

0040-4039(95)02148-5

Synthetic Studies Towards Phomactin A. Concise Synthesis of the Novel Tricyclic Furanochroman System

Kevin M. Foote, Christopher J. Hayes and Gerald Pattenden*

Department of Chemistry, Nottingham University, Nottingham NG7 2RD, England

Abstract: A concise synthesis of the tricyclic furanochroman unit 2 found in the unusual PAF antagonist phomactin A 1 is described. The synthesis is based on elaboration of the novel dihydrofuran enol ether 3 as key intermediate via the iodopyran 6 or the dihydrofuran 20. Treatment of 3 with dimethyldioxirane in acetone-water then gave the furanochroman 2.

Phomactin A 1 is a novel PAF antagonist recently isolated from the culture broth of marine fungus *Phoma sp.* (SANK 11486).¹ The moderately oxygenated diterpene natural product features an unusual furanochroman ring system 2, making up part of a twelve membered macrocycle accommodating six stereogenic centres, two quaternary centres and a novel cyclic hemi-ketal forming part of a *syn* vicinal diol. Several structurally related metabolites sharing a common bicyclo [9.3.1] pentadecane ring system have been isolated from the same *Phoma sp.* and shown to have varying PAF-antagonist activities.^{2,3} The unique structure of phomactin A, together with the implications that PAF may be involved in many inflammatory and respiratory diseases, attracted us to examine a total synthesis of the molecule and its congeners. In this communication we describe a synthesis of the tricyclic furanochroman 2 possessing all the oxygenation and sensitive functionality in phomactin A.

We investigated a synthesis of the tricyclic furanochroman 2 involving the dihydrofuran-based enol ether 3 as key intermediate. We planned initially to elaborate 3 by reduction of the ylidene-furanone 10 derived from the known bromo keto ester 4 (Scheme 1).⁴ Thus, reduction of 4 using NaBH₄ in Et₂O-MeOH first produced the corresponding alcohol which by coupling with 2-methylprop-1-enyltributylstannane under Stille conditions^{5,6} next gave the diene-alcohol 5.⁷ Iodoetherification⁸ of 5 then gave the corresponding iodopyran 6 as a single diastereoisomer in 89% yield. Dehydroiodination of 6 using DBU, followed by treatment of the resulting diene ester 7 with mCPBA next produced a 3:2 mixture of diastereoisomers of the γ , δ -epoxy ester 8,

which could be separated by chromatography. The lactonisation of **8** to the corresponding hydroxy furanone **9** was readily accomplished using hot HClO₄ in acetone-water.⁹ An X-ray crystal structure determination confirmed the stereochemistry shown in the formula for 9.10 Dehydration of either diastereoisomer of the hydroxy-furanone **9** then led to the ylidene-furanone **10** in excellent yield. To our chagrin all attempts to reduce the ylidene-furanone **10** to the key enol ether intermediate **3** met with disappointment. Instead, the main products of reduction with DIBALH followed by $Et_3SiH/BF_3.OEt_2^{11}$ consisted of the cyclic hemi-acetal **11**, the substituted furan **12** (which is also produced when **11** is left standing for short periods of time), and the dihydrofuran **13**. We therefore developed an alternative route to the enol ether **3** which avoided acid conditions during the final stages in its synthesis. This route is shown in Scheme 2.

