

β -Cyclodextrine-SO₃H: the most efficient catalyst for one-pot synthesis of 2H-indazolo[2,1-b]phthalazinetriones under solvent-free conditions

Amol B. Atar^{1,2} \cdot Sang Dong Lee¹ \cdot Byung Gwon Cho¹ \cdot Dae Won Cho² \cdot Yeon Tae Jeong¹

Received: 25 March 2015/Accepted: 21 May 2015 © Springer Science+Business Media Dordrecht 2015

Abstract An environmentally benign and efficient method has been developed for the synthesis of a series of 2H-indazolo[2,1-b]phthalazine-triones derivatives with β -cy-clodextrine-SO₃H as a recyclable catalyst by simply combining of various aldehydes with cyclic 1,3-diketones and phthalhydrazide under solvent free condition. The advantageous features of this methodology are high atom-economy, operational simplicity, shorter reaction time, convergence, and facile automation.

Graphical Abstract A greener, efficient, and expeditious method has been developed for the synthesis of 2H-indazolo [2,1-b] phthalazine-triones derivatives with β -cy-clodextrine-SO₃H as a recyclable catalyst for the first time.

Keywords β -Cyclodextrine-SO₃H \cdot Homogeneous catalyst \cdot 2H-indazolo[2,1-b]phthalazine-triones \cdot Solvent free \cdot MCRs

Electronic supplementary material The online version of this article (doi:10.1007/s11164-015-2113-3) contains supplementary material, which is available to authorized users.

Yeon Tae Jeong ytjeong@pknu.ac.kr

¹ Department of Image Science and Engineering, Pukyong National University, Busan 608-737, Republic of Korea

² Department of Chemistry, Yeungnam University, Gyeongsan, Gyeongbuk 712-749, Republic of Korea

Introduction

Heterocyclic compounds acquired significance, as these are associated with a wide range of potential biological and pharmaceutical activities [1]. These N-containing heterocyclic compounds play a crucial role in the context of drug scaffolds, synthetic organic chemistry, and medicinal chemistry as well as material sciences [2]. 3,4-dihydro-1*H*-indazolo[1,2-b]phthalazine-1,6,11(2H, 13H)-triones derivatives constitute a key structural motif in a number of natural and synthetic bioactive molecules [3]. Heterocycles containing phthalazine moiety constitute as an important structural motif attributing to their pharmacological and biological activities [4, 5]. Besides these they are endowed with anticonvulsant [6], cardio tonic [7] and vasorelaxant activities [8] and also comply as anti-inflammatory, analgesic, antihypoxic and antipyretic agents [9]. Numerous protocols have been developed for the synthesis of 3,4-dihydro-1*H*-indazolo[1,2-b]phthalazine-1,6,11(2H,13H)-triones using *p*-TSA [10], ionic liquids [11], (S)-CSA [12], dodecylphosphonic acid (DPA) [13], heteropoly acids [14], Ce(SO₄)₂·4H₂O [15], solid acids [16], montmorillonite K-10 [17], N-halosulfonamides [11], silicasulfuric acid [18], phosphomolybdic acid-silica (PMA-SiO₂) [19] as catalysts. However, some of the synthetic strategies suffer from certain limitations such as expensive catalysts, low yields of products, long reaction times, use of toxic solvents, tedious procedures for preparation of catalysts and tedious work-up conditions. Hence, the development of an efficient, simple, easy work-up and environmentally benign protocol using a recyclable catalyst and a green solvent for the synthesis of 3,4-dihydro-1H-indazolo[1,2-b]phthalazine-1,6,11(2H, 13H)-triones derivatives is still desirable and in demand.

In recent decades, organic reactions under solvent-free conditions have also attracted much interest from chemists particularly from the viewpoint of green chemistry [20]. Green chemistry approaches are significant due to the reduction in waste production, reduction in byproducts, reduction of energy and cost [21]. The possibility of performing multicomponent reactions under solvent-free conditions using an environmentally friendly catalyst could enhance the efficiency from an economic as well as ecological point of view [22]. β -cyclodextrin-SO₃H is well known supramolecular catalysts, which by reversible formation of host–guest complexes, activate the organic molecules and catalyze the reactions [23]. Our literature survey at this stage revealed that there is no single report on the synthesis of 3,4-dihydro-1*H*-indazolo[1,2-b]phthalazine-1,6,11(2H, 13H)-triones derivatives in solvent free mediated by β -cyclodextrin-SO₃H, as a recyclable supramolecular

Scheme 1 Synthesis of 2H-indazolo[2,1-b]phthalazine-trione derivatives by using β -cyclodextrine-SO₃H as a recyclable catalyst

₹-₹ o z	Datalyst (10 mol%)				
No. C	Datalyst (10 mol%) 5 - - - - DaCl2 - SiO2 -				
	- CaCl ₂ 1 SiO ₂ 1	Solvent	Condition	Time (min)	Yield ^a (%)
1	CaCl ₂ 5102 500	Ethanol	Reflux	09	35
2 C	5i0 ₂ a.c.1	Ethanol	Reflux	40	35
3 S.		Neat	100 °C	30	38
4 F	, ,	Ethylene glycol	120 °C	35	65
5 Z	Zn(OTf) ₂	Methanol	80 °C	40	50
6 Z	ZnCl ₂	Ethanol	Reflux	30	55
7 B.	3-cyclodextrine-SO ₃ H	Ethanol	Reflux	20	06
8 B	3-cyclodextrine-SO ₃ H	Neat	80 °C	10	98
9 C	CuCl ₂	Neat	80 °C	30	75
10 L	Ji(OTf) l	Neat	80 °C	20	60
11 Si	5nCl ₂ ·2H ₂ O	Neat	80 °C	25	65
12 F	reCl ₃	Neat	80 °C	20	80
13 C	CuF ₂ l	Neat	2° 08	15	85
14 B	3-cyclodextrin	Neat	80 °C	20	75
15 B	3-cyclodextrine-SO ₃ H	Water	Reflux	20	06
16 B	3-cyclodextrine-SO ₃ H	DMF	Reflux	20	92
17 B	3-cyclodextrine-SO ₃ H	Methanol	Reflux	15	93
18 B	3-cyclodextrine-SO ₃ H	Ethylene glycol	120 °C	30	92
19 B	3-cyclodextrine-SO ₃ H	ACN	100 °C	30	91

 $\underline{\textcircled{O}}$ Springer

continued	
-	
e	
q	
La	

 $\underline{\textcircled{O}}$ Springer

No.	Catalyst (10 mol%)	Solvent	Condition	Time (min)	Yield ^a ($\%$)
20	β -cyclodextrine-SO ₃ H	Toluene	100 °C	30	06
21	β -cyclodextrine-SO ₃ H	THF	Reflux	20	89
22	β -cyclodextrine-SO ₃ H (5 mol%)	Neat	80 °C	10	91
23	β -cyclodextrine-SO ₃ H (20 mol%)	Neat	80 °C	10	95
Reaction condi	tions: benzaldehyde (1 mmol), Dimidone (1 mmo	ol), phthalhydrazide (1 mmol), β -c	cyclodextrine-SO ₃ H (10	% mol)	
a Isolated yield					

D Springer

^a Isolated yield

catalyst. As part of our ongoing program toward the development of greener chemical approaches for the synthesis of novel reaction intermediates and heterocyclic moieties [24–28], we report herein the synthesis of 3,4-dihydro-1*H*-indazolo[1,2-b]phthalazine-1,6,11(2H,13H)-triones by the reaction of phthalhydrazide, 1,3-diketones, and aldehydes using β -cyclodextrin-SO₃H, as a recyclable supramolecular catalyst, in solvent free medium (Scheme 1).

