SO₂ reaction predict the C–O bond to be formed to a greater extent in the transition state of the concerted mechanism. For the reaction involving a diradical intermediate 'OSOCH₂CH=CH₂CH₂' calculations lead to k_4/k_5 values much smaller than those observed (Table 3). Furthermore, the "energy of concert"^[14] (the difference between the activation energies of the concerted and diradical transition states) is ca. 13 kcal mol⁻¹ in favor of the concerted mechanism.

The theoretical prediction for the thermodynamic regioselectivity at the B3LYP6-31G(d) level of theory (0.758 and 0.718 for equilibria involving one and two molecules of SO₂,

Table 2: Calculated kinetic deuterium isotope effects for concerted hetero-Diels–Alder additions.

Reaction	Ratio		T [°C]	
		-75	-54	+25
$1/3 + 2SO_2 \rightarrow [11] \rightarrow 4 + SO_2$	$k_{\rm H}/k_{\rm D}^{\rm [a]}$	0.692	0.725	0.816 ^[b]
	(0.714)	(0.746)	(0.830) ^[c]	
$1/3 + 2SO_2 \rightarrow [12] \rightarrow 5 + SO_2 k'_H/k'_D$	0.776	0.801	0.869 ^[b]	
	(0.734)	(0.763)	(0.841) ^[c]	
Kinetic regioselectivity ^[1] :		1.12	1.10	1.06
$15/16 + 2SO_2 \rightarrow [11'] \rightarrow 4' + SO_2$	$k_{\rm H}/k_{\rm D}^{\rm [e]}$	0.707	0.741	0.829 ^[b,j]
	(0.673)	(0.709)	(0.806) ^[c]	
	0.658	0.695	0.796 ^[f]	
	(0.755)	(0.785)	(0.865) ^[g]	
$15/16 + 2SO_2 \rightarrow [12'] \rightarrow 5' + SO_2$	$k'_{\rm H}/k'_{\rm D}{}^{[h]}$	0.693	0.729	0.824 ^[b]
	(0.721)	(0.754)	(0.842) ^[c,k]	
	0.748	0.780	0.861 ^[f]	
	(0.647)	(0.685)	(0.789 ^[g]	


[a] $k_{\rm H}/k_{\rm D} \doteq k_1/2 k_4$. [b] B3LYP6-31G(d). [c] B3LYP6-31G(d) for the reaction with only one equivalent of SO₂. [d] $k'_{\rm H}/k'_{\rm D} \doteq k_1/2 k_5$. [e] $k_{\rm H}/k_{\rm D} \doteq$ butadiene + 2SO₂ vs. 1,1-D₂butadiene + 2SO₂ giving a sultine analogous to 4. [f] MP2/6-31G(d). [g] MP2/6-31G(d) for reaction with only one equivalent of SO₂. [h] $k'_{\rm H}/k'_{\rm D} \doteq$ butadiene + 2SO₂ vs. 1,1-D₂-butadiene + 2SO₂ giving sultine analogous to 5. [i] $k'_{\rm H}/k'_{\rm D}(5)/k_{\rm H}/k_{\rm D}(4)$ and $k'_{\rm H}/k'_{\rm D}(5')/k_{\rm H}/k_{\rm D}(4')$; calculated (B3LYP6-31G(d) including zero-point energy). [j] Energy barrier: 4.8 kcal mol⁻¹. [k] Energy barrier: 12.2 kcal mol⁻¹.

3926 © 2003 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

Table 3: Calculated kinetic deuterium isotope effects for nonconcerted hetero-Diels–Alder addition of SO_2 + butadiene \rightarrow ['OSOCH₂CHCH-CH₂]^[a].

21				
Reaction	Ratio	<i>T</i> [°C]		
		-75	-54	+25
15, 16 + SO ₂ → 4 ′	$k_{\rm H}/k_{\rm D}^{\rm [b]}$	1.086	1.075	1.046 ^[c]
15 , 16 + SO ₂ → 5 ′	$k'_{\rm H}/k'_{\rm DD}$ ^[d]	0.568	0.610	0.727 ^[c]
Kinetic regioselectivity ^[e] :		0.52	0.56	0.69

[a] Calculated (B3LYP6-31G(d)) energy barrier: 25.3 kcal mol⁻¹, relative stability of the diradical intermediate: 18.5 kcal mol⁻¹, second energy barrier: 19.1 kcal mol⁻¹. [b] $k_{\rm H}/k_{\rm D} = k(15 + SO_2)/k(16 + SO_2 \rightarrow 4')$. [c] B3LYP6-31G(d). [d] $k'_{\rm H}/k'_{\rm DD} = k(15 + SO_2)/k(16 + SO_2 \rightarrow 5')$. [e] Ratio $(k'_{\rm H}/k'_{\rm DD})/(k_{\rm H}/k_{\rm D})$.

