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SUMMARY

Nosocomial infections with the Gram-positive path-
ogen Clostridium difficile pose a major risk for hospi-
talized patients and result in significant costs to
health care systems. Here, we present the chemical
synthesis of a PS-II hapten of a cell wall polysaccha-
ride of hypervirulent ribotype 027 of C. difficile. Mice
were immunized with a conjugate consisting of the
synthetic hexasaccharide and the diphtheria toxoid
variant CRM197. The immunogenicity of the glycan
repeating unit was demonstrated by the presence
of specific IgG antibodies in the serum of immunized
mice. Murinemonoclonal antibodies interact with the
synthetic hexasaccharide, as determined by micro-
array analysis. Finally, we found that specific IgA
antibodies in the stool of hospital patients infected
with C. difficile recognize the synthetic PS-II hexa-
saccharide hapten.

INTRODUCTION

TheGram-positive bacteria of the genusClostridiumdifficilehave

long been recognized as the cause of a range of gastrointestinal

diseases (HookmanandBarkin, 2009). Infection and thedevelop-

ment ofC. difficile-associated diseases (CDADs) are linked to the

use of antibiotics that disrupt the normal intestinal flora and allow

for proliferation of C. difficile (Thomas et al., 2003). C. difficile

infection in its most severe form can cause toxic megacolon

with subsequent colonic perforation, peritonitis, shock, and

death. Furthermore, C. difficile is a major cause of diarrhea in

hospital and long-term care facility patients due to the frequent

use of antibiotics, contamination of these facilities with resistant

spores, and because of the high density of susceptible persons.

A dramatic increase inC. difficile incidents was recorded inmany

developed countries (Polk et al., 2006) starting with reports of

hospital outbreaks in Canada in 2003 (Pépin et al., 2004). With

the increasing severity of the incidents, relapse and mortality
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rates also increased significantly (Kuijper et al., 2007). The North

American and European outbreaks coincided with the emer-

gence of a hypervirulent strain of C. difficile, alternatively desig-

nated by the synonymous terms as PCR ribotype 027, toxin

type III, NAP1, and BI (McDonald et al., 2005; Loo et al., 2005).

Thehypervirulenceof ribotype027hasbeenascribed to its higher

toxin yields and an increased rate of sporulation (Åkerlund et al.,

2008).Higher toxin content is due to anadditional toxin referred to

as thebinary toxinandageneticmutation in a toxin regulator gene

(tcdC), encoding a negative regulator of the C. difficile pathoge-

nicity locus. The isolates obtained during the North American

and European epidemics were genetically closely related and,

in addition, resistant to fluoroquinolones (Clements et al., 2010).

The medical significance of C. difficile has prompted intense

studies aiming to elucidate the structural composition of its cell

wall. Two capsular polysaccharides, PS-I and PS-II, were identi-

fied (Ganeshapillai et al., 2008). PS-I has a branched pentaglyco-

syl phosphate repeating unit, and PS-II a hexaglycosyl phos-

phate repeating unit. Both are found on the highly virulent

ribotype 027 (Figure 1). Currently, to our knowledge, no licensed

vaccine against C. difficile is available.

Several marketed vaccines are based either on natural poly-

saccharides alone (Lucas and Reason, 1999) or on polysaccha-

rides linked to immunogenic protein carriers (Hecht et al., 2009;

Roy, 2008). Polysaccharide-protein conjugate vaccines based

on isolated carbohydrates are an effective measure against at

least five different bacteria: Haemophilus influenzae type b,

Streptococcus pneumoniae, Neisseria meningitidis, Salmonella

typhi, and Staphylococcus aureus infections (Ada and Isaacs,

2003). A synthetic carbohydrate-protein conjugate vaccine

against Haemophilus influenzae type b was developed and mar-

keted in Cuba (Verez-Bencomo et al., 2004; Roy 2008).

Here, we report the synthesis of a hapten of the C. difficile

PS-II, its conjugation to the diphtheria toxoid CRM197, and the

production of monoclonal antibodies that specifically recognize

the glycan hapten. Polysaccharide-specific IgA antibodies were

detected in patients diagnosed with C. difficile infections. The

PS-II structure was selected as synthetic target because it was

reported to be found on severalC. difficile strains, including ribo-

type 027 (Ganeshapillai et al., 2008).
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Figure 1. Retrosynthetic Analysis of Hexasaccharide Repeating Unit 2

(A) Structure of PS-II found on C. difficile.

