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A series of cis-2,6-tetrahydropyran-4-ones was synthesized from the intramolecular cyclization reaction
of B-hydroxy allyl ketones in the presence of MesSiOTf as catalyst. The B-hydroxy allyl ketone was
prepared from allylation reaction with B-hydroxynitrile without protection of hydroxy functionality
under the Barbier-type reaction condition.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Tetrahydropyrans bearing substituents at the 2- and/or 6-
positions on the ring are often observed in a large number of bi-
ologically important natural products, which exhibit interesting
biological properties such as phorboxazole,! zampanolide,? laso-
nolide,> ratjadone,* leucascandrolide,®> swinholides,® misakinol
ides,” sorangicin A2 scytophycins,® and laulimalide.!® Tetrahydrop
yran-4-ones usually employed as important synthetic intermed
iates for natural product synthesis. Over the years much effort has
been directed toward the development of new strategies for their
synthesis.""~17 Continuing interest in the development of synthetic
methodology of tetrahydropyranone synthesis provided the im-
petus to initiate a project designed to develop a new and more
expedient route to the formation of tetrahydropyranone rings. Our
group reported a Barbier-type reaction of allyl bromide with nitrile
could generate allyl ketone at room temperature'® and an intra-
molecular cyclization of homoallyl alcohol to tetrahydrofuran was
afforded in the presence of L-proline as a promoter.'® Our attention
was attracted to the formation of B-hydroxy allyl ketone, which
may be achieved by reaction of B-hydroxynitrile with allyl bromide
under the Barbier-type reaction condition and then this f-hydroxy
allyl ketone undergo intramolecular cyclization (6-endo-trig)*°
would generate the desired tetrahydropyran-4-one (Scheme 1).2122

2. Results and discussion

3-Hydroxy-3-phenylpropanenitrile 1 was initially chosen as the
investigating substrate. Treatment of 1 with allyl bromide in the
presence of a Lewis acid AlCl3 should generate B-hydroxy allyl ke-
tone product 2. To a reaction mixture of 3-hydroxy-3-
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phenylpropanenitrile 1 (1.0 equiv), zinc powder (4.0 equiv), and
allyl bromide (2.0 equiv) in anhydrous THF was added AICl3
(0.6 equiv) at 0 °C and stirred at room temperature for 2 h and the
expected product 2 (42%) was obtained with 35% recovery of
starting material (Scheme 2). An exothermic phenomenon was
observed when AICl;3 was introduced to the reaction mixture. It
should be noted that the slow addition of AlCl; decreased the for-
mation yield of product 2. We also observed that increment of allyl
bromide to 2.5 equiv did improve the product yield. Thus, we
rearranged the introducing amount of allyl bromide in consequent
steps, 0.5 equiv of allyl bromide was added to the reaction mixture
after 1 h stirring at room temperature, and the yield of 2 was
dramatically increased to 80%. The less acidic quenching process

OH
)\/CN gr 0°C THF; )Oi/l?\/\
Ph + aq. HCI Ph X
1 2

* ZnIAICI, (410.6), 2.0 Allyl-Br, rt, 2h; 2M HCI 42% + S.M. (35%)
* ZniAICI, (410.6), 2.5 Allyl-Br, rt, 2h; 2M HCI 54%
* ZnIAICI, (410.6), 2.0 Allyl-Br,rt,1 h; 0.5 Allyl-Br, 1h; 2M HCI 80%

* ZnIAICI, (410.6), 2.0 Allyl-Br,rt,1 h; 0.5 Allyl-Br, 1h; 0.5M HCI  84%

Scheme 2. Optimization of allylation to nitrile.
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also improved the yield of product 2. It is interesting to note that
protection of hydroxy group was not necessary under this Barbier-
type reaction condition.

To understand the scope of this new reaction, various f-
hydroxynitriles were studied as the substrates for prepration of f3-
hydroxy allyl ketones and the results are shown in Table 1.

Table 1
Synthesis of B-hydroxy allyl ketones
OH
OH O
R/‘\/CN + -~ Br ZnlAICI; (40.6), 0 °C-rt., 1h; /‘\*/\
0.5 Allyl-Br, rt., 1h R ~
Entry R Yield
1 NS 57%
2 Oﬁi 59%
3 Ej;11 84%
4 /@/‘% 67%
F
5 /@A 56%
Br
Br
6 \©/LL‘ 67%

As shown in Table 1, reactions using aliphatic f-hydroxynitriles
(entries 1 and 2), electron-poor (entries 4—6) or electron-rich
(entry 7) benzanitriles, or heteroaromatic nitriles (entries 8 and
9) gave the desired B-hydroxy allyl ketones in reasonable to good
yields. Aliphatic B-hydroxynitrile (entry 2) having another B-hy-
drogen next to hydroxyl functionality also proceeded clean reaction
under standard reaction condition.