Results and discussion

The studies were initiated to optimize the reaction conditions for a model reaction of phthalhydrazide, benzaldehyde and dimedone in presence of different catalyst and solvent (Table 1). In order to establish the real effectiveness of the catalyst for the synthesis of 2H-indazolo[2,1-b]phthalazine-trione derivatives, a comparative reaction was performed without catalyst using phthalhydrazide, benzaldehyde and dimidone in ethanol at reflux. It was found that only 35 % of product was obtained in the absence of catalyst even after 1 h (Table 1, entry 1). In order to develop a viable approach, the model reaction was investigated by employing different catalyst such as CaCl₂, SiO₂, FeCl₃, Zn(OTf)₂, ZnCl₂, β-cyclodextrin, CuCl₂, β-cyclodextrine-SO₃H, Li(OTf), SnCl₂·2H₂O and CuF₂. Among all screened catalyst β -cyclodextrine-SO₃H gave the best result in view of yield and reaction time (Table 1, entry 8). In contrast CaCl₂, SiO₂, Zn(OTf)₂, ZnCl₂, Li(OTf) and SnCl₂.2H₂O did not afford the desired product in good yields (Table 1, entries 2, 3, 5, 6, 10 and 11). The β -cyclodextrine-SO₃H is appeared to be more efficient than CuF₂ in terms of yield and time for completion of the reaction (Table 1, entries 8 and 13). Careful analysis of screened Lewis acid catalyst, such as β -cyclodextrin,

Scheme 2 Plausible mechanism for the formation of substituted 2H-indazolo[2,1-b]phthalazine-trione derivatives by using β -cyclodextrine-SO₃H as a recyclable catalyst

Table 3 Recycling and reuse of β -cyclodextrine-SO3H	Entry	Reaction cycle	Yield ^a (%)
^a Isolated vield	1	1st (fresh run)	98
	2	2nd cycle	97
	3	3rd cycle	97
	4	4th cycle	95

CuCl₂, FeCl₃ and CuF₂ were effective, but promising results were obtained with β -cyclodextrine-SO₃H catalyst in less time with better yield (Table 1, entries 4, 8, 9, 13 and 14).

To see the effect of solvent, we screened different solvents such as toluene, ethanol, acetonitrile, dimethylformamide, ethylene glycol, methanol, water, and tetrahydrofuran at room temperature. It was observed that under solvent condition required longer times to afford comparable yields (Table 1, entries 15–21). When the reaction was performed under solvent free conditions, high yield of target product was obtained (Table 1, entry 8). Moreover, we found that the yields were obviously affected by the amount of β -cyclodextrine-SO₃H loaded. When 5 mol%, 10 mol%, and 20 mol% of β -cyclodextrine-SO₃H were used, the yields were 91, 98, and 95 %, respectively (Table 1, entries 8, 22 and 23). Therefore, 10 mol% of β -cyclodextrine-SO₃H was sufficient and optimal quantity for the completion of the reaction.

Thus, we selected the optimized reaction condition to examine the universality of this catalyst application with different electron rich and deficient substrates. It was gratifying to observe that most of the tested substrates exhibited satisfactory reactivity profiles, in all cases leading to a heterocyclization sequence that readily afforded the target structures (Table 2). Various substituted aldehydes undergo the reaction in the presence of catalytic amount of β -cyclodextrine-SO₃H (10 mol%) in solvent free condition at 80 °C. As compared to aromatic aldehydes, the heteroaromatic aldehyde gave slightly lower yield (Table 2, entries 1–18, 26). Compared with heteroaromatic aldehydes, aliphatic aldehydes afforded relatively higher yields of the corresponding 2H-indazolo[2,1-b]phthalazine-trione (Table 2, entries 19–21, 26). In general, all the reactions were clean, and the 2H-indazolo[2,1-b] phthalazine-trione were obtained in good to excellent yields (85–98 %).

A possible mechanism of this one-pot reaction is expected on the basis of the reported literature [13]. A plausible mechanism for the formation of substituted 2H-indazolo[2,1-b]phthalazine-trione derivatives by using β -cyclodextrine-SO₃H as a recyclable catalyst (Scheme 2).

The reusability of the β -cyclodextrine-SO₃H catalyst is one of the most important benefits and makes it useful for commercial applications as well. Thus, the recovery and reusability of the catalyst were investigated. The recyclability of the catalyst was checked with model reaction (Table 3, entries 1–4). The catalyst was recovered after completion of the first fresh run, the reaction mixture cooled to room temperature and diluted with water. The catalyst was dissolved in water and product was precipitated out. The precipitated crude product was separated by simple filtration and β -cyclodextrine-SO₃H was recovered by evaporating the aqueous layer under reduced pressure. The recovered β -cyclodextrine-SO₃H (10 mol %) was dried at 90–100 °C for 12 h and tested in up to three more reaction cycles. The same catalyst (10 mol%) was reused for subsequent reactions (three runs) with fresh substrates under the same conditions. The catalyst showed excellent recyclability in all these reactions (Table 3), as the reaction times and yield remained almost the same with a slight reduction in catalytic activity.

The reported as well as synthesized novel compounds were further characterized by their spectral properties (¹H, ¹³C NMR, and HRMS).

Conclusion

In summary, an environmentally benign and efficient method has been developed for the synthesis of a series of 2H-indazolo[2,1-b]phthalazine-triones derivatives in solvent free media with β -cyclodextrine-SO₃H as a recyclable catalyst by simply combining of various aldehydes with cyclic 1,3-diketones and phthalhydrazide. In generally, the 2H-indazolo[2,1-b]phthalazine-triones is carried out in solvent-free conditions without any use of anhydrous condition. To the best of our knowledge this is the first report for using β -cyclodextrine-SO₃H as a green catalyst for synthesis of entitled compounds. Shorter reaction times, good to excellent yields and more importantly, the recyclability of catalyst with a slight reduction in catalytic activity, make this protocol good and attractive.

Experimental

Materials and methods

Chemicals were purchased from Aldrich and Alfa Aesar chemical companies and used as it is. The NMR spectra were recorded in CDCl₃ on a Jeol JNMECP 400 NMR instrument using TMS as an internal standard. The HRMS was recorded on a Jeol JMS-700 mass spectrometer.

