

Communication

Organocatalytic Kinetic Resolution of Sulfoximines

Shunxi Dong, Marcus Frings, Hanchao Cheng, Jian Wen, Duo Zhang, Gerhard Raabe, and Carsten Bolm J. Am. Chem. Soc., Just Accepted Manuscript • DOI: 10.1021/jacs.6b00143 • Publication Date (Web): 04 Feb 2016 Downloaded from http://pubs.acs.org on February 6, 2016

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

Journal of the American Chemical Society is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Organocatalytic Kinetic Resolution of Sulfoximines

Shunxi Dong, Marcus Frings, Hanchao Cheng, Jian Wen, Duo Zhang, Gerhard Raabe and Carsten Bolm*

Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany. Supporting Information Placeholder

ABSTRACT: An efficient kinetic resolution of sulfoximines with enals was realized using chiral *N*-heterocyclic carbene (NHC) catalysts. The stereoselective amidation proceeds without additional acyl transfer agent. Both enantiomers of the sulfoximines can be obtained with excellent ee values (up to 99% ee and -97% ee, respectively). Performing the catalysis on a gram scale allowed using the recovered sulfoximine (+)-1j in an asymmetric synthesis of FXa inhibitor F.

Sulfoximines,¹ the monoaza analogues of sulfones, have been widely used in organic synthesis as reagents,² chiral auxiliaries,³ chiral ligands,⁴ and directing groups in C–H activations.⁵ Moreover, sulfoximines have attracted attention in agricultural science⁶ and medicinal chemistry^{1e} (compounds **A-F**; Figure 1). In most of these applications the stereochemistry at sulfur proved important.

Figure 1. Structures of selected bioactive sulfoximines

Although sulfoximines can be readily synthesized by various methods, their preparation in enantioenriched form is still challenging. Besides resolution,⁷ which is only applicable to a small number of sulfoximines, the most prominent strategies are stereospecific imidations of optically active sulfoxides^{8a-c} and oxidations of enantioenriched sulfimides.^{8d-f} However, those approaches are multi-step transformations with undesirable

protection/deprotection sequences.⁹ For the preparation of other important compound classes, catalytic kinetic resolution (KR) is often the method of choice.¹⁰ In this context, we recently reported an iron-catalyzed imidative KR of racemic sulfoxides, leading to *N*-Ts protected sulfoximines in enantiomerically enriched form.¹¹ However, the low yield (15%) of a product with high ee (94% ee) limited the utility of this method. Although acylative KR reactions of amines have been well-established,¹⁰ a direct chemocatalytic KR of sulfoximines has not been realized to date.¹² Herein, we describe the first process of such type using chiral NHCs as catalysts leading to various sulfoximines with excellent ee values for both enantiomers (up to 99% ee and –97% ee, respectively).

The slightly distorted tetrahedral arrangement at sulfur^{1a} presented a particular challenge for the KR of sulfoximines. The initial results were disappointing. Well-established chiral acyl transfer catalysts¹³ such as benzotetramizoles^{13a} and thiourea/DMAP combinatons^{13b} only gave racemic Smethyl-S-phenyl sulfoximine (1a). Inspired by Zhao's work,¹⁴ we attempted the use of chiral NHCs.15 The common need of an additive such as imidazole or 1-hydroxy-7-azabenzotriazole in NHC-catalyzed amide formations was foreseen as potential difficulty.¹⁶ To our delight, however, even without such additive,¹⁷ the reaction of sulfoximine (\pm) -1a with cinnamaldehyde (2a) proceeded smoothly in the presence of 5 mol% of NHC catalyst 4, MnO₂ (5 equiv), 4 Å MS, and DBU (1 equiv), resulting in amide 3aa in 53% yield with 39% ee. Unreacted **1a** was isolated in 44% yield with 45% ee (s = 4, Table 1, entry 1). Encouraged by this result, the effects of other NHCs were investigated.¹⁸ Triazolium **5a** gave a better result, providing the recovered sulfoximine with opposite configuration (entry 2, -45% ee for 3aa and -62% ee for 1a, s = 5). Then, different enals were used, and it was found that 2nitrocinnamaldehyde (2b) showed enhancements in both reactivity and enantioselectivity (entry 3).¹⁸ A search for alternative NHC catalysts led to chiral triazolium 6a developed by Enders.¹⁹ Pleasingly, an s factor of 8 was achieved with this (S)-3,3-dimethylbutan-2-amine-based catalyst, albeit the reactivity was low. Subjecting a series of structurally related N-substituted triazolium salts to the model reaction¹⁸ showed that *N*-mesityl-substituted $6b^{20}$ did not only lead to good ee values, but also to a high catalytic activity (s = 10, Table 1, entry 5). Catalyst **6c** bearing a bulkier N-2,4,6-*i*-Pr₃C₆H₂ substituent performed even better (s = 12, Table 1, entry 6). Increasing the steric bulk further, for example, by using tricyclohexyl- or tricyclopentyl-substituted 6d or 6e, respectively, gave no improvement (Table 1, entries

