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ABSTRACT
Inhibitors of carbonic anhydrase (CAIs) hold promise for addressing various diseases, including cancer,
diabetes, and other metabolic syndromes. CAV is the only isoform present in the mitochondria and is
considered a potential drug target for obesity. In this work, we have developed C2, and C4 substituted
oxazole-5(4H)-one derivatives as a new scaffold for the selective inhibition of human carbonic anhy-
drase VA (hCAVA). Synthesized compounds were characterized by 1H NMR, 13C NMR, and LC-MS mass
spectrometry and subsequently evaluated for in vitro hCAVA inhibition. Two compounds, 4 and 5
showed a considerably higher binding affinity for hCAVA in comparison to the hCAII. Further, cell-
based studies showed that these compounds decrease the expression of CAVA and GLUT4 in adipo-
cytes and non-toxic to HEK293 cells. The present work opens a platform for the use of oxazole-5(4H)-
ones and holds promise for further refinement of potent and selective hCAVA inhibitors.
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1. Introduction

Oxazolones are widely studied five-membered heterocyclic
molecules as part of pharmacologically relevant scaffolds
(Cannella et al., 1996; Joshi et al., 2003; Keni & Tepe, 2005).
Highly substituted oxazolones derivatives can be easily synthe-
sized by straight-forward modification at different active sites.
Diverse pharmacological activities of oxazolone derivatives can
be accessed by modification at C2 and C4 positions. For
example, the presence of a nitro group containing exocyclic
phenyl group (-Ph-NO2) at the C4 position of oxazolone con-
tributes to immunosuppressive activity (Mesaik et al., 2004). An
extended conjugation through an aliphatic double bond at C4
position and a phenyl ring at C2 position plays an important
role in tyrosinase inhibitory activity (Khan et al., 2006). Electron
donating and electron-withdrawing effect of substituents at C2
and C4 positions of oxazolone moieties have a crucial effect on
chymotrypsin inhibitory activities (Khan et al., 2008).
Substituted oxazolone derivatives have been reported towards
numerous pharmacological applications such as antimicrobial
(Pasha et al., 2007; Tandon et al., 2004), DAPK inhibitors
(Okamoto et al., 2010), urease inhibition (Fareed et al., 2013),
and potential anti-obesity or antidiabetic agents (Carpene
et al., 2019; Kakkar & Narasimhan, 2019; Soldavini & Kaunitz,
2013) (Figures 1 and 2).

The different isoforms of carbonic anhydrase (CA, EC4.2.1.1)
catalyzes the simplest and most fundamental reaction in living
systems, namely the interconversion of carbon dioxide and
bicarbonate ion (Sly & Hu, 1995; Tashian et al., 1990). The a-CA
family of isoforms is present in vertebrates, where the domin-
ant discourse surrounding CAs has focused around the cyto-
solic isoform CAII. However, several other isoforms have
garnered attention in recent years (Lehtonen et al., 2004;
Supuran, 2004). For example, the membrane-bound isoforms
CAIX and CAXII are correlated with tumors, thereby rendering
them important as anti-cancer therapeutic targets (Nocentini &
Supuran, 2018; Pastorekova et al., 2005; Salaroglio et al., 2018).
The development of isoform-selective CA inhibitors has been a
useful strategy for gaining insight into the role of tissue or
organelle localized isoforms (Pastorekova et al., 2004; Supuran
& Scozzafava, 2002). The cytosolic and membrane-associated
a-CA isoforms have been implicated in the maintenance of
acid-base balance and transport of carbon dioxide and bicar-
bonate across membranes that ultimately underlie distinctive
tissue-specific physiological events (Gilmour & Perry, 2009;
McConnell et al., 1961; Minkin & Jennings, 1972; Postel &
Sonnenberg, 2012; Supuran, 2004, 2018).