B-Hydroxy allyl ketones were successfully prepared by the
Barbier-type reaction conditions. Therefore, the intramolecular
cyclizations of B-hydroxy allyl ketones for generating the desired
tetrahydropyran-4-one were further investigated. 1-Hydroxy-1-
phenylhex-5-en-3-one (Table 1, entry 3) was chosen as the in-
vestigating substrate for intramolecular cyclization reaction (6-
endo-trig). Treatment of 1-hydroxy-1-phenylhex-5-en-3-one with
Lewis acid BF3-OEt, in THF and the mixture was stirred at room
temperature for 24 h generated the expected tetrahydropyran-4-
one product in 48% yield with diastereoselectivity (cis/trans=71/
29). Other Lewis acids also were investigated and MesSiOTf was
observed as the best choice of catalyst for this intramolecular cy-
clization reaction (Scheme 3). A reaction mixture of 1-hydroxy-1-
phenylhex-5-en-3-one (1.0 mmol) and MesSiOTf (0.1 mmol) in
THF (20 mL) was stirred at room temperature for 18 h and the
expected 2,6-disubstituted tetrahydropyran-4-one was obtained as
the only cis-stereoisomer and the dehydration product also was
obtained with 13% yield. Increasing the amount of Me3SiOTf did not
improved the yield of tetrahydropyran-4-one but the slightly in-
creased the yield of dehydration product.

o
)\/u\/\ 005 M ri * /\)Cl)\/\
Ph ~ Ph” ~0” YCH, P X A
Reaction condition

* 0.5 BFyOEt,, THF, t, 120h

Low yield
* 1.0 BF;*OEt,, THF, rt., 24h 48% (711 29)

* 0.1 ZnCl,, THF, rt,, 33h

NR (SM)
* 0.1 SnCl,, THF, rt., 58h NR (SM)

* 0.1 MgBr,, THF, rt., 58h NR (SM)

* 0.1 BCI,, THF, rt., 42h Complicate

* 0.1 BBrs, THF, rt., 11h Complicate

* 0.1 Me,SiOTF, THF, rt., 18h 53% (100/ 0) + 13%
* 0.2 Me;SiOTF, THF, rt., 18h 53% (100/ 0) + 21%
* 0.5 Me;SiOTF, THF, rt., 18h 43% (100/ 0) + 17%

Scheme 3.

Intramolecular cyclization reaction, in general, was reacted at
low concentration circumstance. In order to decreasing the using
amount of solvent, we investigated the higher reaction concen-
tration for this intramolecular cyclization reaction and the results
are shown in Scheme 4. The experimental results showed that 2.5%
introducing amount of Me3SiOTf to reacting substance 1-hydroxy-
1-phenylhex-5-en-3-one afforded the nearly yield of tetrahy-
dropyran-4-one at higher reaction concentration (0.1 M).

OH O

o AN

Me,SiOTF
THF, rt.

Yield (cis only) + Dehydration product

0.02M ¥ 0.1 Me;SiOTF, THF, rt., 18h 51% + 16%

0.05M ¥ 0.1 Me,SiOTY, THF, rt., 18h 53% + 13%

0.05M ¥ 0.05 Me;SiOTF, THF, rt., 18h 48% + 8%

0AM ¥ 0.05 Me;SiOTf, THF, rt., 18h 51% + 18%

0AM ¥ 0,025 Me;SiOTf, THF, rt., 18h 52% + 16%
Scheme 4.

A series of f-hydroxy allyl ketones was investigated under this
Me3SiOTf-catalyzed intramolecular cyclization and the results are
shown in Table 2.

As shown in Table 2, reactions using aliphatic allyl ketones
(entries 1 and 2) and electron-poor (entries 4—6) aromatic allyl
ketones gave the desired cyclization products in reasonable to
moderate yields. The product yield of using electron-rich (entry 7)
aromatic allyl ketone was obtained much lower than those of using
electron-poor aromatic allyl ketones. Only the dehydrated with
isomerized product was obtained for heteroaromatic allyl ketones
(entries 8 and 9) under the reaction condition. We propose the
dehydration process may be faster than isomerization process that
causes the unsuccessfully intramolecular cyclization process. Thus,
we prepared the isomerized B-hydroxy-o,B-unsaturated ketone
and then investigated this compound under the reaction condi-
tion.?> The expected heteroaromatic substituted tetrahydropyran-
4-ones were obtained under the reaction condition (Scheme 5).