		O,NH SCH ₃ + rac-1a	R O H 2a: R = H 2b: R = NO ₂	catalyst (5 mol% MnO ₂ (5 equiv) DBU (1 equiv) 4 Å MS, THF	0 0 0 0 0 0 0 0 0 0 0 0 0 0	→ → ○ 1a	• 0, NH • CH ₃ 1a		
		O N N N Mes BF ₄ 4	$H_{3}C$ N $H_{3}C$ $H_{3}C$ N H_{3} N	N - R F₄ ethylphenyl (Mes) propylphenyl hrenyl	$\begin{array}{c} H_{3}C \\ H_{3}$	€ t-Bu N-R BF ₄ enyl henyl t-Bu O 7	∠t-Bu `t-Bu		
entry	catalyst	T (°C)	t (h)	yield of 3 (%)	ee of 3 (%) ^{<i>b</i>}	yield of 1a (%)	ee of $\mathbf{1a}$ (%) ^b	s ^c	
1^d	4	-20	48	53 (3aa)	39	44	45	4	
2^{d}	5a	-20	48	58 (3aa)	-45	40	-62	5	
3	5a	-20	24	42 (3ab)	-68	50	-50	9	
4	6a	-20	48	30 (3ab)	72	65	32	8	
5	6b	-20	48	45 (3ab)	70	52	57	10	
6	6c	-20	48	54 (3ab)	67	42	81	12	
7	6d	-20	48	57 (3ab)	63	40	84	11	
8	6e	-20	48	50 (3ab)	70	45	70	12	
9	6f	-20	48	54 (3ab)	67	41	8o	12	
10	5b	-20	48	51 (3ab)	-70	46	-70	12	
11	5C	-20	72	51 (3ab)	-68	45	-70	11	
12	6c	-45	72	38 (3ab)	78	58	50	13	
13 ^e	6c	-45	72	59 (3ab)	64	38	94	15	
14 ^{<i>e</i>,<i>f</i>}	6c	-60	96	53 (3ab)	81	43	91	30	
15 ^e	5b	-60	96	56 (3ab)	-75	42	-95	25	

^{*a*} Unless otherwise noted, all reactions were carried out with the catalyst (5 mol%), **1a** (31 mg, 0.20 mmol), **2b** (21 mg, 0.12 mmol), DBU (30 μ L, 0.20 mmol), 4 Å MS (30 mg) and MnO₂ (87 mg, 1.0 mmol) in THF (1 mL). ^{*b*} Determined by CSP-HPLC analysis ^c Selectivity factors (*s*), calculated according to the following equation: $s = \ln[(1-C)^*(1-ee_1)]/\ln[(1-C)^*(1+ee_1)]$, C= (ee₁)/(ee₁+ee₃). ^{*d*} Use of **2a** (19 μ L, 0.15 mmol) instead of **2b**. ^{*c*} 3,3',5,5'-tetra-*tert*-butyl-[1,1'-bi(cyclohexylidene)]-2,2',5,5'- tetraene-4,4'-dione (7, 49 mg, 0.12 mmol) was used as the oxidant instead of MnO₂, ^{*f*} The absolute configuration of the major enantiomer **1a** was (*S*) by comparing the specific rotation with the reported value.^{7b}

7 and 8). Triazolium 6f bearing an N-9-phenanthrenyl substituent performed equally well (s = 12, entry 9), indicating a possible π - π stacking interaction between the catalyst and the substrates. The same trend could be deduced from the data obtained with triazoliums **5b** (with an N-2,4,6-*i*-Pr₃C₆H₂ substituent) and 5c (bearing an N-9phenanthrenyl moiety) (Table 1, entries 10 and 11 vs entry 3). With this promising lead, the reaction conditions were systematically screened.¹⁸ Lowering the temperature from -20 °C to -45 °C led to a slight improvement of the s factor, but at the expense of the reactivity (entry 12 vs entry 6). When MnO₂ was replaced by quinone 7 as the oxidant, both the selectivity (s = 15) and the reactivity increased (entry 13). Further, lowering the temperature to -60 °C improved the *s* value to 30 (Table 1, entry 14), and unreacted 1a was recovered in 43% yield with 91% ee. Using 5b, the enantiomer of sulfoximine 1a was formed in preference with -95% ee (Table 1, entry 15).