CA isoforms VA and VB are present in mitochondria. CAVA
is mainly expressed in the liver, skeletal muscle, and kidney
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while CAVB has a wider tissue distribution (Shah et al., 2000).
Both CAVA and CAVB have been suggested as contributing
to biosynthetic reactions involving bicarbonate as a reactant
(Chegwidden & Spencer, 1996; Forster & Dodgson, 2000).
The localization of the CAVA and CAVB isoforms in the mito-
chondrial matrix, and presence of highly active CAII in cyto-
sol have been linked to pyruvate carboxylase functioning,
and efflux of acetyl groups during fatty acid biosynthesis
(Hazen et al., 1996; Winum et al., 2005). The mitochondrial
CAV isoforms are implicated in lipogenesis (Chegwidden &
Spencer, 1996), gluconeogenesis (Dodgson & Cherian, 1989),
ureagenesis (Dodgson, 1987), and all processes that require
access to free bicarbonate or on a related note to the tricarb-
oxylic acid transporter system (Imtaiyaz Hassan et al., 2013).
Interestingly, structural analysis of CAVA has sought to sup-
port the lower activity of the isoforms when compared to
CAII (Boriack-Sjodin et al., 1995; Heck et al., 1994).
Nevertheless, such analysis is complicated by the higher than
cytosolic pH in mitochondria. Also, the broader distribution
of CAVB compared to CAVA indicates distinctive functional
contexts for the two isoforms (Fujikawa-Adachi et al., 1999).

While the druggable target properties of both CAVA and
CAVB have been reported, but relatively few reports for the
isoform-selective inhibitors of these enzymes are available
(Nishimori et al., 2005; Vullo et al., 2004). Mitochondrial
CAVA could serve as an interesting therapeutic target for
modulating ureagenesis and gluconeogenesis, both of
which are unregulated in renal failure and obesity. The case
of Topiramate (TPM) is relevant in this regard (Gordon &
Price, 1999; Supuran, 2003). The use of TPM resulted in a
significant loss in the weight of obese patients and this was
attributed to the inhibitory action against CAV and CA II
isoforms that actively participate in the lipogenesis of adi-
pocytes (Dodgson et al., 2000). Sulfonamides and their iso-
steres form the dominant class of CA inhibitory drugs
(Supuran, 2010). Sulfonamides and sulfamides have also
been evaluated for their CAV inhibitory activities (Nishimori
et al., 2005; Smaine et al., 2008; Vullo et al., 2004). Due to
the well-known cross-reactivity of the pharmacophore, the
identification of CAV isoform-selective inhibitors within sul-
fonamides is non-trivial (Supuran, 2010). This points to the
need for identifying scaffolds that have superior isoform-
selective character.

In the present work, we have explored C2, and C4 substi-
tuted oxazole-5(4H)-one derivatives as a new scaffold for
developing hCAVA inhibitors. The synthesized inhibitors
could be implicated in the therapeutic targeting of CAVA to
manage obesity and other metabolic disorders.

2. Materials and methods

2.1. General chemical procedures

1H NMR spectra were recorded on a 500MHz Bruker Instrument.
13C NMR spectra (125.8MHz) were recorded on a 500MHz Bruker
Instrument. Tetramethyl silane (TMS) was used as an internal
standard for NMR studies. Chemical shifts were measured in ppm
(d). Coupling constants (J) are reported in Hertz (Hz). Mass spectra
were measured by LC-MS on a Waters SYNAPT-G2S-S using the
electrospray ionization technique. Silica gel plates were used for
TLC (Thin-layer chromatography) analysis.

2.2. General procedure for the synthesis of oxazol-
5(4H)-ones

Oxazol-5(4H)-ones were synthesized according to the reported
method (Beloglazkina et al., 2016). A mixture of aromatic alde-
hydes (1 equiv.), hippuric acid (1 equiv.) in acetic anhydride (3
equiv.) was refluxed at 100 �C for 3–4 h in a nitrogen environ-
ment in the presence of potassium acetate (1 equiv.) to obtain
the desired compounds with moderate yields. After synthesis,
we focused on the most intense spot on TLC (thermodynamic-
ally more stable Z-isomer) which was successfully purified and
characterized. While we did not observe the formation of E-iso-
mers, we cannot exclude their formation from the reaction per
se, albeit in a significantly smaller proportion. After cooling, the
precipitate was filtered and washed with distilled water and
ether to obtain the desired compound. Pure Oxazol-5(4H)-one
derivatives were obtained either after washing with solvents or
after column chromatography or finally characterized by 1H
NMR, 13C NMR, and LC-MSmass spectrometry.