The reaction mechanism was proposed that B-hydroxy allyl
ketone, which is firstly isomerized in situ to B-hydroxy-o,B-un-
saturated ketone and then followed by the intramolecular Michael
addition reaction to its corresponding tetrahydropyran-4-one. The
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Table 2
Intramolecular cyclization reactions of B—hydroxy allyl ketones

OH O

0.1M
)\/“\/\ 2.5% Me3S|0Tf /\)]\/\
R X THF, r.t.

Entry R Time (h) Yield
1 NN 14 33%
2 d‘ 18 61%
3 ©}L“ 16 52% n 16%
4 /©/ 23 48% n 9%
F
5 /©/ 20 48% n 12%
Br
Br
6 22 58% " 12%
o]
7 ¢ j@h 14 6%
o
3 U_§ 23 Only 1,4-Dienyl-3-ketone
s
9 U—§ 21 Only 1,4-Dieny1-3-ketone
o
0.05-0.1M o
)Oi/?l\/\ 2.5% Me;SiOTH, o
A THF, r.t., 16h * /\)I\/\
R CH, R0 Ve, R CH,
R Yield
o %,
% j@/ 33%cis + 6% trans  +  17%
o

24% cis + 14% trans + 31%

S
Q—% 5% cis + 5% trans + aM%
Scheme 5.

diastereoselectivity may be explained by the cyclization of B-hy-
droxy-a,B-unsaturated ketone to the corresponding tetrahy-
dropyran-4-one via a chair-like transition state (Fig. 1). The possible
stereochemical outcomes for the generation of cis-2,6-disubs
tituted tetrahydropyran-4-one by intramolecular cyclization of -
hydroxy-a,B-unsaturated ketone are proposed and explained for
a thermodynamically control reaction whereas the bulky sub-
stituents (R and CHs) occupy the equatorial positions to avoid the
1,3-diaxial repulsive interaction.?*

In order to expand the scope of this intramolecular cyclization
reaction, o-substituted allyl ketones were synthesized and in-
vestigated for synthesis of polysubstituted tetrahydropyran-4-
one'® (Scheme 6). 1-Hydroxy-2-methyl-1-phenylhex-5-en-3-one
3 was synthesized (anti/syn ratio was not determined) and it was
cyclized under the reaction condition and a mixture of tetrahydro-
3,6-dimethyl-2-phenylpyran-4-one 4a and 4b was obtained with

Favored TS to cis-diastereomer Unfavored TS to trans-diastereomer

R
H s —OH .
OH
OH /\CH3 * on %\,ma H OH //"™CHj
\/ 3 d R
o)
o j '
j H trans R P

R_-0O H
CH. s
CH. 3
R =T R s H 0~ /R™CH,
;¢ T

1,3-diaxial interaction

[}

Fig. 1. Proposed transition state of diastereoselectively intramolecular cyclization.

80% yield. Tetrahydro-3,6-dimethyl-2-phenylpyran-4-one 4a and
4b was not separated and theirs diastereomeric ratio was de-
termined by comparison of '"H NMR spectral analysis (4a:4b=81
:19) of the authentic compounds.?* It is interesting to note that o-
methyl allyl ketone 5 was cyclized to 2-substituted tetrahydro-5,6-
dimethylpyran-4-one with single stereoisomer and all-cis-2,5,6-
diastereomer was observed.

OH O e o o
2.5% Me;SiOTf, 3 HiC,,,
Ph N — .
THF, 18 h, r.t.
CHg A8 PR 0" NcH, Ph” 0" NcH,
3 4a 4b
80% (4a/4b = 81/19)
OH O o

2.5% Me;SiOTf, CH;
[ .

THF, 18 h, r.t.

CH, R” 07 cH,

6a R =Cyclohexyl 7%
6b R=Ph 56%

Scheme 6.

The spiro-compound also may be generated by intramolecular
cyclization of tertiary-hydroxy allyl ketone, which was prepared
from allylation reaction of B-hydroxynitrile with ketone. Thus,
compound 7 was synthesized and investigated under the intra-
molecular cyclization reaction condition and spiro-tetrahy-
dropyran-4-one 8 was afforded with 60% yield (Scheme 7).

CH;
OH o o
2.5% Me3SiOTf,
X —  »
THF, r.t. o
0,
7 60% 8
Scheme 7.

