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The highly selective Claisen rearrangements of substrates bearing a sulfinyl moiety at C-5 allow for creation of up to two asymmetric centers

and preserve a useful vinyl sulfoxide.

Enantiopure sulfoxides are becoming increasingly useful chiral sulfur atoms for that purpose scarcely documefted.
chiral auxiliaries as a result of their ease of preparation, In this report we describe the first examples of diastereose-
remarkable synthetic versatility, and straightforward re- lective Claisen rearrangements of readily available substrates
moval! In recent years, we have been engaged in the bearing a sulfinyl auxiliary at C-5 that take place with good

development of novel methodologies involving vinyl sul-
foxides? particularly focusing on strategies that allowed for
multiple sulfur-based chirality-transfer operations in acyclic
systems.Within this context, the Claisen rearrangement was
appealing since it is one of the most powerful methods for
stereoselective carbertarbon bond formatiohFurthermore,

diastereoselectivities and preserve the synthetically useful
vinyl sulfoxide moiety.

We envisioned that readily available sulfinyl alcohal$
(Scheme 1) could give rise to appropriate substr&tde
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took place upon heating (1334 °C) a solution of the

Scheme 1. Proposed Sulfinyl-Mediated Claisen substrate in DMF for relatively short periods of time (60
Rearrangements 180 min). Diastereomefisgave excellent yields of aldehydes
R' o R O R o 2 containing aZ)-alkene as single diastereomers. In contrast,
3 5 8 i iastereomerd gave mixtures of rearrangement pr t
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Scheme 3. Influence of the Allylic Center

test the key rearrangement leading to prod@tamenable SpTol ph SpTol /\ESpTol
to subsequent regio- and stereocontrolled sulfur-directed /‘j/ )JSPTOLOH j H
transformations. After considerable fruitless experlmentatlon o Me

on the ClaisenrIreland protocof we shifted our attention

to the Claiser-Johnson variarftlt was soon recognized that
although the process was viable, its overall efficiency was
hampered by the intrinsic lack of geometric control on the
enol ether moiety? The use of sulfinyl E)-acrylatesB (X

= H, R® = CO,Me)! seemed an attractive alternative, and
indeed they were obtained uneventfully in high yields by
known procedure’ic

CO,Me
7 8 9 12

From 7, 134 °C, 75 min, Z:E, 93:7, 8 (93), 9 (7), 88%
From 12, 120 °C, 150 min, Z.E, 72:28, 8 (72), 9 (28), 80%

a All compounds are racemic unless otherwise noted.

The rearrangement of sulfidé (Scheme 3) was also

studied to evaluate the stereodirecting effect of the allylic
_ center in a structurally similar substrate. As expected, the

Scheme 2. Sulfinyl-Mediated Claisen Rea”angemé’ms (2)-isomer8 was obtained with good selectivity (93:7). This
R ,, suggested a reinforcing relationship of controlling elements
o )JS‘AF RIS S‘Ar /\[ for 1 aer a nonreinforcing relationship fdr13. .
\ , OHC PR The influence of the geometry of the vinyl sulfoxide
COzMe COZMe moiety was then addressed, and whilea (Scheme 2)
1 2 3 1 rearranged smoothly but with low selectivity, diastereomer
From (+)-1a, 130 °C, 60 min, Z:E, 100:0, (-)-2a, 79% 1lagave an 8:88 mixture of producga and3a. Also, the
From 1b, 134 °C, 180 min, Z:£, 100:0, 2b, 78% corresponding sulfidel2 (Scheme 3) gave a moderately
From ¢, 130 °C, 75 min, Z£, 100:0, 2c, 79% selective mixture in favor of theZj-sulfide 8. Therefore,
From 11a, 120 °C, 180 min, Z:E, 8:92, 2a (8), 3a (88), 74% the sulfinyl functionality was providing a remarkable reversal

From 11d, 110 °C, 420 min, Z:£, 0:100, 3d, 77% of selectivity by producing predominantly th&)¢alkenyl

R’ R'" Q sulfoxides6a and 3a.14
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Diastereomeric ratios determined by integration of well-resolved | he optical purity of the final products was established8NMR analysis