2.2.1. (Z)-4-(4-methoxybenzylidene)-2-phenyloxazol-5(4H)-
one (1)

The title compound was synthesized as described above
and obtained as solid, yield 57%, 1H NMR (DMSO-d6,
500MHz):d 8.31 (d, 2H, Jobs ¼ 8.5), 8.12 (d, 2H, Jobs ¼ 8),
7.74� 7.71 (m, 1H), 7.66� 7.63 (m, 2H), 7.34 (s, 1H), 7.12 (d,

Figure 1. General chemical structure of (Z)-4-benzylidene-2-phenyloxazol-
5(4H)-one. Figure 2. General reaction scheme for the synthesis of (Z)-4-benzylidene-2-

phenyloxazol-5(4H)-one (Wang, 2010).

2 A. DAS MAHAPATRA ET AL.



2H, Jobs ¼ 9), 3.88 (s, 3H); 13C NMR (DMSO-d6,
125.8MHz):d167.5, 162.4, 162.4, 135.0, 133.8, 131.8, 131.1,
129.8, 128.2, 126.7, 125.8, 115.2, 56.0; MS (ESI): m/z: calcu-
lated [MþH]þ: 280.0968; found [MþH]þ: 280.0947.

2.2.2. (Z)-4-(4-methylbenzylidene)-2-phenyloxazol-5(4H)-
one (2)

The title compound was synthesized as described above
and obtained as solid, yield 60%, 1H NMR (DMSO-d6,
500MHz):d8.22 (d, 2H, Jobs ¼ 8.5), 8.13 (d, 2H, Jobs¼ 7),
7.75� 7.72 (m, 1H), 7.67� 7.64 (m, 2H), 7.37 (d, 2H, Jobs ¼ 8),
7.33 (s, 1H), 2.40 (s, 3H); 13C NMR (DMSO-d6,
125.8MHz):d167.4, 163.1, 142.3, 134.0, 132.9, 132.7, 131.6,
131.2, 130.2, 129.8, 128.4, 125.7, 21.8; MS (ESI): m/z: calcu-
lated [MþH]þ: 264.1019; found [MþH]þ: 264.1089.

2.2.3. (Z)-4-(3,5-dimethylbenzylidene)-2-phenyloxazol-
5(4H)-one (3)

The title compound was synthesized as described above
and obtained as solid, yield 52%, 1H NMR (DMSO-d6, 500MHz):
d 8.14 (d, 2H, Jobs ¼ 7), 7.93 (s, 2H), 7.76� 7.73 (m, 1H),
7.68� 7.65 (m, 2H), 7.26 (s, 1H) , 7.18 (s, 1H) , 2.37 (s, 6H); 13C
NMR (DMSO-d6, 125.8MHz): d 167.4, 163.3, 138.5, 134.1, 133.7,
133.5, 133.2, 131.7, 130.5, 129.8, 128.5, 125.6, 21.4; MS (ESI): m/
z: calculated [MþH]þ: 278.1176; found [MþH]þ: 278.1183.

2.2.4. (Z)-4-(4-nitrobenzylidene)-2-phenyloxazol-5(4H)-
one (4)

The title compound was synthesized as described above
and obtained as solid, yield 49%, 1H NMR (DMSO-d6,

500MHz):d8.57 (d, 2H, Jobs ¼ 9), 8.37 (d, 2H, Jobs ¼ 9), 8.20 (d,
2H, Jobs ¼ 7), 7.81� 7.78 (m, 1H), 7.70� 7.67 (m, 2H), 7.49 (s,
1H); 13C NMR (DMSO-d6, 125.8MHz):d166.9, 165.4, 148.3, 140.1,
136.7, 134.8, 133.4, 129.9, 128.9, 127.5, 125.3, 124.4; MS (ESI):
m/z: calculated [MþH]þ: 295.0713; found [MþH]þ: 295.0774.

2.2.5. (Z)-4-(2,4-dichlorobenzylidene)-2-phenyloxazol-
5(4H)-one (5)

The title compound was synthesized as described above
and obtained as solid, yield 54%, 1H NMR (DMSO-d6,
500MHz):d8.92 (d, 1H, J¼ 8.5), 8.17 (d, 2H, Jobs ¼ 7), 7.87 (d,
1H, Jobs ¼ 2), 7.80� 7.77 (m, 1H), 7.70� 7.66 (m, 3H), 7.41 (s,
1H); 13C NMR (DMSO-d6, 125.8MHz):d167.0, 165.2, 136.6,
136.4, 136.0, 134.7, 134.3, 130.2, 130.1, 129.9, 128.8, 128.7,
125.3, 122.7; MS (ESI): m/z: calculated [MþH]þ: 318.0083;
found [MþH]þ: 318.0088.