General procedure for the synthesis of β -cyclodextrin-SO₃H catalyst

A β -cyclodextrin-SO₃H catalyst was prepared by adopting the literature procedure [29]. To a well stirred mixture of β -cyclodextrin (10.0 g, 4.5 mmol) in CH₂Cl₂ (50 mL), chlorosulfonic acid (2.00 g, 10 mmol) was added slowly at 0 °C during 3 h. The resulting mixture was stirred for another 2 h to remove HCl from the reaction vessel. Then, the mixture was filtered and washed with methanol (50 mL) and dried at room temperature to obtain sulfonated β -cyclodextrin as a white powder (10.56 g).

General procedure for the synthesis of 2H-indazolo [2,1-b] phthalazinetriones derivatives (1–25)

A mixture of phthalhydrazide (1.0 mmol), aldehyde (1 mmol), 5,5-dimethyl-1,3-cyclohexanedione (1.0 mmol), β -cyclodextrin-SO₃H (10 mol %) was heated at 80 °C under solvent free condition for an appropriate time as mentioned in Table 1. After completion of the reaction as monitored by TLC the reaction mixture was allowed to cool to room temperature and the residue was diluted with water. The precipitate formed was collected by filtration at pump, washed with water, and dried. The residue recrystallized from ethanol to afford the pure product of 2H-indazolo[2,1-b]phthalazine-trione derivatives.

3,3-Dimethyl-13-phenyl-3,4-dihydro-1H-indazolo[1,2-b]phthalazine-1,6,11(2H,13H)trione (1) Yellow powder, mp: 200–202 °C; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 1.23 (s, 6H, –(CH₃)₂), 2.35 (s, 2H, –CH₂–C=), 3.26 and 3.41 (2H, AB system, J = 16 Hz, CH_aH_bCO), 6.47 (s,1H, –C<u>H</u>–N), 7.61 (d, J = 8 Hz, 2H, Ar–H), 7.90–7.85 (m, 2H, Ar–H), 8.37–8.16 (m, 5H, Ar–H); ¹³C NMR (CDCl₃, 100 MHz) δ (ppm) 28.5 (–CH₃), 28.7 (–CH₃), 34.7 (–C(CH₃)₂), 38.1 (–CH₂–C=), 50.9 (–CH₂CO), 64.9 (–CH–N), 118.6 (–HC–C–CO–), 127.1 (Ar–C), 127.7 (Ar–C), 127.9 (Ar–C), 128.7 (Ar–C), 128.9 (Ar–C), 129.1 (Ar–C), 133.6 (Ar–C), 134.5 (Ar–C), 136.4(–N–C–CH₂–), 150.9 (Ar–C), 154.3 (–N–CO–), 156.1 (–N–CO–), 192.2 (–CO–); HRMS m/z calcd for C₂₃H₂₀N₂O₃ [M⁺] 372.4165, found 372.4167.

3,3-Dimethyl-13-(4-bromophenyl)-3,4-dihydro-1H-indazolo[1,2-b]phthalazine-1,6, 11(2H, 13H)-trione (**2**) Yellow powder, mp: 261–263 °C; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 1.20 (6H, –(CH₃)₂), 2.32 (s, 2H, CH₂–C=), 3.22 and 3.39 (2H, AB system, J = 16 Hz, CH_aH_bCO), 6.38 (s, 1H, –C<u>H</u>–N), 7.29 (d, J = 8 Hz, 2H, Ar–H), 7.44 (d, J = 8 Hz, 2H, Ar–H), 7.85–7.82 (m, 2H, Ar–H), 8.25–8.22 (m, 1H, Ar–H), 8.34–8.32 (m, 1H, Ar–H); ¹³C NMR (CDCl₃, 100 MHz) δ (ppm) 28.49 (–CH₃), 28.78 (–CH₃), 34.72 (–C(CH₃)₂), 38.10 (–CH₂–C=), 50.96 (–CH₂CO), 64.45 (–CH–N), 118.04 (–HC–C–CO–), 122.79 (Ar–C), 127.76 (Ar–C), 128.11 (Ar–C), 128.93 (Ar–C), 129.02 (Ar–C), 131.95 (Ar–C), 133.74 (Ar–C), 134.68 (Ar–C), 135.61 (–N–C–CH₂–), 151.20 (Ar–C), 154.43 (–N–CO–), 156.03 (–N–CO–), 192.12 (–CO–); HRMS m/z calcd for C₂₃H₁₉BrN₂O₃ [M⁺] 450.0579, found 450.0577.

3,3-Dimethyl-13-(4-ethoxyphenyl)-3,4-dihydro-1H-indazolo[1,2-b]phthalazine-1,6, 11(2H, 13H)-trione (**3**) Yellow powder, mp: 220–221 °C; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 1.21 (6H, –(CH₃)₂), 1.35 (t, J = 12 Hz, 3H, –OCH₂–CH₃), 2.33 (s, 2H, CH₂–C=), 3.22 and 3.40 (2H, AB system, J = 16 Hz, CH_aH_bCO), 3.99–3.96 (m, 2H, –OCH₂–CH₃), 6.39 (s, 1H, –CH–N), 6.81 (d, J = 8 Hz, 2H, Ar–H), 7.32 (d, J = 8 Hz, 2H, Ar–H), 7.80 (d, J = 4 Hz, 2H, Ar–H), 8.32–8.23 (m, 2H, Ar–H); ¹³C NMR (CDCl₃, 100 MHz) δ (ppm) 14.86 (–OCH₂–CH₃), 28.53 (–CH₃), 28.76 (–CH₃), 34.65 (–C(CH₃)₂), 38.09 (–CH₂–C =), 51.02 (–CH₂CO), 63.39 (–CH–N), 64.61 –OCH₂–CH₃), 114.64 (Ar–C), 118.61 (–HC–C–CO–), 127.68 (Ar–C), 127.92 (Ar–C), 128.23 (Ar–C), 128.54 (Ar–C), 129.22 (Ar–C), 133.47 (Ar–C), 134.48 (–N–C–CH₂–), 150.75 (Ar–C), 154.26 (Ar–C), 156.05 (–N–CO–), 159.18 (–N–CO–), 192.19 (–CO–); HRMS m/z calcd for C₂₅H₂₄N₂O₄ [M⁺] 416.1736, found 416.1736.