Having the optimized reaction conditions established, the scope of the kinetic resolution of sulfoximines was studied

with 5b or 6c as catalysts (Table 2). A broad range of sulfoximines bearing different aryl substituents reacted smoothly affording the desired amides 3ab and 3b-k with moderate to high enantioselectivities (41-59% yield, 67-93% ee for 6c, and 41-57% yield, -52 to -96% ee for 5b). Unreacted 1a-k were recovered in yields of 38-55% with 65-99% ee and in 40-53% yields with -65 to -97% ee (Table 2, entries 1-22). Notably, substrates with 4-CF₃, 4-SF₅, and 2naphthyl substituents (1l-n) were also suitable (Table 2, entries 23-28). 2-Pyridyl-substituted 10 gave low s factors (Table 2, entries 29 and 30). Sulfoximines 1p and 1q with cyclopropyl and benzyl substituents also underwent the KR processes with *s* factors of 16–60 (Table 2, entries 31–34). Product 3ab was readily hydrolyzed with aqueous HCl to give 1a stereospecifically under retention of configuration.¹⁸ Finally, sulfondiimide 1r was reacted, giving product 3r with 58% ee (for 6c) and -75% ee (for 5b). In both cases, however, unreacted 1r was recovered with low ee values (Table 2, entries 35 and 36).

Table 2. Substrate Scope for Kinetic Resolutions of Sulfoximines	s and a Sulfondi	imide with Enal 2b ^a
catalyst (5 mol%)	0	

	X, , R1 ^{-S}	R^2 +	⊸Цн	DBU (1 equiv)			X NH	
	rac-	1 2	2b	4 A MS, THF,	–60 °C R ^{1 °R2}	O ₂ N ²	1	
entry	R ¹	R ²	Х	t (h)	yield of 3 (%)	ee of $3(\%)^b$	yield of 1 (%)	ee of
I	C ₆ H ₅	CH3	0	96	53 (3ab)	81	43 (1 a)	91
2	C ₆ H ₅	CH ₃	0	96	56 (3ab)	-75	42 (1 a)	-95
3	$2-BrC_6H_4$	CH ₃	0	96	54 (3b)	78	43 (1b)	92
۴ ^с	$2-BrC_6H_4$	CH ₃	0	96	57 (3b)	-67	40 (1b)	-9
j	3-BrC ₆ H ₄	CH ₃	0	96	59 (3c)	67	38 (1c)	99
C	$3-BrC_6H_4$	CH ₃	0	96	56 (3c)	-74	42 (1 C)	-9
	$4-BrC_6H_4$	CH ₃	0	96	56 (3d)	73	41 (1d)	96
2	$4-BrC_6H_4$	CH ₃	0	96	54 (3d)	-77	42 (1d)	-(
	$2-ClC_6H_4$	CH	0	96	53 (3 e)	80	45 (1e)	9
) ^c	$2-ClC_6H_4$	CH ₃	0	- 96	56 (3e)	-69	40 (1e)	_
	$4-ClC_6H_4$	CH ₃	0	<u>9</u> 6	52 (3f)	81	45 (1f)	9
2 ^c	4-ClC ₆ H	CH,	0	96	54 (3f)	-76	43 (1f)	_
	$4-FC_6H_4$	CH ₂	0	108	54 (3 g)	72	42 (1g)	8
с	$4-FC_6H_4$	CH ₂	0	108	53 (3g)	-75	42 (1g)	_
	Δ-CH ₂ C ₄ H.	CH.	0	06	52 (3h)	82	44 (1h)	C
с	4-CH ₂ C ₆ H	CH,	0	9- 06	54 (3h)	-80	43 (1h)	-
	4-CH ₂ OC ₆ H	CH,	0	9- 06	52 (3i)	78	42 (1i)	8
с	4-CH.OC.H.	CH.	0	9° 06	57 (3i)	-73	41 (11)	-
	4-CH.OC(O)C.H.	CH.	0	108	57 (2 i)	78	42 (1i)	۶
°,	$4 - CH_{13} - C(0)C_{6}H_{4}$	CH.	0	108	55 (2i)	-52	42 (i)	
d	4-NO C ₂ H	СН	0	108	33 (3)/ ∕1 (2k)	02	42 (1)) 55 (1 k)	(
, c, d	$4 - NO C_{2}H$	CH	0	108	41(3k)	95 -06	52 (1 k)	
	4 - CE C H	CH	0	06	41 (3k)	90 76)) (ik)	
, 1 ^C	$4 - CF C_{2}H$	СН	0	90	52 (21)	-80	44 (1)	
r -	$4 \sim 3 \sim 6^{-1} 4$	CH	0	90	(بر) <u>مر</u> 52 (2m)	75	47 (10)	5
, 5 ^c	$4 - SF C_{2}H$	CH	0	90	56 (2m)	ر ا 72-	43 (m)	
, 7	$4^{-51}5^{-61}4$	CH	0	90	50 (3m)	=/3	41 (111)	
/ 8 ^c	2-napituiyi	CH	0	90	54 (311)	79 -80	43 (111)	- 9
0	2-mapricity	CH	0	90	54 (311)	-00	44 (III)	-
9 6	2-pyridyl	CH	0	120	$5^{2}(30)$	43	44 (10)	4
	2-pynuyi C⊔	culonnon-1	0	120	54(30)	-53	44 (10)	-
1 a ^C	С ₆ П ₅	cyclopropyl	0	90	54 (3P)	04 - 0	44 (1p)	9
2	С ₆ п ₅	cyclopropyl	0	96	54 (3p)	-79 -8	44 (1p)	_
3 	С ₆ п ₅	$C_6 \Pi_5 C \Pi_2$	0	96	53 (3q)	7 0	45 (1q)	9
4	С ₆ н ₅	$C_6H_5CH_2$		96	50 (3q)	-69	40 (1q)	-
5 - C	C_6H_5	CH ₃	NC ₆ H	; 96	16 (3r)	58	82 (IF)	11
-	C ₆ H ₅	CH ₃	NC ₆ H	, 96	18 (3r)	-75	80 (1r)	-