2.3. Molecular docking

Molecular docking was carried out using Autodock Vina and
AutoDock 4 (Zn) with an improved force field package (Morris
et al., 2009; Santos-Martins et al., 2014; Trott & Olson, 2010). The
atomic coordinates of previously reported modeled structures
of CAVA were taken from the Protein Model Database (PMDB ID:
PM0080287), while for CAIX and CAII the structure coordinates
were taken from PDB ID: 3IAI, PDB ID: 2AW1, respectively (Idrees
et al., 2016, 2017). The 2D and 3D structures of all the synthe-
sized molecules were drawn in ChemBio3D Ultra 12.0. Molecular
docking studies were performed to see the binding conforma-
tions and types of protein-ligand interactions (Thakur & Hassan,
2011). In short, the torsion angles were identified using
Autodock Tools, and Kollman atomic charges were applied to
the protein molecule. Grid spacing was defined, and the
selected synthesized molecules were subjected to robust
molecular docking procedures as described previously (Queen
et al., 2018; Shamsi et al., 2020). The selected docking poses
were analyzed, refined, and visualization/structure analysis of
each docked complex was performed using PyMOL viewer
(Schr€odinger, LLC) and “Receptor-ligand Interactions” modules
of BIOVIA/Discovery Studio 2017R2 were used (Biovia, 2013).

2.4. Protein expression and purification

The catalytic domain of human CAVA (39-305aa), CAIX (38-
414aa), and full-length CAII were cloned, expressed, and purified
using a prokaryotic expression system (E. coli, BL21 strain) as
described previously (Aneja et al., 2020; Idrees et al., 2016). In
brief, CAVA and CAII were expressed as soluble proteins using a
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prokaryotic expression system. The expression constructs of
CAVA and CAII were separately transformed in the BL21 strain of
E. coli, and individual colonies were picked for establishing the
primary and secondary expression cultures. The secondary cul-
tures were induced for protein expression with isopropyl b-D-1-
thiogalactopyranoside, and cultures were pelleted down after
5–6h of induction. The pelleted cultures of CAVA and CAII were
lysed using lysis buffer (50mM Tris, 250mM NaCl, 0.1mM PMSF
and 1% Triton-100), and filtered supernatant obtained after cell
lysis was directly loaded on pre-equilibrated Ni-NTA affinity col-
umn. The bound protein was eluted using imidazole gradients,
and each elution was analyzed for the presence of protein. The
protein-containing fractions were pooled, concentrated, and fur-
ther purified using gel-filtration chromatography (Superdex
200pg connected to the Akta purifier, GE Healthcare). The CAIX
was purified from inclusion bodies using sarcosine buffer
(50mM Tris, 1.5% N-lauroyl sarcosine, pH 8.0). The purified CAIX
was refolded by dialyzing extensively in refolding buffer (50mM
Tris pH 8.0 and 150mM NaCl) for 30–36h, at 4 �C with 5–6 suc-
cessive buffer exchanges.

2.5. CA enzyme inhibition assay

Enzyme inhibition assay of CA was carried out using our ear-
lier reported method (Peerzada et al., 2018). This assay spec-
trophotometrically measured the p-nitrophenol, a yellow-
colored product which is formed by the hydrolysis of p-nitro-
phenyl acetate (4-NPA) catalyzed by CA. The absorbance of
the hydrolyzed reaction product (yellow color) was measured
at 400 nm with the help of a UV/visible spectrophotometer
(Jasco V-660, Model B028661152) equipped with a Peltier-
type temperature regulator. The synthesized compounds are
DMSO soluble, so we prepared the stock solutions in DMSO,
and working solutions were prepared by making the subse-
quent dilutions from the stock solutions of respective com-
pound in the assay buffer (50mM Tris buffer, pH 8.0). For
each measurement of enzyme inhibition studies, nearly 5 mM
CAVA/CAII/CAIX protein was used, and protein solution with-
out compound (with DMSO only, as vehicle control) was
taken as control, whereas, acetazolamide (a non-specific
inhibitor of CAs) was used as a positive control. The IC50 val-
ues for each synthesized compound were determined by
analyzing the absorption data using Graph Pad Prism
(Version 6.0) software.