3,3-Dimethyl-13-(4-fluorophenyl)-3,4-dihydro-1H-indazolo[1,2-b]phthalazine-1,6, 11(2H, 13H)-trione (4) Yellow powder, mp: 218–220 °C; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 1.20 (s, 6H, –(CH₃)₂), 2.33 (s, 2H, CH₂–C=), 3.23 and 3.40 (2H, AB system, J = 16 Hz, CH_aH_bCO), 6.42 (s, 1H, –C<u>H</u>–N), 7.02–6.98 (m, 2H,

Ar–H), 7.41–7.38 (m, 2H, Ar–H), 7.85–7.83 (m, 2H, Ar–H), 8.24–8.23 (m, 1H, Ar–H), 8.34–8.32 (m, 1H, Ar–H); ¹³C NMR (CDCl₃, 100 MHz) δ (ppm) 28.47 (–CH₃), 28.72 (–CH₃), 34.68 (–C(CH₃)₂), 38.03 (–CH₂–C=), 50.92 (–CH₂CO), 64.30 (–CH–N), 115.62 (Ar–C), 115.84 (Ar–C), 118.19 (–HC–C–CO–), 127.69 (Ar–C), 128.04 (Ar–C), 129.00 (Ar–C), 129.08 (Ar–C), 132.30 (Ar–C), 133.67 (Ar–C), 134.62 (–N–C–CH₂–), 151.08 (Ar–C), 154.39 (–N–CO–), 156.01 (–N–CO–), 161.46 (Ar–C), 163.92 (Ar–C), 192.23 (–CO–); HRMS m/z calcd for C₂₃H₁₉FN₂O₃ [M⁺] 390.1380, found 390.1380.

3,3-Dimethyl-13-(4-methylphenyl)-3,4-dihydro-1H-indazolo[1,2-b]phthalazine-1,6, 11(2H, 13H)-trione (**5**) Yellow powder, mp: 227–229 °C; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 1.20 (s, 6H, –(CH₃)₂), 2.28 (s, 3H, –CH₃), 2.32 (s, 2H, CH₂–C=), 3.22 and 3.40 (2H, AB system, J = 16 Hz, CH_aH_bCO), 6.40 (s, 1H, –C<u>H</u>–N), 7.12 (d, J = 8 Hz, 2H, Ar–H), 7.30 (d, J = 8 Hz, 2H, Ar–H), 7.83–7.78 (m, 2H, Ar–H), 8.25–8.21 (m, 1H, Ar–H), 8.34–8.30 (m, 1H, Ar–H); ¹³C NMR (CDCl₃, 100 MHz) δ (ppm) 21.27 (–CH₃), 28.48 (–C(CH₃)₂), 28.78 (–C(CH₃)₂), 34.67 (–C(CH₃)₂), 38.10 (–CH₂–C=), 51.00 (–CH₂CO), 64.88 (–CH–N), 118.70 (–HC–C–CO–), 127.13 (Ar–C), 127.72 (Ar–C), 127.94 (Ar–C), 129.02 (Ar–C), 129.19 (Ar–C), 129.48 (Ar–C), 133.49 (Ar–C), 134.48 (–N–C–CH₂–), 138.48 (Ar–C), 150.79 (Ar–C), 154.24 (–N–CO–), 156.04 (–N–CO–), 192.16 (–CO–); HRMS m/z calcd for C₂₂H₂₂N₂O₃ [M⁺] 386.1630, found 386.1632.

3,3-Dimethyl-13-(4-isopropylphenyl)-3,4-dihydro-1H-indazolo[1,2-b]phthalazine-1,6,11(2H, 13H)-trione (**6**) Yellow powder, mp: 204–206 °C; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 1.20–1.17 (m, 12H, -C(CH₃)₂, CH(CH₃)₂), 2.34 (s, 2H, CH₂–C=), 2.87–2.80 (m, 1H, CH(CH₃)₂), 3.23 and 3.42 (2H, AB system, J = 16 Hz, CH_aH_bCO), 6.43 (s, 1H, -CH–N), 7.17 (d, J = 8 Hz, 2H, Ar–H), 7.32 (d, J = 8 Hz, 2H, Ar–H), 7.84–7.80 (m, 2H, Ar–H), 8.27–8.24 (m, 1H, Ar–H), 8.34–8.31 (m, 1H, Ar–H); ¹³C NMR (CDCl₃, 100 MHz) δ (ppm) 23.86 (-CH(CH₃)₂), 28.61 (-C(CH₃)₂), 28.72 (-C(CH₃)₂), 33.80 (-C(CH₃)₂), 34.69 (-CH(CH₃)₂), 38.07 (-CH₂–C=), 51.01 (-CH₂CO), 64.77 (-CH–N), 118.71 (-HC– C–CO–), 126.87 (Ar–C), 127.14 (Ar–C), 127.72 (Ar–C), 127.96 (Ar–C), 128.99 (Ar–C), 129.17 (Ar–C), 133.51 (Ar–C), 133.59 (Ar–C), 134.51 (-N–C–CH₂–), 149.14 (Ar–C), 150.88 (Ar–C), 154.30 (–N–CO–), 156.08 (–N–CO–), 192.31 (-CO–); HRMS m/z calcd for C₂₆H₂₆N₂O₃ [M⁺] 414.1943, found 414.1945.

3,3-Dimethyl-13-(4-nitrophenyl)-3,4-dihydro-1H-indazolo[1,2-b]phthalazine-1,6, 11(2H, 13H)-trione (7) Yellow powder, mp: 223–225 °C; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 1.20 (6H, –C(C<u>H</u>₃)₂), 2.33 (2H, –CH₂–C=), 3.26 and 3.41 (2H, AB system, J = 16 Hz, CH_aH_bCO), 6.50 (s, 1H, –C<u>H</u>–N), 7.61 (d, J = 8 Hz, 2H, Ar–H), 7.90–7.85 (m, 2H, Ar–H), 8.17 (d, J = 8 Hz, 2H, Ar–H), 8.24–8.22 (m, 1H, Ar–H), 8.37–8.35 (m, 1H, Ar–H); ¹³C NMR (CDCl₃, 100 MHz) δ (ppm) 28.38 (–C(<u>C</u>H₃)₂), 28.70 (–C(<u>C</u>H₃)₂), 34.74 (–<u>C</u>(CH₃)₂), 38.03 (–<u>C</u>H₂–C=), 50.80 (–<u>C</u>H₂CO), 64.16 (–<u>C</u>H–N), 117.26 (–HC–<u>C</u>–CO–), 124.02 (Ar–C), 127.72 (Ar–C), 128.11 (Ar–C), 128.23 (Ar–C), 128.60 (Ar–C), 128.95 (Ar–C), 133.97 (Ar–C), 134.81 (–N–<u>C</u>–CH₂–), 143.53 (Ar–C), 147.84 (Ar–C), 151.74 (Ar–C),

154.56 (–N–CO–), 155.93 (–N–CO–), 192.10 (–CO–); HRMS m/z calcd for $C_{23}H_{19}N_3O_5\ [M^+]$ 417.1325, found 417.1327.

