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Abstract: An efficient approach to alk-4-yne-1,2,3,6-tetraols is
described by stereoselective addition of terminal 2-alkyn-1-yl esters
to Ley’s butane-2,3-diacetal-protected glyceraldehyde. The appli-
cation of this methodology to a convenient synthesis of a (–)-poly-
oxamic acid derivative is disclosed herein.
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Polyhydroxylated chains are a very common pattern in the
structure of many natural products. Although carbohy-
drates and azasugars are probably the most representative
examples, a plethora of naturally occurring compounds,
including many polyketide metabolites, possess 1,2-diol
or 1,2,3-triol arrays in their framework.1 We have recently
described the preparation of enantioenriched propargylic
1,4-diols2 and their transformation into protected 1,2-ami-
no alcohols and 1,2-diols through Pd-catalyzed alkyl-
ations.3,4

Looking to extend these processes to building more highly
functionalized structures present in natural products, we
envisaged a concise, stereoselective route to protected
alk-4-yne-1,2,3,6-tetraols (1) based on a zinc-mediated
addition of terminal 2-alkyn-1-yl esters to a protected
glyceraldehyde (Scheme 1). According with our previous
experience, the presence of the triple bond makes these
compounds amenable to further transformations leading
to polyhydroxylated or aminopolyhydroxylated chains.
We wish to report here our findings in this connection.

Scheme 1

We first considered (R)-isopropylidene glyceraldehyde
(2), as an appropriate substrate for this purpose. This
chiral synthon has been used extensively as a three-carbon
building block for organic synthesis.5 Particularly, Fettes

and Carreira have recently described an example of dia-
stereoselective addition of a zinc alkynylide to 2.6

Based on these precedents, we carried out the addition of
propargyl benzoate 4 or benzyl carbonate 5 to 2 under
Carreira’s conditions2a,2c in the presence of (–)-N-methyl
ephedrine [(–)-NME] to afford the desired adduct in good
yield and a ca. 11:1 syn/anti ratio (Table 1, entries 1 and
2). In contrast, higher selectivity (1:99 syn/anti) was ob-
served when (+)-NME was used, indicating that 2 favors
the anti relative configuration in such additions (matched
case, entry 3). 

Unfortunately, yields and selectivities revealed to be
strongly depending on the purity of 2 leading to serious
problems in reproducing the results, especially when we
scaled up the process. In fact, these drawbacks have been
previously reported elsewhere7 and they were generally
associated with the high volatility as well as the propensi-
ty to polymerize, racemize, and form hydrates of this
capricious aldehyde. The use of 3-pentylidene glyceralde-
hyde (3) did not improve the results.7b

Then, we turned our attention to butane-2,3-diacetals of
glyceraldehyde, 6 and 7, recently described by Steven
Ley’s group (Figure 1).8 Both aldehydes are easily avail-
able from D-mannitol on large scale in which the only
purification is a single distillation under vacuum at the
final stage. On the other hand, the other enantiomeric
series can be obtained from L-ascorbic acid.
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Table 1 Addition of Zinc Alkynylides to Aldehydes 2 and 3

Entry Aldehyde Alkyne NME Yield (%) syn:anti

1 2 4 – 62 12:1

2 2 5 – 89 11:1

3 2 5 + 68 1:99

4 3 4 – 30 3:1

5 3 4 + 30 1:99
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Figure 1

Whereas a strong anti stereochemical bias has been de-
scribed in the addition of some nucleophiles to 6, leading
to protected 1,2,3-triols possessing a 2,3-anti relation-
ship,8a marginal attention has been devoted to 7.9 Thus, to
the best of our knowledge, the synthetic use of this robust
aldehyde or its enantiomer (7 or ent-7) is still undocu-
mented.

To our satisfaction, we found that the zinc alkynylide of
propargylic benzoate, prepared in situ with Zn(OTf)2, (–)-
N-methylephedrine, and Et3N in toluene at room temper-
ature, cleanly added to aldehyde 7 to obtain syn-9a
(R = CH2OBz, entry 1, Table 2) as the sole diastereomer
in a remarkable 95% yield.10,11 In addition, a noteworthy
1:16 syn/anti stereoselectivity was noted with (+)-NME as
ligand (mismatched case) indicating that although the
aldehyde 7 favors the syn relative configuration, the chiral
ligand largely overcomes the stereochemical bias of 7.