(B) Retrosynthetic analysis of PS-II hapten analog 2.
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RESULTS

Oligosaccharide Repeating Unit Synthesis
The PS-II repeating units are interconnected via a (1/6) phos-

phate diester linkage in the natural polysaccharide (Figure 1).

We aimed to synthesize oligosaccharide 2 (Figure 1), which

constitutes a nonphosphorylated PS-II hexasaccharide hapten.

The oligosaccharide was designed to carry a primary amine at

the reducing terminus via a spacer to facilitate conjugation to

a protein carrier and attachment to microarrays. Based on our

retrosynthetic analysis, the hexasaccharide will be assembled

from themonosaccharide building blocks 3 and 4, and the disac-

charide building block 5 that appears twice in the target struc-

ture. Disaccharide 5will be derived in turn frommonosaccharide

building blocks 6 and 7. The building blocks 3, 4, 6, and 7 were
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synthesized from commercially available unprotected monosac-

charides following known methodology.

Preparation of the reducing terminus commenced with glyco-

sylation of the protected spacerN-benzyl-N-benzyloxycarbonyl-

5-aminopentanol 8 (Delcros et al., 2002) with mannose building

block 9 (Figures 1 and 2). The 2-O-benzoyl and 3-O-levulinoyl

protection groups on building block 9 were crucial for the

success of this glycosylation because when the alternative

mannose-based building block bearing 2-O-acetate and

3-O-fluorenylmethyloxycarbonyl (Fmoc) protecting groups was

used instead, it afforded mainly the orthoester product (Kong,

2007; Ravidà et al., 2006) and only small amounts of the desired

product. The levulinoyl ester inmannose glycoside 10was selec-

tively cleaved using hydrazine monohydrate to reveal the C3

hydroxyl group to give glycosyl acceptor 11.
580–588, May 27, 2011 ª2011 Elsevier Ltd All rights reserved 581



Figure 2. Synthesis of Building Blocks 11, 15, and 18
Reagents and conditions: (a) NIS, TMSOTf, CH2Cl2, 90%; (b) N2H4$H2O, AcOH, Py, quantitative; (c) TMSOTf, CH2Cl2, �30�C, 78%; (d) Et3SiH, TfOH,

CH2Cl2,�78�C, 68%; (e) LevOH, DMAP, DIPC, CH2Cl2, 94%; (f) NIS, aqueous HCl, THF, 96%; (g) CF3C(NPh)Cl, Cs2CO3, CH2Cl2, 78%; (h) FmocCl, Py, CH2Cl2,

72%; (i) NBS, aqueous HCl, THF, 70%; (j) CF3C(NPh)Cl, Cs2CO3, CH2Cl2, quantitative. Lev, Levulinoyl; Bn, benzyl; Bz, benzoyl; Cbz, benzyloxycarbonyl; TCA,

trichloroacetyl.
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Disaccharide building block 5 resulted from the union of galac-

tosamine 6 (Chen et al., 2005) with the previously characterized

glucosyl phosphate 7 (Ravidà et al., 2006) via trimethylsilyl tri-

fluoromethanesulfonate-mediated activation of the anomeric

dibutyl phosphate leaving group in 7 followed by nucleophilic

substitution by 6 to afford disaccharide 12 (Figures 1 and 2).

The selective opening of the benzylidene acetal in compound

12, to afford disaccharide 13 bearing a 6-O-benzyl protection

group and no protection group on the C4 hydroxyl group,

strongly depended on the reaction conditions. Best results
582 Chemistry & Biology 18, 580–588, May 27, 2011 ª2011 Elsevier
were obtained when disaccharide 12 was treated with triethylsi-

lane and triflic acid at�78�C. Other methods that relied on using

trimethylsilyl trifluoromethanesulfonate as Lewis acid, or sodium

cyanoborohydride as a reducing agent, furnished inseparable

mixtures of the 4-hydroxyl and 6-hydroxyl-regioisomers. The

free C4 hydroxyl group in disaccharide 13 was subsequently

masked as levulinoyl ester to afford glycosylating agent 5.