2.6. Fluorescence measurements

Binding affinities of CAVA and selected synthesized molecules
(compounds 4 and 5) were performed using fluorescence emis-
sion studies as described previously (Khan et al., 2018, 2019).
The stock solutions of each compound were prepared in DMSO
and working solutions (1mM/ml concentration) were diluted in
Tris buffer (50mM, pH 8.0). The CAVA, CAIX, and CAII consist of
tryptophan residues, which absorb at 280nm and bear charac-
teristic emission maxima at 346nm. Thus, we excited protein
solution at 280 nm and fluorescence emission was recorded in
the 300–400 nm range. A significant decrease in the fluores-
cence intensity of CAVA with the increasing concentration of

compound 4 or 5 was used to calculate the binding constant
(Ka) and the number of binding sites (n) present on the protein
molecule using the modified Stern-Volmer equation (Boaz &
Rollefson, 1950):

log Fo � Fð Þ=F ¼ log Ka þ n log ½L� (1)

where, Fo ¼ Fluorescence intensity of native protein, F ¼
Fluorescence intensity of protein in the presence of ligand,
Ka ¼ Binding constant, n ¼ number of binding sites,
L¼ concentration of ligand. The binding constant (Ka) and
the number of binding sites (n) were obtained from the
intercept and slope, respectively.

2.7. Protein isolation and western blot

The 3T3-L1 cells were treated with the IC50 dose of selected
compounds and were lysed in RIPA cell lysis buffer (Thermo
Fisher Scientific (USA). The protein concentrations were meas-
ured using a Bicinchoninic Acid Assay (BCA-protein estimation
kit). Approximately 40–50lg of whole-cell lysate was diluted
with 6X Laemmli’s buffer, boiled for 3–5min and resolved using
12% SDS-polyacrylamide electrophoresis under reducing condi-
tions. The resultant polypeptides were transferred to polyvinyli-
dene fluoride (PVDF) membrane using blotting. The protein of
interest was identified with the help of peptide-specific primary
antibodies (Carbonic Anhydrase VA Polyclonal Antibody,
Catalog # PA5-36931, GLUT4 Monoclonal Antibody, Catalog #
MA5-17176, from Thermo Fisher Scientific) and horseradish per-
oxidase coupled secondary conjugates using luminol as a
chemiluminescent substrate for HRP (Khan et al., 2014).

2.8. Cell viability studies

The cell viability studies of HEK293 cells with selected com-
pounds was analyzed using MTT assay (Khan et al., 2017,
2018). The percentage of cell viability was estimated and
plotted as a function of ligand concentration.

3. Results and discussion

3.1. Chemical synthesis

In the present work, we have investigated C2 and C4 substi-
tuted oxazol-5(4H)-one derivatives as a new scaffold for the
development of hCAVA inhibitors. Five oxazole-5(4H)-one
derivatives with varying substitutions at C4 substituted phe-
nyl ring were synthesized from aromatic aldehydes, hippuric
acid, acetic anhydride, and potassium acetate according to
literature reported procedure (Beloglazkina et al., 2016). A
mixture of aromatic aldehydes (1 equiv.), hippuric acid (1
equiv.) in acetic anhydride was refluxed at 100 �C for 3–4 h
under the nitrogen environment in the presence of potas-
sium acetate (1 equiv.) to obtain desired compounds with
moderate yields. Scrutiny of literature towards the synthesis
of similar 5-(4H)-oxazolones derivatives revealed that the
thermodynamically stable Z isomer is usually formed and in
the case of certain specific aldehydes, a mixture of both
isomers might be formed (de Castro et al., 2016; Rao, 1976;
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Rao & Filler, 1975). Finally, Oxazole-5(4H)-one derivatives
were characterized by different spectroscopic techniques
including 1H NMR, 13C NMR, and LC-MS mass spectrometry.
All the compounds displayed only one 1H NMR signal for the
vinyl proton in the region d 7.1- 7.4, which confirmed the
presence of only one geometric isomer, which is the thermo-
dynamically more stable Z isomer with established literature.
Mechanism for the synthesis of (Z)-4-benzylidene-2-phenylox-
azol-5(4H)-one is shown in Figure 3 (Wang, 2010).