3. Conclusion

In conclusion, the B-hydroxy allyl ketone was prepared from
allylation reaction of B-hydroxynitrile without protection of hy-
droxy functionality under the Barbier-type reaction condition. The
cis-2,6-tetrahydropyran-4-one was synthesized from the intra-
molecular cyclization reaction of B-hydroxy allyl ketones in the
presence of MesSiOTf as catalyst. The polysubstituted tetrahy-
dropyran-4-one and spiro-compound also may be generated by
this intramolecular cyclization reaction.

4. Experimental
4.1. General

All reagents were purchased from Aldrich and Riedel-deHaen
and all were used directly without further purification. The 'H
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NMR (proton nuclear magnetic resonance) spectra were recorded
at 300 MHz (Bruker-AC300P) with deuteriochloroform (CDCls,
Aldrich 99.8 atom?% D) as the solvent and the internal standard. The
13C NMR (carbon nuclear magnetic resonance) spectra were
recorded at 75.5 MHz (Bruker-AC300P) with CDCl3 as the solvent
and the internal standard. Chemical shifts are reported in parts per
million and resonance patterns are reported with the notations of
either s (singlet), d (doublet), t (triplet), q (quartet), or m (multi-
plet). Coupling constant (J) are reported in hertz (Hz).

4.2. General procedure for synthesis of -hydroxy allyl ketone
from B-hydroxynitrile

Aluminum trichloride (0.6 mmol) was added at once to a solu-
tion of zinc powder (4.0 mmol), B-hydroxynitrile (1.0 mmol), and
allylic bromide (1.5 mmol) in anhydrous THF (5 mL) at 0 °C (ice-
water bath).2° The reaction mixture was warmed to room tem-
perature and then stirred at room temperature for an hour. Another
0.5 mmol of allylic bromide was added to the reaction mixture and
stirred at room temperature for an hour. After the reaction was
completed (monitored by TLC), aqueous HCI (2 M, 5 mL) was added
to the reaction mixture and stirred at room temperature for 5 min.
The reaction mixture was passed through a short silica gel column
and the organic solvent was removed directly under reduced
pressure. Further purification is achieved on a flash chromatograph
with silica gel and ethyl acetate/hexane as eluant.

4.3. General procedure for synthesis of cis-2,6-disubstituted
tetrahydropyran-4-one from f-hydroxy allyl ketone

Trimethylsilyl triflate (0.025 mmol) was added to a solution of -
hydroxy allyl ketone (1.0 mmol) in anhydrous THF (10 mL) at room
temperature and the reaction mixture was stirred at room tem-
perature for an appropriate time. After the reaction was completed
(monitored by TLC), H,O (2 M, 10 mL) ant extracted with ether
(2x20 mL). The combined organic layer was washed with Brine
(10 mL), and then dried with MgS04. The organic solvent was re-
moved directly under reduced pressure and further purification is
achieved on a flash chromatograph with silica gel and ethyl acetate/
hexane as eluant.

4.3.1. (E)-6-Hydroxyundeca-1,7-dien-4-one (Table 1, entry 1). TH
NMR: 6 0.89 (t, J=7.4 Hz, 3H), 1.32—1.42 (m, 2H), 1.90—2.03 (m, 2H),
2.38 (s, —OH, 1H), 2.66 (d, J=6.5 Hz, 2H), 3.20 (d, J=7.0 Hz, 2H), 4.52
(m, 1H), 5.12—5.22 (m, 2H), 5.46 (m, 1H), 5.69 (m, 1H), 5.90 (m, 1H);
BCNMR: 6 13.6,22.2, 34.2, 48.5, 48.9, 68.6,119.3,129.9, 130.8,132.3,
208.9; HRMS m/z 182.1302 (calcd for C11H180,, 182.1307); MS m/z
109 (58), 124 (50), 136 (97), 154 (base).

4.3.2. 1-Cyclohexyl-1-hydroxyhex-5-en-3-one (Table 2, entry 2). H
NMR: 6 0.70—1.11 (m, 6H), 1.44—1.58 (m, 4H), 2.39 (d, J=6.7 Hz, 2H),
3.04 (dd, J=1.3, 7.1 Hz, 2H), 3.18 (s, OH, 1H), 3.61 (t, J=6.7 Hz, 1H),
4.96 (m, 1H), 5.78—5.69 (m, 2H); 3C NMR: 6 25.7, 26.0, 27.7, 28.4,
31.1, 42.8, 45.7, 48.0, 71.2, 118.3, 130.0, 209.2; HRMS m/z 197.1542
(calcd for C1aH102, 1971539 [M+H]™); MS m/z 136 (57), 137 (62),
154 (base), 179 (93), 195 (22).