Hexasaccharide assembly commenced with the glycosylation

of monosaccharide 11 with phenyl selenide 5 to furnish trisac-

charide 19 with a yield of up to 61% (Depré et al., 1999). To
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improve the coupling yields, we changed the synthetic strategy

by replacing the anomeric leaving group in 5. The phenyl sele-

nide in 5 was replaced by a different anomeric leaving group,

by a N-phenyl trifluoroacetimidate group (Yu and Tao, 2001).

Disaccharide 5 was converted, via lactol 14, to the correspond-

ing glycosyl N-phenyl trifluoroacetimidate 15. As envisioned,

glycosylation of nucleophile 11 with disaccharide N-phenyl tri-

fluoroacetimidate 15 yielded 82% of the desired product, which

compared favorably to the 61% obtained when phenyl selenide

5was used as disaccharide-glycosylating agent. The C2 partici-

pating trichloroacetamido group of galactosamine in 15 ensured

the exclusive formation of the b linkage. Treatment of trisaccha-

ride 19 with hydrazine monohydrate resulted in cleavage of the

levulinoyl ester and furnished 20 bearing a free hydroxyl group

ready for the next glycosylation. Glycosylation of trisaccharide

20 with thioglycoside 4 afforded a 55% yield of tetrasaccharide

21. The yield of this glycosylation was again improved when

N-phenyl trifluoroacetimidate glycoside 18 was employed

instead. This glycosylating agent in a mixture of methylene chlo-

ride and diethyl ether at �45�C afforded 83% yield of tetrasac-

charide 21 containing the a-linked glucose. Glucose building

block 18 was prepared from known alcohol 16 (van Steijn

et al., 1992) via the procedure that was used for the conversion

of 5 to 15. Treatment of tetrasaccharide 21 with triethylamine

resulted in cleavage of the Fmoc group and liberation of the

hydroxyl group, ready for the next glycosylation. Hexasacchar-

ide 23 was obtained by the trimethylsilyl trifluoromethanesulfo-

nate-catalyzed glycosylation of tetrasaccharide 22 with disac-

charide building block 15.

Hexasaccharide 23 was freed from all protecting groups via

a three-step procedure. First, the N-trichloroacetyl groups

were transformed into N-acetyl groups by treatment with tributyl

stannane and azobisisobutyronitrile (AIBN) in toluene at 90�C
(Figures 1 and 3) (Bélot and Jacquinet, 2000; Rawat et al.,

2008). Subsequent saponification using potassium hydroxide

in tetrahydrofurane and methanol was followed by hydrogena-

tion using hydrogen gas and palladium on charcoal. Thereby,

hexasaccharide hapten 2 was obtained (Figures 1 and 3).

The anomeric region of the 13C and 1H-NMR spectra of hexa-

saccharide 2 are compared to that of the natural polysaccharide

(see Supplemental Experimental Procedures), confirming the

structure of hexasaccharide 2 despite slight differences. During

the preparation of this manuscript, an alternative synthesis of

a closely related hexasaccharide was published (Danieli et. al,

2011) where a similar comparison of NMR spectra of synthetic

hexasaccharide and natural polysaccharide was studied.

Preparation and Characterization
of Oligosaccharide-Protein Conjugate
Polysaccharide vaccines provoke a T cell-independent immune

response and do not induce an immunoglobulin class switch.

Therefore, polysaccharides are conjugated to immunogenic

carrier proteins that, unlike polysaccharides, induce a T cell-

dependent immune response. The synthetic hapten 2 of the

C. difficile glycopolymer PS-II was conjugated to the protein

carrier CRM197. The diphtheria toxoid CRM197 was chosen as

a carrier because it is a constituent of licensed vaccines

(Barocchi et al., 2007). A method based on the selective reaction

of the primary amine with squaric acid diester (Tietze et al., 1991)
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was selected from the multitude of methods for conjugation of