3.2. Enzyme inhibition studies

The enzymatic activity of human CAVA, CAIX, and CAII was
evaluated with increasing concentration of each synthesized
compound while acetazolamide was used as a standard posi-
tive control. We have found that, out of five synthesized mol-
ecules, only two molecules (compound 4 and 5) show higher
inhibition activity towards hCAVA. Inhibitory results were
quite riveting as demonstrated by the significant inhibitory
activity of compounds 4 and 5 for the hCAVA with IC50 val-
ues of 0.224 ± 0.36lM and 2.75 ± 0.22lM, respectively. The
corresponding IC50 values of compound 4 and 5 for hCAIX

were 2.44 ± 0.012 lM and 5.33 ± 0.01 mM, respectively.
Whereas for hCAII, the IC50 values of compound 4 and 5
were 11.41 ± 0.36 mM and 9.11 ± 0.36 mM, respectively
(Table 1). These results indicate that compound 4 and 5 have
a greater affinity towards hCAVA compared to hCAIX and
hCAII. The similar architecture of the binding cavity may be
responsible for modest activity towards hCAIX and hCAII.

3.3. Molecular docking

Molecular docking has been extensively used to investigate
the mode of interactions of designed inhibitors to their
receptors (Naqvi et al., 2018, 2019; Naz et al., 2015, 2016,
2017, 2018). Docking results showed that compound 4 and 5
binds to the active site cavity of CAVA with affinities of
�8.5 kcal/mol and �8.1 kcal/mol, respectively. Docking stud-
ies of compound 4 and 5 into the active site of CAVA
showed that these molecules offer several interactions to the
binding residues (Figure S1). In particular, the compound 4
forms eight hydrogen bonds with Gln103, Hius130, His132,
Thr235, Thr236, and zinc ion, and interacts with Trp96,
Leu101, Gln128, His155, Val157, Tyr167, Lys168, Val171 and

Figure 3. Proposed mechanism for the synthesis of (Z)-4-benzylidene-2-phenyloxazol-5(4H)-one.

Table 1. Enzyme activity and binding study outcomes of compounds 4 and 5 with CAVA.

Compound No.

Esterase assay
IC50, (mM)

Binding constant
(Ka), M�1

Molecular Docking

hCAVA hCAII hCAIX
Binding energy

(kcal/mol)
No. of Hydrogen Bonds and other

binding residues

4 0.224 ± 0.36 11.41 ± 0.36 2.44 ± 0.012 1.9� 107 �8.5 8
(Zn, Trp96, Leu101, Gln103, Gln128, His130,
His132, His155, Val157, Tyr167, Lys168,
Val171, Thr235, Thr236, Pro238)

5 2.75 ± 0.22 9.11 ± 0.36 5.33 ± 0.01 4.9� 104 �8.1 4
(Zn, Trp96, Thr98, Leu101, Gln103, His130,
His155, Gln128, Val157, Tyr167, Leu177,
Val179, Thr235, Thr236, Val243, Trp245)

AZM 0.067 ± 0.004 0.015±.001 0.036 ± 0.002 Not
determined

�6.6 5
(Zn, Gln103, Gln128, His130, His132, His155,
Val157, Tyr167, Val171, Val179, Leu234,
Thr235, Thr236, Val243, Trp245)
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Pro238 (Figure 4(A, C)). Compound 5 also forms four hydro-
gen bonds with Gln128, Tyr167, and Thr236. It also interacts
with zinc ion, Trp96, Thr98, Leu101, Gln103, His130, His155,
Val157, Leu177, Val179, Thr235, Val243, Trp245 (Figure 4(B,
D)). The binding poses of compound 4 show that the para-
substituted nitro group offers hydrogen bonds to Thr235
and Thr236, the important residues of CAVA active site. O-
atom of oxazol-5(4H)-one ring of compound 4 stabilizes the
complex by forming a hydrogen bond with Gln103 and,
forms p-alkyl, p-donor, and p-sigma interactions with His130,
Tyr167, and Val171, respectively (Figure 4(C)). Interestingly,
compound 4 directly interacts with the zinc metal ion pre-
sent in the cavity of CAVA. These interactions hinder the
involvement of zinc atom with the active site residues of
CAVA and thus decreasing the activity.