3,3-Dimethyl-13-(3,4,5 trimethoxyphenyl)-3,4-dihydro-1H-indazolo[1,2-b]phthalazine-1,6,11(2H, 13H)-trione (**8**) Yellow powder, mp: 232–234 °C; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 1.24 (6H, -C(CH₃)₂), 2.35 (s, 2H, -CH₂-C=), 3.20 and 3.45 (2H, AB system, J = 16 Hz, CH_aH_bCO), 3.80 (d, J = 8 Hz, 9H, -OCH₃), 6.38 (s, 1H, -CH–N), 6.63 (s, 2H, Ar–H), 7.86 (d, J = 8 Hz, 2H, Ar–H), 8.35–8.27 (m, 2H, Ar–H); ¹³C NMR (CDCl₃, 100 MHz) δ (ppm) 28.11 (-C(CH₃)₂), 28.97 (-C(CH₃)₂), 34.61 (-C(CH₃)₂), 38.04 (-CH₂-C=), 50.92 (-CH₂CO), 56.16 (-OCH₃), 60.68 (-OCH₃), 64.97 (-CH–N), 104.55 (Ar–C), 118.26 (-HC–CC–CO–), 127.69 (Ar–C), 127.98 (Ar–C), 128.90 (Ar–C), 129.00 (Ar–C), 131.81 (Ar–C), 133.62 (Ar–C), 134.61 (-N–C–CH₂–), 138.20 (Ar–C), 150.89 (Ar–C), 153.32 (Ar–C), 154.50 (-N–CO–), 156.09 (–N–CO–), 192.18 (–CO–); HRMS m/z calcd for C₂₆H₂₆N₂O₆ [M⁺] 462.1791, found 462.1793.

3,3-Dimethyl-13-(4-chlorophenyl)-3,4-dihydro-1H-indazolo[1,2-b]phthalazine-1,6, 11(2H, 13H)-trione (9) Yellow powder, mp: 260–262 °C; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 1.20 (6H, -C(CH₃)₂), 2.32 (s, 2H, -CH₂-C=), 3.22 and 3.40 (2H, AB system, J = 16 Hz, CH_aH_bCO), 6.40 (s, 1H, -CH–N), 7.29 (d, J = 8 Hz, 2H, Ar–H), 7.36 (d, J = 8 Hz, 2H, Ar–H), 7.86–7.82 (m, 2H, Ar–H), 8.26–8.22 (m, 1H, Ar–H), 8.35–8.31 (m, 1H, Ar–H); ¹³C NMR (CDCl₃, 100 MHz) δ (ppm) 28.38 (-C(CH₃)₂), 28.66 (-C(CH₃)₂), 34.62 (-C(CH₃)₂), 37.98 (-CH₂-C=), 50.83 (-CH₂-CO–), 64.27 (-CH–N), 117.96 (-HC–C–CO–), 127.64 (Ar–C), 127.99 (Ar–C), 128.52 (Ar–C), 128.91 (Ar–C), 133.63(Ar–C), 134.43 (Ar–C), 134.57 (Ar–C), 134.95 (-N–C–CH₂–), 151.09 (Ar–C), 154.31 (-N–CO–), 155.92 (-N–CO–), 192.06 (-CO–); HRMS m/z calcd for C₂₃H₁₉ClN₂O₃ [M⁺] 406.1084, found 406.1087.

13-(4-Methylphenyl)-3,4-dihydro-1H-indazolo[1,2-b]phthalazine-1,6,11(2H,13H)-trione (**10**) Yellow powder, mp: 244–246 °C; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 2.24 (m, 2H, -CH₂-CH₂-CH₂-CO-), 2.42 (t, *J* = 8 Hz, 2H, -CH₂-CH₂-CH₂-CH₂-CO-), 2.72 (s, 3H, -CH₃), 3.37–3.53 (m, 2H, -CH₂-CH₂-CO), 6.59 (s, 1H, -CH-N), 7.15–7.02 (m, 4H, Ar-H), 7.84–7.83 (m, 2H, Ar-H), 8.21–8.19 (m, 1H, Ar-H), 8.35–8.34 (m, 1H, Ar-H); ¹³C NMR (CDCl₃, 100 MHz) δ (ppm) 19.28 (-CH₃), 22.31 (-CH₂-CH₂-CH₂-CO), 24.43 (-CH₂-CH₂-CH₂-CO), 36.85 (-CH₂-CH₂-CH₂-CH₂-CO), 61.48 (-CH-N), 120.81 (-HC-C-CO), 125.27 (Ar-C), 126.42 (Ar-C), 127.53 (Ar-C), 127.97 (Ar-C), 128.37 (Ar-C), 128.96 (Ar-C), 130.62 (Ar-C), 133.47 (Ar-C), 134.47 (Ar-C), 135.08 (-N-C-H₂-), 137.03 (Ar-C), 152.04 (Ar-C), 153.90 (-N-CO), 155.98 (-N-CO), 192.40 (-CO); HRMS m/z calcd for C₂₂H₁₈N₂O₃ [M⁺] 358.1317, found 358.1319.

13-(4-Chlorophenyl)-3,4-dihydro-1H-indazolo[1,2-b]phthalazine-1,6,11(2H,13H)trione (11) Yellow powder, mp: 272–273 °C; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 2.26–2.23 (m, 2H, –CH₂–CH₂–CO–), 2.49–2.45 (m, 2H, –CH₂–CH₂– CH₂–CO–), 3.36–3.53 (m, 2H, –CH₂–CH₂–CO–), 6.40 (s, 1H, –C<u>H</u>–N–), 7.32 (d, J = 8 Hz, 4H, Ar–H), 7.85 (s, 2H, Ar–H), 8.30 (d, J = 8 Hz, 2H, Ar–H); ¹³C NMR (CDCl₃, 100 MHz) δ (ppm) 22.42 (-CH₂-<u>C</u>H₂-CH₂-CO-), 24.64 (-<u>C</u>H₂-CH₂-CH₂-CO-), 37.02 (-CH₂-<u>C</u>H₂-<u>C</u>O-), 64.49 (-<u>C</u>H-N), 119.29 (-HC-<u>C</u>-CO-), 127.88 (Ar-C), 128.21 (Ar-C), 128.73 (Ar-C), 129.06 (Ar-C), 133.81 (Ar-C), 134.65 (Ar-C), 134.77 (Ar-C), 135.04 (-N-<u>C</u>-CH₂-), 152.68 (Ar-C), 154.49 (-N-CO-), 156.15 (-N-CO-), 192.59 (-CO-); HRMS m/z calcd for C₂₁H₁₅ClN₂O₃ [M⁺] 378.0771, found 378.0773.