carbohydrates to proteins (Kuberan and Linhardt, 2000; Stall-

forth et. al, 2009). First, the amine group of the spacer moiety

in hexasaccharide 2 was reacted with one of the vinylogous

ester groups of 3,4-di-ethoxy-3-cyclobutene-1,2-dione in

pH 7.2 phosphate buffer to form the corresponding monoamine

24 that was purified by reverse-phase HPLC (Figure 4A). The

remaining ester group of monoamide 24 was subsequently

coupled with the 3-amino groups of lysine on the diphtheria

toxoid CRM197 in bicarbonate buffer at pH 9.0 to afford the

neoglycoconjugate. Successful conjugation was confirmed by

SDS-PAGE (Figure 4B), and the oligosaccharide/CRM197 ratio

was determined by matrix-assisted laser desorption/ionization

time-of-flight mass spectrometry (MALDI-TOF MS) (Figure 4C).

The mass analysis of CRM197 yielded a m/z ion at 58.6 kDa.

The mass spectrum of the neoglycoconjugate revealed mass

peaks between 59.9 and 67.3 kDa corresponding to mono- to

heptavalent glycoconjugates. On average four haptens 2 were

loaded on the diphtheria toxoid.

Immunization and Monoclonal Antibodies
To test the immunogenicity of the PS-II hapten, two female

C57BL/6 mice were immunized with the neoglycoconjugate.

Mice were injected three times subcutaneously (s.c.) with the

glycoconjugate at 2-week intervals. For each injection 15 mg

protein, as determined by Bradford analysis, was used. Consid-

ering an average loading ratio of four haptens on each protein,

the corresponding carbohydrate content was calculated as

being 1.3 mg. The anti-hapten 2 antibody titers were monitored

by glycan microarray analysis. Microarrays were designed for

high-throughput analysis, such that 64 samples could be

analyzed on one array with each well displaying hapten 2 and

seven control sugars in quadruplicates (Figure 5A). The two

immunized mice produced IgG antibodies that bound specifi-

cally to hapten 2 (Figure 5B), demonstrating that hapten 2 is

immunoreactive. An increase in the level of anti-hapten 2 specific

IgG antibodies over time was observed with mouse 2805.

To generate monoclonal antibodies, spleenocytes of the

immunized mice were fused to myeloma cells by the traditional

hybridoma technique (Köhler and Milstein, 1975). The individual

hybridoma clones were screened to identify clones that produce

anti-hapten 2 antibodies. Three hybridoma clones that secrete

specific antibodies were obtained (Figure 5C). All three

hybridoma clones were derived from mouse 2805. Although

the monoclonal antibodies C2805.7 and C2805.21 bound exclu-

sively to hapten 2, antibody C2805.25 also interacted with

glucose on the array.

Specific IgA Antibodies in Infected Hospital Patients
Given the immunogenicity of the hexasaccharide hapten 2 in

mice, we wanted to know whether patients with CDAD produce

antibodies against the native glycopolymer. To this end, stool

supernatants of ten hospitalized patients with and without

C. difficile infection, as confirmed by the VIDAS immunoassay

(bioMérieux) that detects toxins A and B, were analyzed. Stool

supernatant rather than serum was chosen because the contact

site of the immune system with the cell surface glycopolymer is

the intestinal mucosa. Accordingly, IgA rather than IgG anti-

bodies are chiefly responsible for clearance of the pathogen
580–588, May 27, 2011 ª2011 Elsevier Ltd All rights reserved 583



Figure 3. Synthesis of Hexasaccharide 2
Reagents and conditions: (a) TMSOTf, CH2Cl2, �30�C, 82%; (b) N2H4$H2O, Py, AcOH, CH2Cl2, 91%; (c) 18, TMSOTf, Et2O, CH2Cl2, �45�C, 83%; (d) Et3N,

CH2Cl2, 85%; (e) 15, TMSOTf, CH2Cl2,�30�C, 63%; (f) 1. Bu3SnH, AIBN, toluene, 68%; 2. KOH, MeOH, THF, 86%; 3. H2, Pd/C, AcOH, THF, MeOH, H2O, 95%.
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from the gut. In order to monitor the immune response in the

epithelia against hexasaccharide 2, the glycan arrays described

above were incubated with the stool supernatants, and bound

IgA antibodies were visualized. Three persons had high titers

of anti-hexasaccharide 2 IgA antibodies in their stool (Figure 6).