In the case of compound 5, binding analysis shows that
chlorine atoms form p-alkyl bonds with Trp96. N-atom of
oxazol-5(4H)-one ring of compound 5 stabilizes the complex
by forming a hydrogen bond with Thr236 and O-atom form
two hydrogen bonds with Gln128 and Tyr167 (Figure 4(B,
D)). Phenyl ring of compound 5 forms p-alkyl and p-sigma
interactions with Val157, Val179, and Leu234, respectively

(Figure 4(D)). The reported crystal structure and inhibition
studies of other CA isoforms suggested that these residues
are mainly responsible for the activity and interaction of
known inhibitor of CAs, and these interactions stabilizes the
protein-ligand complex (Mujumdar et al., 2019; Sjoblom
et al., 2009). The binding of these compounds also involves
similar types of interactions with the CAVA catalytic domain,
which might be responsible for the reduced catalytic activity.
The surface representations also showed that these com-
pounds occupy the internal cavity of CAVA (Figures 4
and S1).

Interestingly, when compared the binding mode of these
compounds with acetazolamide (AZM), a non-specific inhibi-
tor of CAs, it was found that these compounds bind to the
same binding site of CAVA where AZM binds (Figure 5).
These compounds shared the identical residues of the bind-
ing cavity for hydrogen bonding as AZM (Figure 5(A–C)).
These molecules share the critical important binding residues
with AZM, and the results of our study corroborate previous
reports, which suggested that CAVA inhibitors significantly
bind with these residues (Capkauskaite et al., 2018; Costa
et al., 2019; Poli et al., 2020). It means that these compounds

Figure 4. Molecular docking studies of compound 4 and 5 with CAVA: Three-dimensional focused view of binding pocket residues showing the hydrogen bond-
forming residues of CAVA docked with (A) compound 4 (B) compound 5 (compound 4: red color stick model, compound 5: deep teal color stick model, residues of
CAVA participating in H-bonding interactions are shown connected in dotted black lines). The grey color sphere represents the zinc atom. 2D representation of res-
idues of CAVA docked complex involved in different interactions like van der Waals interactions, hydrogen bonding, charge or polar interactions with, (C) com-
pound 4, (D) compound 5 (see inset for each type of interaction and respective color).
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might follow the similar mechanism of CA inhibition that
AZM follows. Overall, all these observations established that
the synthesized molecules interacted with catalytically essen-
tial residues of CAVA.

3.4. Fluorescence binding studies

Enzyme inhibition assay and in silico studies suggested that
compounds 4 and 5 binds with CAVA and inhibited the
activity, thus the actual binding affinity of these compounds
with CAVA was carried out using fluorescence binding assay.
The considerable decrease in the fluorescence emission of
CAVA with the increasing concentrations of compounds 4
and 5 (Figure 6) suggested that these compounds bind with
CAVA. The reduction of fluorescence intensity was analyzed
using the modified Stern-Volmer equation and the binding
constant (Ka) was calculated (Figure 6). The value of Ka for
the binding of compound 4 and 5 with CAVA was found to
be 1.9� 107 M�1 and 4.9� 104 M�1, respectively. These
results supported the in-silico results and further suggested
that compound 4 and 5 physically interacted with CAVA and

form a stable complex with it. The higher binding affinity of
compound 4 towards CAVA compared to compound 5 also
supports the strong inhibition potential of the former that
had been observed. The obtained stoichiometry of each pro-
tein-ligand complex is 1:1.

3.5. Protein expression

To observe the effect of compound 4 and 5 on CAVA expres-
sion, 3T3-L1 cells were incubated with IC50 concentration of
compounds for 24–48 h, and protein expression was ana-
lyzed using immunoblotting. It was found that the treatment
of compounds decreases the expression of CAVA in 3T3-L1
cells (Figure 7(A)). These results suggested that the selected
compound reduces the expression of CAVA. The high expres-
sion of CAVA directly correlated with obesity and thus to fur-
ther validate the effect of CAVA inhibition, the expression of
GLUT4 (transporter overexpressed in obesity) was also eval-
uated. Expression results showed that compound 4 and 5
also decreases the expression of GLUT4 (Figure 7(A)). The
3T3-L1 cells were used as an established model for obesity