Reagents : i, NaBH₄, Et₂O, MeOH, 0^oC, 52%; ii, AsPh₃, Pd(dba)₃, Me₂C:CHSnBu₃, THF, Δ, 66%; iii, I₂, NaHCO₃, MeCN, 0^oC, 89%; iv, DBU, THF, RT, 76%; v, mCPBA, CH₂Cl₂, RT, 35%; vi, HClO₄, Me₂CO, H₂O, Δ, 49%; vii, I₂, Ph₃P, imidazole, PhMe, Δ, 87%

Scheme 1

Thus, bromination¹² of the known vinylogous ester 14,¹³ followed by metallation of the resulting bromo derivative 15 and quenching with 3-methylbut-2-enal first gave the substituted allylic alcohol 16. After protection of 16 as its MOM ether, a Peterson methylenation^{14,15} next led to the unstable diene ether 17. Treatment of the enol ether 17 with mCPBA then gave the 3-hydroxymethyl substituted cyclohexenone 18, which immediately cyclised to the dihydrofuran 19 in the presence of camphor sulphonic acid. Reduction of the carbonyl group in 19, using DIBALH in toluene at -78°C, led to a 1:1 mixture of α - and β -hydroxy epimers of the alcohol 20 which could be separated by chromatography. A Mitsunobu inversion¹⁶ of the β -hydroxy epimer corresponding to 20, led to 20 in 66% overall yield. Treatment of the unsaturated alcohol 20 with phenylselenyl

bromide resulted in smooth cyclisation¹⁷ to a single diastereoisomer of the furanochroman **21** in 77% yield, which we tentatively assigned the stereochemistry shown. Finally, oxidation of **21** using mCPBA in CH_2Cl_2 at

Reagents : i, NBS, CCl₄, 70%; ii, tBuLi, THF, -90°C; 3-methylbutenal, -78°C, 56%; iii, MOMCl, EtNiPr₂, CH₂Cl₂, Δ , 90%; iv, TMSMeLi, Et₂O, 0°C; v, KH, THF, RT; vi, mCPBA, EtOH, RT, 31%; vii, CSA, CH₂Cl₂, RT, 91%; viii, iBu₂AlH, PhMe, -78°C, 46%; ix, PhSeBr, Et₃N, CH₂Cl₂, -78°C, 77%; x, mCPBA, CH₂Cl₂, 0°C; THF, KOH, Δ ; xi, DMDO, Me₂CO, H₂O, 22%

Scheme 2

 0° C, followed by base-catalysed elimination of the elements of phenylselenic acid from the intermediate selenoxide, produced the desired enol ether dihydrofuran 3 as an unstable oil. When the enol ether 3 was treated with a solution of dimethyldioxirane¹⁸ in acetone-water it gave the required *syn*-(β , β)-vicinal diol 2 and its corresponding *anti*-(β , α)-epimer as colourless solids which were easily separated by chromatography. The *syn*-diol tricyclic furanochroman 2 displayed nmr spectroscopic data which correlated closely with corresponding matching resonances published for natural phomactin A 1.¹⁹ Studies are now in progress towards a total synthesis of phomactin A, building on the principles described in this communication.

Acknowledgements

We thank Astra Charnwood (studentship to CJH) and the EPSRC (CASE award to KMF) for financial support of this work.