Of these three patients, two had been diagnosed with C. difficile

toxin A/B-positive disease, whereas the third patient had

a borderline VIDAS test. Low amounts of anti-hexasaccharide

2 recognizing IgA antibodies were also detected in patients
584 Chemistry & Biology 18, 580–588, May 27, 2011 ª2011 Elsevier
2093, 2118, and 2121, which had not been diagnosed with

C. difficile toxin-positive disease. A possible explanation is colo-

nization with a nontoxigenic C. difficile strain or previous contact

with the bacterium.

DISCUSSION

Wereport anelegant synthesis ofC.difficilePS-II hexasaccharide

hapten that correlates with the structural assignment based on
Ltd All rights reserved



Figure 4. Conjugation and Analysis of the Hexasaccharide 2-CRM197 Glycoconjugate

(A) Hexasaccharide 2 was reacted with the carrier protein CRM197 via squaric acid route to yield a polyvalent neoglycoconjugate.

(B) SDS-PAGE analysis of the conjugation. Samples were electrophoresed on 12.5% SDS-PAGE gels and stained with Coomassie blue.

(C) MALDI-TOFMS analysis of the neoglycoconjugate. CRM197 with a m/z peak at 58.5 kDa; hexasaccharide 2-CRM197 conjugates with m/z peaks between 59.9

and 67.3 kDa.
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isolated material. The hexasaccharide was assembled from four

monosaccharide building blocks using an efficient and conver-

gent approach. A neoglycoconjugate comprising the hexasac-

charide hapten and the immunogenic carrier protein CRM197

was obtained. The outcome of the conjugation process was

monitored byMALDI-TOFMS and SDS-PAGE.Mice were immu-

nized with the neoglycoconjugate, and IgG antibody production

against hexasaccharide 2 was monitored by glycan microarray

analysis. The two animals produced antibodies specific for the

carbohydrate hapten, one of which showed a gradual increase

of the antibody’s affinity/concentration over the immunization

period.

High-throughput carbohydrate microarray analysis served as

a fast method to detect antibodies in murine sera, hybridoma

supernatant, and human excrement. Active ester conjugation

chemistry allowed for facile immobilization of the amine-termi-

nated synthetic hexasaccharide antigen to glass slides. In addi-

tion to hexasaccharide 2, seven control carbohydrates were

printed onto the microarray slides, and the entire array was

stable for more than 1 year. Carbohydrate microarray analysis

gave a detailed picture of the presence of antibodies, antibody

affinity and concentration, as well as cross-reactivity.

Using the microarrays, we detected specific anti-hexasac-

charide hapten 2 IgA antibodies in the stool supernatants of
Chemistry & Biology 18,
hospital patients. Two patients with significantly increased

C. difficile toxin A and B levels and one patient with a borderline

test displayed high amounts of highly specific anti-hexasacchar-

ide 2 IgA antibodies in their excrement. These observations

suggest that native glycopolymer PS-II exposes antigenic deter-

minants that are the targets of the immune response induced by

some patients infected with C. difficile. Antibodies in stool are

subject to different dilutions depending on the amount of daily

elimination; therefore, small variations in the concentrations of

the individual samples are likely. The three false-negative results

may be explained by the fact that these individuals were infected

with C. difficile strains that do not express PS-II. For the strains

prevalent in European hospitals (Zaiss et al., 2010), the expres-

sion of PS-II is only confirmed for ribotype 027. Because ribotyp-

ing is not performed routinely in European hospitals, the genetic

background of the pathogens responsible for the infections

analyzed in this study remains elusive. The low binding signal

recorded for three samples of patients without diagnosed

C. difficile infection can be accounted for by latent or previous

infections with bacteria of the clostridium type carrying PS-II.

In conclusion we show here that PS-II is an antigenic determi-

nant upon infections of humanswithC. difficile. Using a synthetic

fragment of PS-II as hapten, we further demonstrate immunoge-

nicity in mice and provide monoclonal antibodies specifically
580–588, May 27, 2011 ª2011 Elsevier Ltd All rights reserved 585



Figure 5. IgG in the Serum of Immunized Mice and Three Murine Monoclonal Antibodies Bind Hexasaccharide 2 on Glycan Microarrays

(A) Printing scheme of the glycan microarrays.