Similar trends were recorded for a set of terminal alkynes
tested, leading to protected 2,3-syn- or 2,3-anti-1,2,3-tri-
ols 9 [when (–)- or (+)-N-methylephedrine was used,
respectively] in high yield and excellent selectivities, spe-
cially when propargyl esters were used as nucleophiles
(entries 1–7, Table 2). It is worth noting that the resident
stereogenic center in the chiral alkyne reagents plays a
negligible role in the stereoselectivity (compare entries 5
and 7).

The R-configuration assumed for the new stereocenter
formed was corroborated by chemical correlation between
syn-9a and L-ascorbic acid as shown in Scheme 2. The
spectral data of 1,2-protected-1,2,3,4-tetraol 10, derived
of syn-9a by partial hydrogenation followed by oxidative
cleavage of the double bond, were identical to those ob-
tained for ent-10 arising from L-ascorbic acid by a known
procedure,8a but opposite in its optical rotation.

Scheme 2 Reagents and conditions: (a) H2, Lindlar’s catalyst, qui-
noleine, EtOAc, r.t., 84%; (b) O3, CH2Cl2, –78 °C; then NaBH4, i-
PrOH, 64%; (c) ref. 8a.

The observed facial stereoselectivity of the aldehyde can
be rationalized by a chelation controlled model in which
the a-coordination (7a) with the zinc predominates, lead-
ing to the syn-stereoisomer (Scheme 3).12 A similar ar-
rangement in 8 is less likely due to the rigidly defined
geometry and the steric bulk the dispiroketal group. Ac-
cordingly, the anti-selectivity displayed by 8 has been
explained through a Felkin’s non-chelation-controlled
model (8b).13

Encouraged by the good performance of aldehyde 7 in the
alkynylation processes, we turned our attention to the

Table 2 Addition of Zinc Alkynylides to Aldehyde 7

Entry Alkyne NME Product Yield (%) syn:anti

1 – syn-9a 95 >80:1

2 + anti-9a 83 1:16

3 – syn-9b 89 50:1

4 + anti-9b 79 1:13

5 – syn-9c 100 >80:1

6 + anti-9c 98 1:50

7 – syn-9d 94 >80:1

8 – syn-9e 71 33:1

9 – syn-9f 88 19:1

10 + anti-9f 98 1:11

11 – syn-9g 80 24:1
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transformation of syn-9a into the lactone 12, which con-
tain the stereochemistry and functionality of (–)-polyox-
amic acid. This amino acid is the key component of
polyoxines (Figure 2), a family of antifungal antibiotics
isolated from the culture broths of Streptomyces cacaoi
var. asoensis.14 These natural products are known to
inhibit the chitin synthetase of a variety of phytopatho-
genic fungi15 and of Candida albicans, a human fungal
pathogen.16

The potent biological activity associated with polyoxines
had led to the development of a number of syntheses of
(+)-polyoxamic acid and its derivatives over the past
several years, most of them from chiral pool sources.17

The non-natural enantiomer has also been prepared in a
stereoselective manner.18

Figure 2

Thus, partial reduction of the triple bond of syn-9a
followed by treatment with tosyl isocyanate yielded the
allylic tosylcarbamate 13 in high yield. Pd(II)-catalyzed
cyclization afforded trans-oxazolidinone (14) in 85%
yield with complete stereoselectivity.19 Transformation of
14 into acid 15 was successfully accomplished by ozonol-
ysis followed by oxidation of the crude aldehyde with
NaClO2 without loss of stereochemical purity.20 Finally,
acid 15 was readily transformed into lactone 1221 in 63%
overall yield by basic hydrolysis of carbamate group, fol-
lowed by acidic treatment in an efficient one-pot process
(Scheme 4).

Scheme 4 Reagents and conditions: (a) H2, Lindlar’s catalyst, qui-
noleine, EtOAc, r.t., then TsNCO, THF, r.t. 71% overall yield; (b)
Pd(OAc)2, LiBr, THF, reflux, 85%; (c) i) O3, CH2Cl2, –78 °C; ii)
Me2S; iii) NaClO2, H2O2, NaH2PO4, MeCN–H2O, 75% overall yield;
(d) i) aq LiOH, reflux; ii) aq 2 M HCl, THF, 60 °C, 63% overall yield.

In conclusion, we have shown that butane-2,3-diacetal of
(R)-glyceraldehyde 7 (or its enantiomer) is a convenient
building block for the stereoselective construction of use-
ful 2,3-alk-4-yn-1,2,3,6-tetraol synthons through a Zn-
mediated alkynylation. We have applied this strategy to a
stereoselective synthesis of a protected (–)-polyoxamic
acid lactone in six steps with an overall yield of 29%.
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