^a Unless otherwise noted, all reactions were carried out with 6c (5 mol%), 1 (0.20 mmol), 2b (21 mg, 0.12 mmol), DBU (30 µL, 0.20 mmol), 4 Å MS (30 mg) and oxidant 7 (49 mg, 0.12 mmol) in THF (1.0 mL) at -60 °C. . ^b Determined by CSP-HPLC analysis. ^c Catalyst 5b was used instead of **6c**. ^{*d*} Use of 10 mol% of catalyst.

To further evaluate the synthetic potential of the catalytic system, the reaction was conducted on a gram scale, giving (+)-1j in 43% yield with 90% ee. Sulfoximine 1j was selected as target here because it represented a key fragment of compound F, which as racemate revealed a strong human

FXa inhibitory activity (IC_{50}= 2.1 nM) and anticoagulant effects. Using recrystallized sulfoximine (+)-1j (with 95% ee) prepared by the aforementioned kinetic resolution process allowed for the first time the preparation of optically active compound F (with a total yield of 50%; Scheme 1).²¹

Scheme 1. Scale-up Experiment and Its Application

(a) CICOOBn, py, CH₂Cl₂, 98%; (b) NaOH, THF/H₂O (v/v, 1/1), 96%; (c) oxalyl chloride, CH₂Cl₂; then **10**, 94%; (d) H₂SO₄; (e) CICH₂C(O)Cl, TEA, THF; (f) HNEt₂, KI, DMF, 56% over 3 steps.

In summary, catalytic resolutions of racemic sulfoximines have been accomplished by chiral NHC-catalyzed enantioselective amidation reactions with enals. Both enantiomers of various sulfoximines could be obtained with excellent ee values. The utility of this strategy was demonstrated in the asymmetric synthesis of human Factor Xa inhibitor F.

ASSOCIATED CONTENT

Supporting Information

Experimental details and analytical data. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

E-mail: carsten.bolm@oc.rwth-aachen.de

Notes

The authors declare no competing financial interests.

ACKNOWLEDGMENT

S.D. acknowledges support by the Alexander von Humboldt Foundation. H.C., J.W., and D.Z. are grateful to the China Scholarship Council (CSC) for predoctoral stipends. We also thank Peter Becker for helpful discussions.