4.3.3. 1-Hydroxy-1-phenylhex-5-en-3-one (Table 1, entry 2 and
3). TH NMR: 6 2.73—2.92 (m, 2H), 3.17 (d, J=6.9 Hz, 2H), 5.09—5.20
(m, 3H),5.87 (m, 1H), 7.24—7.35 (m, 5H); >*C NMR: ¢ 48.2, 50.6, 69.6,
119.1, 125.5, 127.4, 128.3, 129.7, 142.8, 208.5; HRMS m/z 190.0998
(caled for C13H140,, 190.0994); MS m/z 105 (81), 107 (base), 120
(25), 149 (26), 162 (12).

4.3.4. 1-(4-Fluorophenyl)-1-hydroxyhex-5-en-3-one (Table 1, entry
4). 'TH NMR: 6 2.73-2.90 (m, 2H), 3.18 (d, J=6.4 Hz, 2H), 3.41

(s, —OH, 1H), 5.10—5.21 (m, 3H), 5.92 (m, 1H), 6.98—7.04 (m, 2H),
7.26—7.32 (m, 2H); 13C NMR: ¢ 48.3, 50.6, 69.1, 115.1, 115.4, 119.4,
127.2,127.3,129.7,138.5,138.6, 208.7; HRMS m/z 208.0897 (calcd for
C12H13F0O5, 208.0900); MS m/z 123 (33),125 (base), 149 (5), 167 (28).

4.3.5. 1-(4-Bromophenyl)-1-hydroxyhex-5-en-3-one (Table 1, entry
5). '"H NMR: 6 2.82—2.84 (m, 2H), 3.20 (d, J=7.1 Hz, 2H), 5.12—5.24
(m, 3H), 5.75 (m, 1H), 7.24 (dd, J=1.7, 6.7 Hz, 2H), 7.48 (dd, J=1.9,
6.6 Hz, 2H); '*C NMR: 0 48.1, 50.4, 68.9, 119.3, 121.1, 127.2, 129.5,
131.3, 141.8, 208.3; HRMS m/z 268.0099 (calcd for Ci3Hy3BrOs,
268.0099); MS m/z 157 (13), 185 (base), 187 (83), 227 (23), 229 (21).

4.3.6. 1-(3-Bromophenyl)-1-hydroxyhex-5-en-3-one (Table 1, entry
6). 'TH NMR: ¢ 2.76—2.85 (m, Hp, 2H), 3.20 (d, J=6.9 Hz, 2H),
5.11-5.24 (m, 3H), 5.90 (m, 1H), 7.18—7.28 (m, 2H), 7.41 (d, J=7.5 Hz,
1H), 7.54 (d, J=6.8 Hz, 1H); 1*C NMR: ¢ 48.1, 50.4, 68.8,119.3,122.4,
1241, 128.6, 129.5, 129.6, 130.4, 145.1, 208.3; HRMS m/z 268.0103
(caled for CiH13BrO,, 268.0099); MS m/z 155 (10), 157 (21), 183
(48), 185 (base), 225 (7), 227 (20), 251 (12), 253 (11), 270 (15).

4.3.7. 1-(Benzo[d][1,3]dioxol-6-yl)-1-hydroxyhex-5-en-3-one (Table
1, entry 7). '"H NMR: 6 2.80—2.85 (m, 2H), 3.20 (dd, J=1.2, 7.3 Hz,
2H), 5.12—5.18 (m, 3H), 5.89—5.94 (m, 2H), 6.75—6.80 (m, 2H), 6.87
(d, J=1.1 Hz, 1H); '3C NMR: ¢ 48.2, 50.7, 69.5, 100.9, 106.2, 108.0,
118.9, 119.2, 129.8, 136.9, 146.8, 147.6, 208.6; HRMS m/z 234.0889
(calcd for C13H1404, 234.0892); MS m/z 121 (16), 149 (base), 150
(50), 151 (85), 175 (8), 193 (80), 216 (5).

4.3.8. 1-Hydroxy-1-(thiophen-2-yl)hex-5-en-3-one (Table 1, entry
8). 'TH NMR: 6 2.91-3.08 (m, 2H), 3.22 (d, J=6.8 Hz, 2H), 5.14—5.24
(m, 2H), 5.41 (m, 1H), 5.91 (m, 1H), 6.94—6.97 (m, 2H), 7.24 (d,
J=3.3 Hz, 1H); 3C NMR: 6 48.0, 50.4, 66.0, 119.1, 123.3, 124.4, 126.4,
129.7, 144.6, 207.9; HRMS m/z 196.0560 (calcd for CigH1203S,
196.0558); MS m/z 112 (33), 113 (55), 126 (base), 137 (8), 163 (10),
168 (12).