Figure 1. Calculated transition structure for the hetero-Diels–Alder addition $1 + 2SO_2$. a) Top view, b) side view. Large pale balls = sulfur, small black balls = oxygen, medium gray balls = carbon, small pale balls = hydrogen. Distances in Å.

respectively) agrees rather well with the experimental measurements (0.73 ± 0.04).

The equilibrium deuterium isotope effect that renders **5** more stable than **4** can be interpreted in terms of the preference for dueterium to substitute at C–H moieties with

the highest stretching vibration energy. In sultines **4** and **5** the acidifying effect of the S=O moiety makes the C4–H bond weaker than the C1–H bond. Thus deuterium prefers C1, rendering **5** more stable than **4**. The kinetic isotope effects are not dominated by the thermodynamic isotope effects (Dimroth principle: $\Delta H^{\pm} = \alpha \Delta H + \beta$), thus reinforcing the validity of the experimental test used here to define the asynchronous character of the concerted hetero-Diels–Alder additions of SO₂.^[14]

Received: April 23, 2003 [Z51732]

Keywords: ab initio calculations · cycloaddition · heterocycles · isotope effects · sulfur dioxide

- G. de Bruin, Proc. K. Ned. Akad. Wet. 1914, 17, 585; H. J. Backer, J. Strating, Recl. Trav. Chim. Pays-Bas 1943, 62, 815.
- B. Deguin, P. Vogel, J. Am. Chem. Soc. 1992, 114, 9210; T. Fernández, D. Suárez, J. A. Sordo, F. Monnat, E. Roversi, A. Estrella de Castro, K. Schenk, P. Vogel, J. Org. Chem. 1998, 63, 9490; F. Monnat, P. Vogel, J. A. Sordo, Helv. Chim. Acta 2002, 85, 712.
- [3] For early examples of hetero-Diels-Alder additions of SO₂, see: R. F. Heldeweg, H. Hogeveen, J. Am. Chem. Soc. 1976, 98, 2341; T. Durst, L. Tréteault-Ryan, Tetrahedron Lett. 1978,

www.angewandte.org

2353; see also: J.-H. Liu, A.-T. Wu, M.-H. Huang, C.-W. Wu, W.-S. Chong, J. Org. Chem. 2000, 65, 3395.

- [4] E. Roversi, F. Monnat, P. Vogel, K. Schenk, P. Roversi, *Helv. Chim. Acta* 2002, 85, 733; E. Roversi, R. Scoppelliti, E. Solari, R. Estoppey, P. Vogel, P. Braña, B. Menéndez, J. A. Sordo, *Chem. Eur. J.* 2002, 8, 1336.
- [5] T. Fernández, J. A. Sordo, F. Monnat, B. Deguin, P. Vogel, J. Am. Chem. Soc. 1998, 120, 13276.
- [6] D. Markovic, E. Roversi, R. Scoppelliti, P. Vogel, R. Meana, J. A. Sordo, *Chem. Eur. J.*, 2003, in press.
- [7] D. Suárez, T. L. Sordo, J. A. Sordo, J. Am. Chem. Soc. 1994, 116, 763; D. Suárez, T. L. Sordo, J. A. Sordo, J. Org. Chem. 1995, 60, 2848.
- [8] For examples of kinetic deuterium isotope effects used to establish the synchronicity or asynchronicity of concerted Diels-Alder reactions: M. Taagepera, E. R. Thornton, J. Am. Chem. Soc. 1972, 94, 1168; J. J. Gajewski, K. B. Petersen, J. R. Kagel, Y. C. J. Huang, J. Am. Chem. Soc. 1989, 111, 9078; D. A. Singleton, S. R. Merrigan, B. R. Beno, K. N. Houk, Tetrahedron Lett. 1999, 40, 5817; D. A. Singleton, S. R. Merrigan, A. A. Thomas, Tetrahedron Lett. 1999, 40, 639; K. N. Houk, J. González, Y. Li, Acc. Chem. Res. 1995, 28, 81; N. Chronakis, M. Orfanopoulos, Org. Lett. 2001, 3, 545.
- [9] J. J. Gajewski, N. D. Conrad, J. Am. Chem. Soc. 1979, 101, 6693.
- [10] W. Saunders, K. E. Laidig, M. Wolfsberg, J. Am. Chem. Soc. 1989, 111, 8989.
- [11] J. Bigeleisen, M. G. Mayer, J. Chem. Phys. 1947, 15, 261.
- [12] K. J. Laidler, *Chemical Kinetics*, 3rd ed., Harper & Row, New York, **1987**.
- [13] A. P. Scott, L. Radom, J. Phys. Chem. 1996, 100, 16502.
- [14] For other studies on the hetero-Diels–Alder addition mechanisms, see e.g.: L. Kupczyk-Subotkowska, H. J. Shine, J. Am. Chem. Soc. 1993, 115, 5296; G. Orlova, J. D. Goddard, J. Org. Chem. 2001, 66, 4026; A. G. Leach, K. N. Houk, J. Org. Chem. 2001, 66, 5192; A. G. Leach, K. N. Houk, Chem. Commun. 2002, 1243.