REFERENCES

(1) For selected reviews, see: (a) Reggelin, M.; Zur, C. Synthesis 2000, 1. (b) Gais, H.-J. Heteroat. Chem. 2007, 18, 472. (c) Worch, C.; Mayer, A. C.; Bolm, C. In Organosulfur Chemistry in Asymmetric Synthesis (Eds.: Toru, T.; Bolm, C.), Wiley-VCH, Weinheim, 2008, p. 209. (d) Bizet, V.; Hendriks, C. M. M.; Bolm, C. Chem. Soc. Rev. 2015, 44, 3378. (e) Lücking, U. Angew. Chem., Int. Ed. 2013, 52, 9399.

(2) Johnson, C. R. Acc. Chem. Res. 1973, 6, 341.

(3) For selected examples, see: (a) Gais, H.-J.; Müller, H.; Bund, J.; Scommoda, M.; Brandt, J.; Raabe, G. *J. Am. Chem. Soc.* **1995**, *117*, 2453. (b) Harmata, M.; Hong, X. *Org. Lett.* **2007**, *9*, 2701. (c) Peraino, N. J.; Wheeler, K. A.; Kerrigan, N. J. *Org. Lett.* **2015**, *17*, 1735.

(4) For reviews, see: (a) Harmata, M. *Chemtracts* **2003**, *16*, 660. (b) Okamura, H.; Bolm, C. *Chem. Lett.* **2004**, *33*, 482. For selected examples, see: (c) Bolm, C.; Simić, O. J. Am. Chem. Soc. **2001**, *123*, 3830. (d) Langner, M.; Bolm, C. *Angew. Chem., Int. Ed.* **2004**, *43*, 5984. (e) Frings, M.; Thomé, I.; Schiffers, I.; Pan, F.; Bolm, C. *Chem. - Eur. J.* **2014**, 20, 1691.

(5) For selected examples, see: (a) Rit, R. K.; Yadav, M. R.; Sahoo, A. K. *Org. Lett.* **2012**, *14*, 3724. (b) Dong, W.; Wang, L.; Parthasarathy, K.; Pan, F.; Bolm, C. *Angew. Chem., Int. Ed.* **2013**, *52*, 11573. (c) Cheng, Y.; Bolm, C. *Angew. Chem., Int. Ed.* **2015**, *54*, 12349.

(6) Sparks, T. C.; Watson, G. B.; Loso, M. R.; Geng, C.; Babcock, J. M.; Thomas, J. D. Pestic. Biochem. Physiol. 2013, 107, 1.

(7) Selected representative examples: (a) Mori, K.; Toda, F. *Chem. Lett.* **1988**, *17*, 1997. (b) Brandt, J.; Gais, H.-J. *Tetrahedron: Asymmetry* **1997**, *8*, 909. (c) Gries, J.; Krüger, J. *Synlett* **2014**, *25*, 1831. (d) Allenmark., S.; Bomgren, B. *J. Chromatogr. A* **1982**, *252*, 297.

(8) (a) Johnson, C. R.; Kirchhoff, R. A.; Corkins, H. G. J. Org. Chem. 1974, 39, 2458. (b) Bach, T.; Körber, C. Eur. J. Org. Chem. 1999, 1033. (c) Okamura, H.; Bolm, C. Org. Lett. 2004, 6, 1305. (d) Cram, D. J.; Day, J.; Rayner, D. R.; von Schriltz, D. M.; Duchamp, D. J.; Garwood, D. C. J. Am. Chem. Soc. 1970, 92, 7369. (e) Collet, F.; Dodd, R. H.; Dauban, P. Org. Lett. 2008, 10, 5473. (f) Wang, J.; Frings, M.; Bolm, C. Angew. Chem., Int. Ed. 2013, 52, 8661.

(9) For an asymmetric deprotonation strategy starting from prochiral sulfoximines, see: (a) McGrath, M. J.; Bolm, C. *Beilstein J. Org. Chem.* **2007**, 3, 33. (b) Pandey, A. G.; McGrath, M. J.; Mancheño, O. G.; Bolm, C. *Synthesis* **2011**, 3827.

(10) For selected reviews, see: (a) Vedejs, E.; Jure, M. Angew. Chem., Int. Ed. 2005, 44, 3974. (b) Müller, C. E.; Schreiner, P. R. Angew. Chem., Int. Ed. 2011, 50, 6012. (c) Pellissier, H. Adv. Synth. Catal. 2011, 353, 1613. (d) Krasnov, V. P.; Gruzdev, D. A.; Levit, G. L. Eur. J. Org. Chem. 2012, 1471.