. : . : with the chiral shift reagent)-Eu(tfc)s. The stereochemistry of rearrange-
signals in the'H NMR spectra of the crude reaction mixtures. ment product®, 3, 5, and6 was established by comparison with data for

related compounds of secure structure (X-ray analjsisor additional
stereochemical assignments see Supporting Information.
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1-naphthyl moietie$® Thus, 1c (Scheme 2) afforde@c as

a single isomer, while the less reactdegave rise to a 63:
29 mixture of5c¢ and 6¢. In contrast, the more reactive
series afforded striking results with a 2-MeO-1-naphthyl
moiety producing aldehyde&d and3d as practically single
isomers. Finally, the rearrangements of substraBend16,
bearing geminal dimethyl substitution at C-4, indicate that
the sulfinyl moiety alone is capable of efficiently controlling
the diastereoselectivity of the process (Scheme 4).

Scheme 4. Influence of the Sulfinyl Moiety
Me Me || Me O Me Me 9
o g 8 o S
. S‘Ar Me “Ar . \“/\
K‘nBu OHC TOHC AN, ¢ H nBu
CO,Me CO,Me
(+)-13 14 15 16

From (+)-13, Ar = 1-Napht, 134 °C, 60 min, (+)-14 (99), 15 (1), 80%

From 16, Ar = 1-Napht, 134 °C, 60 min, 14 (14), 15 (86), 78%

a All compounds are racemic unless otherwise noted.

To address the creation of an additional stereocenter the

use of cyclohexenyl enol ethers was examiHedhe
treatment of Z)-allylic alcohol 17 with 1-ethoxy-1-cyclo-
hexene in refluxing toluene in the presence of 10% 2,3-
dimethylphenol gave addut8 as practically a single isomer
(Scheme 5). On the other hand, sulfinyl enol etf2ér

Scheme 5. Preparation of Two Consecutive Chiral Centers

Ph Q 0.1 equiv 2,3-DMP 0 2 pp oo
~ S tol fl
9 +
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Ar = 1-Napht(2-OMe) 10 equiv @62)
17
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S
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90 °C, 2 h 30 min
20 75%

a All compounds are racemic unless otherwise noted.

rearranged under exceptionally mild conditions to produce
ketone2l.
These results may be tentatively rationalized in terms of

Ongn™ Ar,, O
S<Ar S
MeO,C 7= g . O] coMe
D RA_~ R o R
Rz H H R2

5-E (R* = H) 4 - 5, Major
5-Z(R*=H)11 > 2

5-E (R*=H) 1 > 2, Major
5-Z(R*=H)10 > 5

Oz Ary,, O
R4 SvAr ‘(S R4

MeO,C . = COM
2 NLoQH HWZE( /- coaMe

R2 15

1 1+ R

R
5E(R*=H)4>6
5-Z (R? = H) 10 — 6, Major 5-Z (R? = H) 11 — 3, Major

Figure 1. Proposed reactant conformers for sulfinyl-mediated
Claisen rearrangements.

the G-S bond is proposet.In the case of % substrates
(R* = H), 1 displays a reinforcing relationship of stereo-
controlling elements wittD accounting for the observed
selectivity, sinceeE would have a severe 1,3-diaxial interac-
tion between Rand R and the bulky aryl group pointing
toward the incoming vinyl residue. For nonreinforcing
diastereome#, the energy difference betwedn and G
should be smaller than fdr (D andE), with F being more
stable.

The case of 22 isomers10—12 was predicted to follow
an increased stereodirecting contribution by-?Astrain
relative to 1,3-diaxial interactions. Nonetheless, sulfl@e
displayed moderat@& selectivity (2.6:1). For diastereomer
10 (R? = H), a nonreinforcing scenario was found, with
conformerE being favored relative t®. Likewise, for11
(R? = H), F and G are operative with the latter being
substantially more stable. The more hindered 2-MeO-1-
naphthyl moiety results in very high stereoselectivity, to
produce exclusively theE rearrangement products from either
diastereomer.

In conclusion, the first examples of Claisen rearrangements
of substrates bearing a sulfinyl functionality at C-5 have been
described. This strategy allows for creation of up to two
asymmetric centers with regeneration of the valuable vinyl
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sulfoxide moiety in an expedient manri€iVe are currently Supporting Information Available: Experimental pro-
exploring the scope and limitations of the methodology.  cedures and characterization for selected compounds. This
material is available free of charge via the Internet at
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