4.3.9. 1-(Furan-2-yl)-1-hydroxyhex-5-en-3-one (Table 1, entry
9). "H NMR: 6 2.87—3.13 (m, 2H), 3.23 (d, J=7.2 Hz, 2H), 5.13—5.24
(m, 3H), 5.91 (m, 1H), 6.26 (d, J=3.4 Hz, 1H), 6.33 (m, 1H), 7.36 (d,
J=21 Hz, 1H); 13C NMR: 6 46.8, 48.1, 63.3,106.0, 110.1, 119.2, 129.6,
1418, 154.9, 207.9; HRMS m/z 180.0786 (caled for CyoH;20s,
180.0786); MS m/z 110 (base), 111 (16), 137 (10), 139 (42), 155 (10).

4.3.10. Tetrahydro-2-methyl-6-(pent-1-enyl)pyran-4-one (Table 2,
entry 1). 'H NMR: 6 0.87 (t, J=7.4 Hz, 3H), 1.32 (d, J=6.1 Hz, 3H),
1.35—-1.42 (m, 2H), 1.97—2.04 (m, 2H), 2.17—2.36 (m, 4H), 3.75 (m,
1H), 4.03 (m, 1H), 5.51 (m, 1H), 5.70 (m, 1H); >C NMR: 6 13.9, 22.0,
221, 34.2, 476, 49.2, 73.0, 77.5, 129.2, 133.5, 206.9; HRMS m/z
182.1311 (calcd for C11H1803, 182.1307); MS m/z 110 (7),111 (18),126
(91), 139 (base), 180 (30), 181 (58); IR: (neat) 2961 (w), 2932 (w),
2872 (w) 2361 (w), 1721 (C=0, s), 1050 (m), 967 (m).

4.3.11. 2-Cyclohexyl-tetrahydro-6-methylpyran-4-one (Table 2, entry
2). 'TH NMR: 6 0.95-115 (m, 2H), 1.19-1.27 (m, 3H), 1.30 (d,
J=6.1 Hz, 3H), 1.50 (m, 1H), 1.64—1.77 (m, 4H), 1.96 (m, 1H),
2.20—2.26 (m, 2H), 2.32—2.39 (m, 2H), 3.30 (m, 1H), 3.70 (m, 1H);
13C NMR: 6 22.0, 25.9, 26.0, 26.4, 28.2, 28.9, 43.1, 44.9, 49.6, 73.2,
81.2, 208.3; HRMS m/z 196.1468 (calcd for C13H2007, 196.1463); MS
m(z 112 (36), 113 (base), 137 (3), 152 (5), 178 (4); IR (neat) 2925 (s),
2852 (m), 1720 (C=0, s), 1272 (m), 1063 (w).

4.3.12. Tetrahydro-2-methyl-6-phenylpyran-4-one (Table 2, entry
3). '"H NMR: 6 1.42 (d, J=6.2 Hz, 3H), 2.33—2.64 (m, 4H), 3.93 (m,
1H), 4.65 (dd, J=3.9, 10.5 Hz, 1H), 7.28—7.39 (m, 5H); 13C NMR:
0 21.9, 46.0, 48.1, 73.3, 76.6, 78.4, 125.5, 126.5, 127.8, 128.4, 140.7,
206.3; HRMS: m/z 190.0993 (base)(calcd for C12H140,, 190.0994);
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MS m/z 105 (60), 107 (33),171 (3), 172 (4), 190 (base); IR (neat) 2975
(w), 2865 (w), 2360 (w), 1716 (C=0, s), 1056 (m), 697 (s).

4.3.13. 2-(4-Fluorophenyl)-tetrahydro-6-methylpyran-4-one (Table
2, entry 4). 'TH NMR: ¢ 141 (d, J=6.0 Hz, 3H), 2.31—2.62 (m, 4H),
391 (m, 1H), 4.63 (dd, J=3.4, 10.9 Hz, 1H), 7.02—7.10 (m, 2H),
7.32—7.38 (m, 2H); 3C NMR: 6 22.1, 49.2, 49.3, 73.7, 78.1, 115.4,
115.6,127.4,127.5,136.6,164.1, 206.4; HRMS m/z 208.0903 (calcd for
C12H13FO3, 208.0900); MS m/z 122 (65), 123 (base), 124 (32), 125
(44),149 (18),190 (10); IR (neat) 2976 (w), 1715 (C=0, s), 1607 (w),
1510 (s), 1221 (s), 825 (s).