13-(4-Ethoxyphenyl)-3,4-dihydro-1H-indazolo[1,2-b]phthalazine-1,6,11(2H,13H)trione (**12**) Yellow powder, mp: 219–220 °C; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 1.35 (t, J = 12 Hz, 3H, -O-CH₂-CH₃), 2.24 (m, 2H, -CH₂-CH₂-CH₂-CO-), 2.46 (t, J = 8 Hz, 2H, -CH₂-CH₂-CH₂-CO-), 3.33–3.53 (m, 2H, -CH₂-CH₂-CH₂-CH₂-CO-), 3.99–3.96 (m, 2H, -O-CH₂-CH₃), 6.40 (s, 1H, -CH-N), 6.82 (d, J = 8 Hz, 2H, Ar-H), 7.32 (d, J = 8 Hz, 2H, Ar-H), 7.82 (d, J = 4 Hz, 2H, Ar-H), 8.33–8.23 (m, 2H, Ar-H); ¹³C NMR (CDCl₃, 100 MHz) δ (ppm) 14.79 (-O-CH₂-CH₃), 22.31 (-CH₂-CH₂-CH₂-CO-), 24.48 (-CH₂-CH₂-CH₂-CO-), 36.94 (-CH₂-CH₂-CO-), 63.37 (-O-CH₂-CH₃), 64.57 (-CH-N), 114.57 (Ar-C), 119.67 (-HC-C-CO-), 127.67 (Ar-C), 127.90 (Ar-C), 128.06 (Ar-C), 128.52 (Ar-C), 128.92 (Ar-C), 129.15 (Ar-C), 133.44 (Ar-C), 134.47 (-N-C-CH₂-), 152.19 (Ar-C), 154.21 (-N-CO-), 156.04 (-N-CO-), 159.14 (Ar-C), 192.63 (-CO-); HRMS m/z calcd for C₂₃H₂₀N₂O₄ [M⁺] 388.1423, found 388.1425.

13-(4-Bromophenyl)-3,4-dihydro-1H-indazolo[1,2-b]phthalazine-1,6,11(2H,13H)-trione (**13**) Yellow powder, mp: 280–281 °C; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 2.25–2.22 (m, 2H, –CH₂–CH₂–CO–), 2.46–2.44 (t, J = 8 Hz, 2H, –CH₂–CH₂–CH₂–CH₂–CO–), 3.31–3.54 (m, 2H, –CH₂–CH₂–CO–), 6.38 (s, 1H, –C<u>H</u>–N), 7.30 (d, J = 8 Hz, 2H, Ar–H), 7.44 (d, J = 4 Hz, 2H, Ar–H), 7.84 (s, 2H, Ar–H), 8.30 (d, J = 8 Hz, 2H, Ar–H); ¹³C NMR (CDCl₃, 100 MHz) δ (ppm) 22.40 (–CH₂–CH₂–CH₂–CO–), 24.62 (–CH₂–CH₂–CO–), 36.99 (–CH₂–CH₂–CH₂–CO–), 64.54 (–CH–N), 119.21 (–HC–C–CO–), 122.87 (Ar–C), 127.86 (Ar–C), 128.19 (Ar–C), 129.02 (Ar–C), 131.98 (Ar–C), 133.80 (Ar–C), 134.76 (Ar–C), 135.55 (–N–C–CH₂–), 152.68 (Ar–C), 154.47 (–N–CO–), 156.13 (–N–CO–), 192.56 (–CO–); HRMS m/z calcd for C₂₁H₁₅BrN₂O₃ [M⁺] 422.0266, found 422.0268.

13-(3-Methylphenyl)-3,4-dihydro-1H-indazolo[1,2-b]phthalazine-1,6,11(2H,13H)-trione (14) Yellow powder, mp: 222–225 °C; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 2.25–2.21 (m, 2H, –CH₂–CH₂–CCO–), 2.30 (s, 3H, –CH₃), 2.46–2.41 (t, J = 8 Hz, 2H, –CH₂–CH₂–CH₂–CO–), 3.32–3.51 (m, 2H, –CH₂–CH₂–CH₂–CO–), 6.38 (s, 1H, –C<u>H</u>–N), 7.06 (s, 1H, Ar–H), 7.20 (t, J = 12 Hz, 3H, Ar–H), 7.80 (t, J = 12 Hz, 2H, Ar–H), 8.23 (t, J = 8 Hz, 1H, Ar–H), 8.31 (d, J = 8 Hz, 1H, Ar–H); ¹³C NMR (CDCl₃, 100 MHz) δ (ppm) 21.52 (–CH₃), 22.30 (–CH₂–CH₂–CH₂–CH₂–CO–), 24.50 (–CH₂–CH₂–CCO–), 36.95 (–CH₂–CH₂–CO–), 65.00 (–CH–N), 119.82 (–HC–C–CO–), 124.18 (Ar–C), 127.70 (Ar–C), 127.88 (Ar–C), 127.92 (Ar–C), 128.54 (Ar–C), 128.98 (Ar–C), 129.13 (Ar–C), 152.18 (Ar–C), 154.18 (–N–CO–), 156.02 (–N–CO–), 192.47 (–CO–); HRMS m/z calcd for C₂₂H₁₈N₂O₃ [M⁺] 358.1317, found 358.1319.

13-(3,4,5-Methoxyphenyl)-3,4-dihydro-1H-indazolo[1,2-b]phthalazine-1,6,11(2H, 13H)-trione (**15**) Yellow powder, mp: 249–250 °C; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 2.27–2.23 (m, 2H, –CH₂–CH₂–CH₂–CO–), 2.53–2.45 (m, 2H, –CH₂–CH₂–CH₂–CH₂–CO–), 3.32–3.55 (m, 2H, –CH₂–CH₂–CO–) 3.81 (d, *J* = 12 Hz, 9H, –OCH₃), 6.39 (s, 1H, –CH–N), 6.63 (s, 2H, Ar–H), 7.86 (t, *J* = 8 Hz, 2H, Ar–H), 8.36–8.28 (m, 2H, Ar–H); ¹³C NMR (CDCl₃, 100 MHz) δ (ppm) 22.32 (–CH₂–CH₂–CH₂–CH₂–CO–), 24.52 (–CH₂–CH₂–CCO–), 36.96 (–CH₂–CH₂–CH₂–CO–), 56.26 (–OCH₃), 60.68 (–OCH₃), 64.97 (–CH–N), 104.61 (Ar–C), 119.42 (–HC–C–CO–), 127.73 (Ar–C), 128.03 (Ar–C), 128.93 (Ar–C), 129.03 (Ar–C), 131.79 (Ar–C), 133.62 (Ar–C), 134.62 (–N–C–CH₂–), 152.23 (Ar–C), 153.34 (Ar–C), 154.48 (–N–CO–), 156.11 (–N-CO-), 192.54 (-CO-); HRMS m/z calcd for C₂₄H₂₂N₂O₆ [M⁺] 434.1478, found 434.1480.