(B) IgG titers of immunized animals were analyzed before immunization (day 0), after the immunization (day 16), and after the first boost (day 30). Both mice

produced IgG antibodies to hexasaccharide 2. The microarray printing pattern is shown in the gray box.

(C) Monoclonal antibodies 2805.7, 2805.21, and 2805.25 raised against the neoglycoconjugate.
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interacting with the glycan hapten as determined by microarray

analysis.
SIGNIFICANCE

The synthesis of a hexasaccharide fragment of a C. difficile

cell surface polysaccharide gave access to chemically

defined and structurally homogeneous material equipped

with a primary amine handle. This handle allowed for conju-

gation of the synthetic oligosaccharide to the immunogenic

carrier protein CRM197 and to glass surfaces to produce

microarrays. The neoglycoconjugate was immunogenic in

mice and produced murine monoclonal antibodies that

specifically interact with the glycan hapten. The antibody-

binding specificities were determined by microarray anal-

ysis. Furthermore, microarrays were used to detect IgA anti-

bodies in the stool supernatant of infected hospital patients.

The presence of anti-hexasaccharide 2 IgA antibodies in

infected patients suggests a pivotal role of the PS-II in the
586 Chemistry & Biology 18, 580–588, May 27, 2011 ª2011 Elsevier
pathogenesis of C. difficile-associated diseases (CDADs).

Thus, both the natural polysaccharide and the synthetic

substructure are further studied as potential carbohydrate

conjugate vaccine candidates against C. difficile.

EXPERIMENTAL PROCEDURES

Chemical Synthesis

Detailed experimental procedures and characterization data for new

compounds are available online; see Supplemental Experimental Procedures.

Conjugation

Diethyl squarate (7.3 ml, 51 mmol) was added to a solution of hexasaccharide

C1 (2 mg, 1.7 mmol) in EtOH (0.2 ml) and phosphate buffer (0.2 ml, 50 mM

[pH 7.2]) and stirred for 18 hr at room temperature. Most ethanol was removed

by a stream of N2. Themixture was purified using a HPLC Superdex size exclu-

sion column (95:5 H2O/EtOH) to afford a colorless solid. A solution of the squa-

rate adduct (0.7 mg, 546 nmol) and the diphtheria toxoid CRM197 (Calbiochem;

0.7 mg, 11.1 nmol) in NaHCO3 buffer solution (0.4 ml, 0.1 M [pH 9]) was shaken

for 48 hr at room temperature. The resulting mixture was purified by ultrafiltra-

tion (30 K, Amicon; Millipore) with PBS. The protein concentration was deter-

mined by Bradford analysis (Bio-Rad).
Ltd All rights reserved



Figure 6. IgA Analysis of Stool Supernatant of Hospitalized Persons

The presence of IgA antibodies specific for hexasaccharide 2 was analyzed in stool supernatants of ten hospital patients.

(A) Glycan microarray experiment. Stool supernatant of each patient was analyzed in three adjacent microarray wells.

(B) Quantification of the fluorescence signals detected in the glycan microarray experiment. High titers of anti-hexasaccharide 2 IgA antibodies were detected in

patients 2095 (positive), 2122 (borderline), and 2131 (positive). Low-intensity signals were also detected in patients 2093, 2118, and 2121 (all diagnosed negative).
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SDS-PAGE

Hexasaccharide 2-CRM197 glycoconjugate and unconjugated CRM197 were

dissolved in Laemmli buffer (0.125 M Tris, 20% [v/v] glycerol, 4% [w/v] SDS,

5% [v/v] b-mercaptoethanol, bromophenol [pH 6.8]) and boiled for 5 min.

Samples were run in 12.5% polyacrylamide gel and stained with 0.025%

(w/v) Coomassie brilliant blue R-250 in an aqueous solution containing 40%

(v/v) methanol and 7% (v/v) acetic acid.