(11) Wang, J.; Frings, M.; Bolm, C. Chem.-Eur. J. 2014, 20, 966.

(12) For a single example of an enzymatic kinetic resolution of a sulfoximine derivative proceeding by ester hydrolysis and subsequent decarboxylation, see: Kielbasinski, P. Pol. J. Chem. 1999, 73, 735.

(13) For selected examples, see: (a) Birman, V. B.; Jiang, H.; Li, X.; Guo, L.; Uffman, E. W. *J. Am. Chem. Soc.* **2006**, *128*, 6536. (b) De, C. K.; Klauber, E. G.; Seidel, D. *J. Am. Chem. Soc.* **2009**, *131*, 17060. (c) Arai, S.; Bellemin-Laponnaz, S.; Fu, G. C. *Angew. Chem., Int. Ed.* **2001**, 40, 234. (d) Fowler, B. S.; Mikochik, P. J.; Miller, S. J. *J. Am. Chem. Soc.* **2010**, *132*, 2870.

(14) (a) Lu, S.; Poh, S. B.; Siau, W.-Y.; Zhao, Y. Angew. Chem., Int. Ed. 2013, 52, 1731. (b) Lu, S.; Poh, S. B.; Zhao, Y. Angew. Chem., Int. Ed. 2014, 53, 11041.

(15) For selected recent reviews, see: (a) Grossmann, A.; Enders, D. Angew. Chem., Int. Ed. 2012, 51, 314. (b) Izquierdo, J.; Hutson, G. E.; Cohen, D. T.; Scheidt, K. A. Angew. Chem., Int. Ed. 2012, 51, 11686. (c) Ryan, S. J.; Candish, L.; Lupton, D. W. Chem. Soc. Rev. 2013, 42, 4906. (d) Mahatthananchai, J.; Bode, J. W. Acc. Chem. Res. 2014, 47, 696. (e) Hopkinson, M. N.; Richter, C.; Schedler, M.; Glorius, F. Nature 2014, 510, 485. (f) Flanigan, D. M.; Romanov-Michailidis, F.; White, N. A.; Rovis, T. Chem. Rev. 2015, 115, 9307.

(16) (a) Bode, J. W.; Sohn, S. S. J. Am. Chem. Soc. 2007, 129, 13798.
(b) Vora, H. U.; Rovis, T. J. Am. Chem. Soc. 2007, 129, 13796. (c) Mahatthananchai, J.; Zheng, P.; Bode, J. W. Angew. Chem., Int. Ed. 2011, 50, 1673. (d) Binanzer, M.; Hsieh, S.-Y.; Bode, J. W. J. Am. Chem. Soc. 2011, 133, 19698.

(17) We assume that this behavior is due to the low nucleophilicity and basicity of the NH group of sulfoximine 1a (with a pK_a value of 24 in DMSO).

(18) For details, see the Supporting Information and the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif where the data can be obtained free of charge.

(19) (a) Teles, J. H.; Ebel, K.; Enders, D.; Breuer, K. Preparation of optically active hydroxy ketones. Ger. Offen. DE19704273, Feb 5, 1997.

(b) Strand, R. S.; Solvang, T.; Sperger, C. A.; Fiksdahl, A. *Tetrahedron:* Asymmetry 2012, 23, 838.

(20) CCDC 1438719 (**6b**) contains the supplementary crystallographic data for this paper.

(21) Pandya, V.; Jain, M.; Chakrabarti, G.; Soni, H.; Parmar, B.; Chaugule, B.; Patel, J.; Jarag, T.; Joshi, J.; Joshi, N.; Rath, A.; Unadkat, V.; Sharma, B.; Ajani, H.; Kumar, J.; Sairam, K. V. V. M.; Patel, H.; Patel, P. *Eur. J. Med. Chem.* **2012**, *58*, 136. An efficient kinetic resolution of sulfoximines with enals was realized using *N*-heterocyclic carbenes (NHC) as catalysts. The stereoselective amidation does not require any additional acyl transfer agent and provides both sulfoximine enantiomers with excellent ee values (up to 99% ee and -97% ee, respectively). The catalytic reaction can be performed on a gram scale allowing an asymmetric synthesis of a known human Factor Xa inhibitor via a suitably substituted *N*H-sulfoximine.