References and Notes

- 1. Sugano, M.; Sato, A.; Iijima, Y.; Oshima, T.; Furuya, K.; Kuwano, H.; Hata, T.; Hanzawa, H., J.Am.Chem.Soc. 1991, 113, 5463.
- Chu, M.; Truumees, I.; Gunnarsson, I.; Bishop, W. R.; Kreutner, W.; Horan, A. C.; Patel, M. G., J.Antibiotics. 1993, 554.
- Sugano, M.; Sato, A.; Iijima, Y.; Furuya, K.; Haruyama, H.; Yoda, K.; Hata, T., J.Org.Chem. 1994, 59, 564.
- 4. Heather, J. B.; Mittal, R. S. D.; Sih, C. J., J.Am. Chem. Soc. 1976, 98, 3661.
- 5. Stille, J. K., Angew. Chem. Internat. Ed. Engl. 1986, 25, 508.
- 6. Farina, V.; Krishnan, B., J.Am. Chem. Soc. 1991, 113, 9585.
- Satisfactory spectroscopic data, together with mass spectrometry and/or microanalysis data were obtained for all new compounds.
- 8. Bartlett, P. A.; Ting, P. C., J.Org. Chem. 1986, 51,2230.
- 9. Begley, M. J.; Bowden, M. C.; Patel, P.; Pattenden, G., J. Chem. Soc., P1, 1991, 1951.
- 10. We thank the late Dr M.J.Begley (deceased 28.2.94) for this X-ray structure determination; full details will be published in a later communication. Treatment of the diastereoisomer of **8** with hot HClO₄ in Me₂CO-H₂O led to the corresponding α -(CH of furanone) epimer of the hydroxy furanone **9**.
- 11. Kraus, G. A.; Frazier, K. A.; Roth, B. D.; Taschner, M. J.; Neuenschwander, K., *J.Org.Chem.* 1981, 46, 2417.
- 12. Belmont, D. T.; Paquette, L. A., J.Org.Chem. 1985, 50, 4102.
- 13. Quesada, M. L.; Schlessinger, R. H., Synth. Commun. 1976, 6, 555.
- 14. Wege, P. M.; Clark, R. D.; Heathcock, C. H., J.Org. Chem. 1976, 41, 3144.
- 15. Furukawa, T.; Morihira, K.; Horiguchi, Y.; Kuwajima, I., Tetrahedron, 1992, 48, 6975.
- 16. Mitsunobu, Y., Synthesis, 1981, 1.
- Nicolaou, K. C.; Magolda, R. L.; Sipio, W. J.; Barnette, W. E.; Lysenko, Z.; Joullie, M. M., J.Am.Chem.Soc. 1980, 102, 3784.
- 18. Adam, W.; Bialas, J.; Hadjiarapoglou, L., Chem.Ber. 1991, 124, 2377.
- Less polar isomer. ¹H NMR (500MHz,CDCl₃) 4.80(dd,1H,*J* 12.9 and 2.8Hz,5*H*), 4.41(dd,1H,*J* 12.9 and 1.3Hz,5*H*), 4.33(m,1H,8a*H*), 3.80(s,1H,3aO*H*), 3.56(d,1H,*J* 6.0Hz,3*H*), 2.81(d,1H,*J* 6.0Hz,3O*H*), 2.04-2.07 (m,1H,8*H*),1.51-1.57(m,3H,7*H* and 8*H*), 1.31(s,3*H*), 1.30(s,3*H*), 1.11(s,3*H*), 1.08(s,3*H*); ¹³C NMR (125.8MHz,CDCl₃) 146.1(s), 130.1(s), 105.9(s), 79.4(d), 75.5(s), 71.6(t), 64.1(d),36.7(t), 31.9(s), 28.8(q), 28.4(q), 26.7(t), 26.0(q), 17.7(q); HRMS (FAB) calcd for C₁₄H₂₁O₃ (M-OH)⁺ 237.1491, found 237.1472. More polar isomer. ¹H NMR (500MHz,CDCl₃) 4.82(dd,1H,*J* 13.1 and 2.9Hz,5*H*), 4.48(dd,1H,*J* 13.1 and 1.4Hz, 5*H*), 4.34(m,1H,8a*H*), 3.43(d,1H,*J* 2.0Hz,3*H*), 2.57(s,1H,3aO*H*), 2.31(d,1H,*J* 2.3Hz,3O*H*), 2.04-2.09(m,1H,8*H*), 1.57-1.66(m,3H,7*H* and 8*H*), 1.45(s,3H), 1.33(s,3H), 1.14(s,3H), 1.08(s,3H); ¹³C NMR (125.8MHz,CDCl₃) 147.1(s), 128.5(s), 107.5(s), 76.2(d), 75.1(s), 72.1(t), 64.3(d), 36.8(t), 32.2(s), 28.6(q), 27.3(q), 26.9(t), 26.1(q), 22.9(q); HRMS (EI+) calcd for C₁₄H₂₀O₃ (M-H₂O)⁺ 236.1412, found 236.1443.