MALDI-TOF MS

Conjugation was confirmed by MALDI-TOF MS using an Ultraflex-II TOF/TOF

instrument (Bruker Daltonics, Bremen, Germany) equipped with a 200 Hz

solid-state Smart beam� laser. The mass spectrometer was operated in the

positive linear mode. MS spectra were acquired over an m/z range of 4,000–

80,000, and data were analyzed using FlexAnalysis� software provided with

the instrument. The samples were lyophilized from 25 mM NH4HCO3

(pH 7.8). Sinapinic acid was used as the matrix, and samples were spotted

using the dried droplet technique.

Immunizations

Two female C57BL/6 mice were immunized s.c. with 15 mg hexasaccharide

2-CRM197 conjugate in complete Freund’s adjuvants where 15 mg refers to

the protein content. The mice were boosted twice with 15 mg hexasaccharide

2-CRM197 conjugate in incomplete Freund’s adjuvants in 2-week intervals.

After each injection, blood was collected, and serum titers (IgG) were analyzed

using microarrays. Prior to being sacrificed, mice received additional 10 mg

hexasaccharide 2-CRM197 in PBS i.p. on 3 consecutive days.

Preparation of Clostridium Microarrays

Eight oligosaccharides bearing an amine linker were immobilized on NHS-

activated slides. Besides hexasaccharide 2, mannose, glucose, galactose,

fucose, acetylglucosamine, lactose, and a b-galactoside337 were printed in

0.5 mM concentration onto the slides. Each spot was printed in quadruplicate

using a piezoelectric spotting device (S11; Scienion, Berlin, Germany). Slides
Chemistry & Biology 18,
were incubated in a humid chamber to complete reaction for 24 hr and stored

in a desiccator until usage.

Microarray Binding Assays

A FlexWell 64 (Grace Bio-Labs, Bend, OR, USA) grid was applied to the slides.

The resulting 64 wells were used for 64 individual experiments. The slide was

blocked with 2.5% (w/v) BSA and 0.05% (v/v) Tween 20 in PBS for 1 hr at room

temperature. Blocked slides were washed with PBS and incubated with 5%

(v/v) serum in PBS or hybridoma culture supernatant for 1 hr at room temper-

ature. Slides were washed with PBS and incubated with 10 mg/ml Alexa Fluor

594 goat anti-mouse IgG and Alexa Flour 594 goat anti-mouse IgM (both

Invitrogen) secondary antibody solutions in PBS with 1% (w/v) BSA. Slides

were washed with PBS and centrifuged to dryness. Slides were scanned using

a GenePix 4300A scanner (Bucher Biotec, Basel, Switzerland) and evaluated

using the GenePix Pro 7 software (Bucher Biotec).

Monoclonal Antibody Purification

Supernatant of the hybridoma clones was filtered through a 0.2 mm filter. The

supernatant was mixed 1:1 with binding buffer (0.1 M NaP, 0.15 M NaCl

[pH 7.4]) and loaded onto a Midi Protein G spin column (Proteus, Oxford,

UK). The spin column was washed twice with binding buffer. Subsequently,

the IgG was eluted with elution buffer (0.2 M glycan/HCl [pH 2.5]) and immedi-

ately neutralized with 1 M Tris/HCl (pH 9). The eluted antibody solution was

purified by ultrafiltration (100 K, Amicon; Millipore) with PBS containing

0.01% (w/v) sodium azide. Protein-stabilizing cocktail (Pierce, Rockford, IL,

USA) was added to the concentrated antibody solution, and the protein

concentration was determined by Bradford analysis (Bio-Rad).

Analysis of Stool Supernatant

A FlexWell 64 (Grace Bio-Labs) grid was applied to the slides. The wells were

blocked with 2.5% (w/v) BSA and 0.05% (v/v) Tween 20 in PBS for 1 hr at room

temperature. Blocked slides were washed with PBS and incubated with 20 ml

stool supernatant of ten hospitalized persons (Charité, Berlin) for 1 hr at room

temperature. Slides were washed with PBS and incubated with 10 mg/ml goat
580–588, May 27, 2011 ª2011 Elsevier Ltd All rights reserved 587
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anti-human IgA FITC Conjugate (Invitrogen) secondary antibody solutions in

PBS with 1% (w/v) BSA. Slides were washed with PBS and centrifuged to

dryness. Slides were scanned using a GenePix 4300A scanner and evaluated

using the GenePix Pro 7 software.
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