4.3.14. 2-(4-Bromophenyl)-tetrahydro-6-methylpyran-4-one (Table
2, entry 5). 'TH NMR: 6 1.41 (d, J=6.1 Hz, 3H), 2.62—2.31 (m, 4H),
3.97-3.86 (m, 1H), 4.61 (dd, J=3.1, 11.1 Hz, 1H), 7.23-7.27 (m, 2H),
750 (dd, J=6.7, 1.8 Hz, 2H); 13C NMR: 4 21.9, 48.9, 49.0, 73.4, 77.7,
127.2, 128.3, 131.5, 139.7, 205.9; HRMS m/z 268.0103 (calcd for
C12H13Br05, 268.0099); MS m/z 155 (13), 157 (15), 183 (73), 184 (85),
185 (base), 270 (78); IR (neat) 2974 (w), 1716 (C=0, s), 1488 (m),
1066 (s), 1010 (s), 814 (s).

4.3.15. 2-(3-Bromophenyl)-tetrahydro-6-methylpyran-4-one (Table
2, entry 6). 'TH NMR: 6 1.42 (d, J=6.3 Hz, 3H), 2.31—2.62 (m, 4H),
3.91 (m, 1H), 4.62 (dd, J=3.0, 11.3 Hz, 1H), 7.25 (m, 1H), 7.44 (m, 1H),
7.57 (d, J=1.7 Hz, 1H); 13C NMR: 22.1, 49.1, 49.2, 73.7, 77.8, 122.8,
124.2,128.8,130.2,131.1,143.1, 206.0; HRMS m/z 268.0103 (calcd for
C12H13Br0y, 268.0099); MS m/z 103 (25), 155 (14),157 (16), 182 (68),
184 (base), 270 (80); IR: (neat) 2975 (w), 2861 (w), 1715 (C=0, s),
1061 (m), 781 (m), 691 (m).

4.3.16. 2-(Benzo[d][1,3]dioxol-5-yl)-tetrahydro-6-methylpyran-4-
one (Table 2, entry 7). "TH NMR: 6 1.40 (d, J=6.1 Hz, 3H), 2.30—2.55
(m, 4H), 3.90 (m, 1H), 4.56 (dd, J=5.2, 9.1 Hz, 1H), 5.95 (s, 2H),
6.77—6.84 (m, 2H), 6.91 (d, J=1.3 Hz, 1H); 13C NMR: § 22.2, 49.3,
49.4, 73.6, 78.6, 101.1, 106.5, 108.3, 119.3, 134.8, 147.4, 148.0, 206.7;
HRMS m/z 234.0888 (calcd for C13H1404, 234.0892); MS m/z 121 (7),
149 (56), 150 (98), 234 (base); IR (neat) 2974 (w), 2899 (w), 2361
(w), 1716 (C=0, s), 1239 (s), 1036 (s), 810 (m).

4.3.17. Tetrahydro-2-methyl-6-(thiophen-2-yl)pyran-4-one (cis/
trans=1/1) (Table 2, entry 8). "TH NMR: 6 1.27 (d, J=6.0 Hz, 3H), 1.40
(d, J=6.0 Hz, 3H), 2.27—2.48 (m, 4H), 2.69—2.72 (m, 2H), 2.89—2.91
(m, 2H), 3.90—4.03 (m, 2H), 4.89 (dd, J=5.3, 9.1 Hz, 1H), 5.54 (t,
J=4.9 Hz, 1H), 6.91-6.99 (m, 4H), 7.29—7.33 (m, 2H); >C NMR:
021.2,22.0,45.2,48.9,49.1, 67.6, 70.9, 73.5, 74.5,124.1,125.4,126.3,
126.4, 126.6, 143.7, 205.9, 206.3; HRMS m/z 196.0560 (calcd for
C10H1205S, 196.0558); MS m/z 112 (32), 113 (54), 126 (base), 137 (5),
163 (10), 168 (14); IR: (neat) 2974 (w), 1717 (C=0, s), 1585 (s), 1442
(w), 1043 (m), 700 (s).