13-(2-Methoxyphenyl)-3,4-dihydro-1H-indazolo[1,2-b]phthalazine-1,6,11(2H,13H)trione (**16**) Yellow powder, mp: 276–277 °C; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 2.24–2.20 (m, 2H, –CH₂–CH₂–CH₂–CO–), 2.43–2.39 (m, 2H, –CH₂–CH₂– CH₂–CO–), 3.37–3.49 (m, 2H, –CH₂–CH₂–CD–), 3.72 (s, 3H, –OCH₃), 6.59 (s, 1H, –CH–N), 6.97–6.83 (m, 2H, Ar–H), 7.45–7.24 (m, 2H, Ar–H), 7.82 (d, J = 4 Hz, 2H, Ar–H), 8.50 (d, J = 8 Hz, 2H, Ar–H); ¹³C NMR (CDCl₃, 100 MHz) δ (ppm) 22.54 (–CH₂–CH₂–CH₂–CO–), 24.64 (–CH₂–CH₂–CH₂–CO–), 37.12 (–CH₂–CH₂–CH₂–CO–), 56.01 (–OCH₃), 62.83 (–CH–N), 111.67 (Ar–C), 118.89 (–HC–C–CO–), 121.10 (Ar–C), 123.90 (Ar–C), 127.76 (Ar–C), 127.96 (Ar–C), 129.25 (Ar–C), 130.05 (Ar–C), 130.21 (Ar–C), 133.41 (Ar–C), 134.42 (–N–C– CH₂–), 152.72 (Ar–C), 154.11 (–N–CO–), 156.32 (Ar–C), 157.48 (–N–CO–), 192.66 (–CO–); HRMS m/z calcd for C₂₂H₁₈N₂O₄ [M⁺] 374.1267, found 374.1269.

13-(2-Methylphenyl)-3,4-dihydro-1H-indazolo[1,2-b]phthalazine-1,6,11(2H,13H)-trione (17) Yellow powder, mp: 267–268 °C; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 2.26–2.20 (m, 2H, -CH₂-CH₂-CH₂-CO–), 2.44–2.41 (m, 2H, -CH₂-CH₂-CH₂-CO–), 2.72 (s, 3H, -CH₃), 3.36–3.52 (m, 2H, -CH₂-CH₂-CH₂-CO–), 6.60 (s, 1H, -CH–N), 7.16–7.01 (m, 4H, Ar–H), 7.83–7.81 (m, 2H, Ar–H), 8.23–8.20 (m, 1H, Ar–H), 8.36–8.33 (m, 1H, Ar–H); ¹³C NMR (CDCl₃, 100 MHz) δ (ppm) 19.30 (-CH₃), 22.34 (-CH₂-CH₂-CH₂-CO–), 24.46 (-CH₂-CH₂-CH₂-CO–), 36.88 (-CH₂-CH₂-CH₂-CO–), 61.53 (-CH–N), 120.91 (-HC–C–CO–), 125.24 (Ar–C), 126.41 (Ar–C), 127.61 (Ar–C), 127.97 (Ar–C), 128.42 (Ar–C), 128.98 (Ar–C), 129.07 (Ar–C), 130.70 (Ar–C), 133.44 (Ar–C), 134.47 (Ar–C), 135.02 (-N–C–CH₂-C), 137.10 (Ar–C), 151.98 (Ar–C), 153.93 (-N–CO–), 156.04 (-N–CO–), 192.39 (-CO–); HRMS m/z calcd for C₂₂H₁₈N2O₃ [M⁺] 358.1317, found 358.1315.

13-(2-Bromophenyl)-3,4-dihydro-1H-indazolo[1,2-b]phthalazine-1,6,11(2H,13H)-trione (**18**) Yellow powder, mp: 261–262 °C; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 2.29–2.22 (m, 2H, -CH₂–CH₂–CH₂–CO–), 2.46–2.42 (m, 2H, -CH₂–CH₂–CH₂–CH₂–CO–), 3.40–3.47 (m, 2H, -CH₂–CH₂–CH₂–CO–), 6.68 (s, 1H, -CH–N), 7.16–7.7.12 (m, 1H, Ar–H), 7.30 (t, J = 12 Hz, 1H, Ar–H), 7.43–7.39 (m, 1H, Ar–H), 7.51 (d, J = 8 Hz, 1H, Ar–H), 7.86–7.83 (m, 2H, Ar–H), 8.24–8.22 (m, 1H, Ar–H), 8.36–8.34 (m, 1H, Ar–H); ¹³C NMR (CDCl₃, 100 MHz) δ (ppm), 22.36 (–CH₂–CH₂–CH₂–CH₂–CO–), 24.61 (–CH₂–CH₂–CO–), 36.97 (–CH₂–CH₂–CO–),

65.95 (-<u>C</u>H–N), 115.12 (-HC–<u>C</u>–CO–), 127.01 (Ar–C), 127.78 (Ar–C), 127.88 (Ar–C), 128.13 (Ar–C), 128.86 (Ar–C), 129.14 (Ar–C), 130.16 (Ar–C), 133.69 (Ar–C), 133.93 (Ar–C), 134.63 (–N–<u>C</u>–CH₂–), 154.34 (Ar–C), 156.28 (–N–CO–), 164.49 (–N–CO–), 192.42 (–CO–); HRMS m/z calcd for $C_{21}H_{15}BrN_2O_3$ [M⁺] 422.0266, found 422.0268.

13-Ethyl-3,4-dihydro-1H-indazolo[1,2-b]phthalazine-1,6,11(2H,13H)-trione (19) Yellow powder, mp: 196–198 °C; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 0.59 (t, J = 12 Hz, 3H, –CH₂–C<u>H</u>₃), 1.97–1.92 (m, 1H, –C<u>H</u>₂–CH₃), 2.15–2.10 (m, 2H, –CH₂–C<u>H</u>₂–CH₂–CO–), 2.46–2.31 (m, 3H, –C<u>H</u>₂–CH₃–CH₂–CH₂–CH₂–CH₂–CO–), 3.15–3.29 (m, 2H, –CH₂–CH₂–CO–), 5.52 (s, 1H, –C<u>H</u>–N), 7.78–7.70 (m, 2H, Ar–H), 8.17 (t, J = 12 Hz, 2H, Ar–H); ¹³C NMR (CDCl₃, 100 MHz) δ (ppm) 7.10 (–CH₂–<u>C</u>H₃), 22.05 (–CH₂–<u>C</u>H₂–CH₂–CO–), 22.33 (–<u>C</u>H₂–CH₃), 24.46 (–CH₂–<u>C</u>H₂–CH₂–CO–), 36.90 (–<u>C</u>H₂–CH₂–CO–), 63.40 (–<u>C</u>H–N), 117.63 (–HC–<u>C</u>–CO–), 127.38 (Ar–C), 127.76 (Ar–C), 128.83 (Ar–C), 128.95 (Ar–C), 133.32 (Ar–C), 134.36 (–N–<u>C</u>–CH₂–), 153.20 (Ar–C), 154.49 (–N–CO–), 155.90 (–N–CO–), 193.22 (–CO–); HRMS m/z calcd for C₁₇H₁₆N₂O₃ [M⁺] 296.1161, found 296.1163.