Figure 5. Comparative molecular docking studies of compound 4, 5, and acetazolamide with CAVA: (A) Three-dimensional focused view of binding pocket residues
of CAVA showing the hydrogen bond-forming residues with acetazolamide (AZM). The yellow color stick model represents AZM, H-bonding interactions are shown
in dotted black lines. The grey color sphere represents the zinc atom. (B) 2D representation of residues of CAVA involved in different interactions like van der
Waals interactions, hydrogen bonding, charge, or p-interactions with AZM (see inset for each type of interaction and respective color). AZM: acetazolamide. The
sphere represents a zinc atom. (C) Three-dimensional surface view of the docked complex of compounds 4, 5, and AZM in the binding pocket of CAVA: (D)
Intensive view of binding pocket residues of CAVA that commonly participated in the hydrogen bonding with compound 4, 5, and AZM. The residues of CAVA par-
ticipating in bonding are shown connected through H-bonding interactions with each ligand as presented in respective colored dotted lines.
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or related disorders. Further, the expression of GLUT4 is very
high in these cells (Dissanayake et al., 2018). In other words,
the overexpression of CAVA and GLUT4 has been directly
associated with obesity (Price et al., 2017; Shah et al., 2013).

Therefore, the targeting of CAVA or GLUT4 is of great
importance, particularly for obesity. Expression studies sug-
gested that compound 4 and 5 decreases the expression of
CAVA/GLUT4. These results support our rationale of CAVA

Figure 6. Fluorescence binding of compound 4 and 5 with CAVA. (A) The fluorescence emission spectrum of CAVA (5–10 mM) with increasing concentration of
compound 4. (B) Stern-Volmer plot obtained from the fluorescence quenching data of CAVA with compound 4. (C) Fluorescence emission spectra of CAVA with
increasing concentration of compound 5. (D) Stern-Volmer plot obtained from the fluorescence quenching data of CAVA with compound 5. For fluorescence studies
protein sample was excited at 280 nm and emission of each titration was recorded in 300–400 nm range. The value of binding constant/number of binding sites
was estimated using the Stern-Volmer plot.

Figure 7. Protein expression and cytotoxicity studies of selected compounds. (A) Representative expression profile of CAVA and GLUT4 in compound 4 or 5 treated
adipocytes (3T3-L1) cells w.r.t. control. Immunoblotting studies were performed after stipulated time treatment of compound 4 and 5, the expression studies show-
ing that the treatment of cells with compound 4/5 decreases the protein level expression of CAVA and GLUT4. b-actin is taken as a loading control. (B) Cell viability
studies of HEK293 cells in the presence of compound 4 and 5 as measured by MTT assay. Cells were treated with increasing concentration of compound 4/5 and
the percentage cell viability was estimated with respect to the control cells (cells treated with vehicle control/DMSO) and plotted as a function of concentration.
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targeting molecule synthesis and advocate that these mole-
cules have the potential to be evaluated for CAVA ori-
ented obesity.

3.6. Cell cytotoxicity

The cytotoxicity studies of compound 4 and 5 were carried
out on HEK293 cells. The cells were treated with increasing
concentration (0–200 lM) of each compound and cell viabil-
ity was accessed using MTT assay. Results showed that in the
studied concentration range these compounds do not inhibit
the growth of HEK293 cells (Figure 7(B)). These results sug-
gested that the studied compounds does not show toxicity
to HEK293 cells in the studied concentration range.

4. Conclusions

We have synthesized a series of molecules and evaluated
them for in vitro hCAVA and hCAII inhibition activity. The
biological assays reveal that electron-donating and electron-
withdrawing functional groups at C4 substituted phenyl ring
and a phenyl ring at C2 position of oxazolone moiety con-
tribute towards inhibition of hCAVA more significantly. The
presence of electron-withdrawing groups, 4-nitro and 2,4-
dichloro, on the oxazole-5(4H)-one showed significant inhibi-
tory activity of the hCAVA enzyme. On the other hand, the
electron-donating substituent such as 4-methoxy, 4-methyl,
and 3,5-dimethyl have negligible inhibitory activity towards
hCAVA. Our studies suggest that the distinct architecture of
C2 and C4 substituted oxazole-5(4H)-one is responsible for
significant inhibitory activity hCAVA. The strong inhibition
profile, high binding affinity, and potential to decrease the
protein level expression suggested that these compounds
target CAVA-related transporters and might be considered
prospective anti-obesity lead molecules.
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