13-Propyl-3,4-dihydro-1H-indazolo[1,2-b]phthalazine-1,6,11(2H,13H)-trione (**20**) Yellow powder, mp: 172–174 °C; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 0.86 (t, J = 12 Hz, 3H, –CH₂–CH₂–CH₃), 1.21–1.10 (m, 2H, –CH₂–CH₂–CH₃), 2.07–2.01 (m, 1H, –C<u>H</u>₂–CH₂–CH₃), 2.26–20 (m, 2H, –CH₂–CH₂–CH₂–CO–), 2.59–2.34 (m, 3H, –C<u>H</u>₂–CH₂–CH₂–CH₃), -C<u>H</u>₂–CH₂–CO–), 127.44 (Ar–C), 128.84 (Ar–C), 128.99 (Ar–C), 133.36 (Ar–C), 134.41 (–N–C–C–CH₂–), 152.98 (Ar–C), 154.98 (–N–CO–), 155.97 (–N–CO–), 193.31 (–CO–); HRMS m/z calcd for C₁₈H₁₈N₂O₃ [M⁺] 310.1317, found 310.1319.

13-Isopropyl-3,4-dihydro-1H-indazolo[1,2-b]phthalazine-1,6,11(2H,13H)-trione (**21**) Yellow powder, mp: 141–143 °C; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 0.97–0.88 (m, 6H, –CH(CH₃)₂), 2.19 (s, 2H, –CH₂–CH₂–CH₂–CO–), 2.63–2.37 (m, 3H, –C<u>H</u>(CH₃)₂, –C<u>H</u>₂–CH₂–CO–), 3.14–3.48 (m, 2H, –CH₂–CH₂–CH₂–CO–), 5.58 (s, 1H, –C<u>H</u>–N), 7.88–7.81 (m, 2H, Ar–H), 8.32–8.28 (m, 2H, Ar–H); ¹³C NMR (CDCl₃, 100 MHz) δ (ppm) 17.97 (–CH(CH₃)₂), 18.29 (–CH(CH₃)₂), 22.15 (–CH₂–CH₂–CH₂–CO–), 24.60 (–CH₂–CH₂–CO–), 31.22 (–CH(CH₃)₂), 37.11 (–CH₂–CH₂–CH₂–CO–), 67.00 (–CH–N), 118.10 (–HC–C–CO–), 127.62 (Ar–C), 127.88 (Ar–C), 128.81 (Ar–C), 129.10 (Ar–C), 133.40 (Ar–C), 134.52 (–N–C–CH₂–), 153.79 (Ar–C), 155.20 (–N–CO–), 156.11 (–N–CO–), 193.24 (–CO–); HRMS m/z calcd for C₁₈H₁₈N₂O₃ [M⁺] 310.1317, found 310.1319.

Acknowledgments This research work was supported by the BK 21 plus program.

References

- 1. V.P. Litvinov, Russ. Chem. Rev. 72, 69 (2003)
- 2. W.B. Chen, Z.-J. Wu, Q.-L. Pei, L.-F. Cun, X.-M. Zhang, W.-C. Yuan, Org. Lett. 12, 3132 (2010)
- S. Grasso, G. DeSarro, N. Micale, M. Zappala, G. Puia, M. Baraldi, C. Demicheli, J. Med. Chem. 43, 2851 (2000)
- 4. J.S. Kim, H.K. Rhee, H.J. Park, S.K. Lee, C.O. Lee, H.Y. Park Choo, Bioorg. Med. Chem. 16, 4545 (2008)
- 5. S.S. El-Saka, A.H. Soliman, A.M. Imam, Afinidad J 66, 167 (2009)
- L. Zhang, L.P. Guan, X.Y. Sun, C.X. Wei, K.Y. Chai, Z.S. Quan, Chem. Biol. Drug Des. 73, 313 (2009)
- 7. H. Wu, X.M. Chen, Y. Wan, H.Q. Xin, H.H. Xu, R. Ma, C.H. Yue, L.L. Pang, Lett. Org. Chem. 6, 219 (2009)
- E.L. Piatnitski, M.A.J. Duncton, A.S. Kiselyov, R. Katoch-Rouse, D. Sherman, D.L. Milligan, C. Balagtas, W.C. Wong, J. Kawakami, J.F. Doody, Bioorg. Med. Chem. Lett. 15, 4696 (2005)
- J. Sinkkonen, V. Ovcharenko, K.N. Zelenin, I.P. Bezhan, B.A. Chakchir, F. Al-Assar, K. Pihlaja, Eur. J. Org. Chem. 12, 2046 (2002)
- 10. M. Sayyafi, M. Sayyedhamzeh, H.R. Khavasi, A. Bazgir, Tetrahedron 64, 2375 (2008)
- R. Ghorbani-Vaghei, R. Karimi-Nami, Z. Toghraei-Semiromi, M. Amiri, M.M. Ghavidel, Tetrahedron 67, 1930 (2011)
- 12. G. Shukla, R.K. Verma, G.K. Verma, M.S. Singh, Tetrahedron Lett. 52, 7195 (2011)
- 13. M. Kidwai, R. Chauhan, A. Jahan, Chin. Sci. Bull. 57, 2273 (2012)
- 14. H.J. Wang, X.N. Zhang, Z.H. Zhang, Monatsh. Chem. 141, 425 (2010)
- 15. E. Mosaddegh, A. Hassankhani, Tetrahedron Lett. 52, 488 (2011)
- 16. A. Corma, H. Garcia, Catal. Today 38, 257 (1997)
- 17. M.V. Reddy, G.C.S. Reddy, Y.T. Jeong, Tetrahedron 68, 6820 (2012)
- 18. H.R. Shaterian, M. Ghashang, M. Feyzi, Appl. Catal. A 345, 128 (2008)
- 19. G. Sabitha, C. Srinivas, A. Raghavendar, J.S. Yadav, Helv. Chim. Acta 93, 1375 (2010)
- 20. T. Khan, Z.N. Siddiqui, New J. Chem. 38, 4847 (2014)
- 21. G.J. Hernandez, E. Juaristi, J. Org. Chem. 75, 7107 (2010)
- 22. M.S. Singh, S. Chowdhury, RSC Adv. 2, 4547 (2012)
- 23. J. Wu, X. Du, J. Ma, Y. Zhang, Q. Shi, L. Luo, B. Song, S. Yang, D. Hu, Green Chem. 16, 3210 (2014)
- 24. A.B. Atar, Y.S. Jeong, Y.T. Jeong, Tetrahedron 70, 5207 (2014)
- 25. A.B. Atar, Y.T. Jeong, Tetrahedron Lett. 54, 1302 (2013)
- 26. A.B. Atar, Y.T. Jeong, Tetrahedron Lett. 54, 5624 (2013)
- 27. A.B. Atar, J.S. Kim, K.T. Lim, Y.T. Jeong, New J. Chem. 39, 396 (2015)
- 28. A.B. Atar, J.T. Kim, K.T. Lim, Y.T. Jeong, Synth. Commun. 44, 2679 (2014)
- 29. S. Asghari, M. Tajbakhsh, B.J. Kenari, S. Khaksar, Chin. Chem. Lett. 22, 127 (2011)