4.3.18. 2-(Furan-2-yl)-tetrahydro-6-methylpyran-4-one (cis/
trans=6/4) (Table 2, entry 9). "H NMR: é 1.27 (d, J=6.4 Hz, 3H), 1.38
(d, J=5.9 Hz, 3H), 2.30—2.89 (m, 8H), 3.87—3.92 (m, 2H), 4.70 (dd,
J=2.5,12.1 Hz, 1H), 5.35 (dd, J=6.9, 2.6 Hz, 1H), 6.27—6.37 (m, 4H),
7.40—7.42 (m, 2H); >C NMR: 6 21.6, 22.0, 43.1, 45.1, 49.1, 49.2, 67.8,
68.9, 71.9, 73.4,107.7,109.9, 110.2, 110.3, 142.9, 143.0, 206.0; HRMS
m/z 180.0785 (calcd for C19H1203, 180.0786); MS m/z 110 (27), 121
(13), 122 (23), 136 (8), 138 (11), 152 (18), 180 (base); IR (neat) 2975
(W), 2360 (w), 1715 (C=0, s), 1344 (m), 1015 (m), 741 (s).

4.3.19. Tetrahydro-3,6-dimethyl-2-phenylpyran-4-one (Scheme 6,
4a+4b). "HNMR: (CDCl3) 6 0.80 (d, J=6.6 Hz, 3H), 0.89 (d, J=7.3 Hz,
3H), 1.37 (d, J=6.0 Hz, 3H), 1.43 (d, J=6.3 Hz, 3H), 2.32 (dt, J=15.0,

1.5 Hz, 1H), 2.51 (d, J=6.2 Hz, 1H), 2.54 (d, J=3.3 Hz, 1H), 2.58—2.65
(m, 2H), 3.40 (d, J=5.8 Hz, 1H), 2.86—3.93 (m, 2H), 4.17 (d, J=10.3 Hz,
1H), 4.81 (d, J=2.8 Hz, 1H), 7.24—7.42 (m, 10H); HRMS m/z 204.1153
(caled for C13H1602, 204.1150); MS m/z 107 (42), 115 (15), 117 (28),
118 (17), 162 (70), 203 (5), 204 (base); IR (neat) 2974 (w), 2933 (w),
2879 (w), 1712 (C=0, s), 1022 (m), 699 (s).

4.3.20. 2-Cyclohexyl-tetrahydro-5,6-dimethylpyran-4-one (Scheme
6, 6a). 'TH NMR: 6 0.95 (d, J=6.7 Hz, 3H), 0.98—1.25 (m, 6H), 1.31
(d, J=6.0 Hz, 3H), 1.48 (m, 1H), 1.71-1.74 (m, 4H), 1.94 (m, 1H),
2.15—2.41 (m, 3H), 3.26 (m, 1H); 3C NMR: 9.3, 20.4, 25.9, 26.0, 26.4,
28.2, 28.9, 431, 45.2, 51.9, 79.0, 81.5, 209.5; HRMS m/z 210.1616
(caled for Ci3H2202, 210.1620); MS m/z 109 (39), 127 (56), 137 (15),
166 (base), 167 (15); IR (neat) 2925 (m), 2853 (w), 1714 (C=0, s),
14,450 (w), 1160 (w), 1092 (w), 891 (w).

4.3.21. Tetrahydro-5,6-dimethyl-2-phenylpyran-4-one (Scheme 6,
6b). 'HNMR: 6 1.07 (d, J=6.7 Hz, 3H), 1.45 (d, J=6.2 Hz, 3H), 2.37 (m,
1H), 2.63—-2.69 (m, 2H), 3.7 (m, 1H), 4.66 (dd, J=6.3, 8.0 Hz, 1H),
7.28—7.40 (m, 5H); 3C NMR: 6 9.3, 20.5, 49.6, 51.6, 78.9, 79.3, 125.6,
127.9, 128.5, 140.9, 207.9; HRMS m/z 204.1150 (calcd for C13H102,
204.1150); MS m/z 104 (base), 107 (54),118 (25),160 (32),186 (3); IR
(neat) 2975 (w), 1714 (C=0, s), 1453 (w), 1069 (m), 756 (m), 698 (s).

4.3.22. Spiro-tetrahydropyran-4-one (Scheme 7, 8). "H NMR: 6 1.28
(d, J=5.9 Hz, 3H), 1.38—1.51 (m, 6H), 1.68—1.76 (m, 4H), 2.15—2.32
(m, 4H), 3.95—2.89 (m, 1H); 13C NMR: 6 21.2, 21.7, 22.5, 25.4, 31.9,
39.5, 49.3, 52.2, 65.7, 75.9, 208.3; HRMS m/z 182.1304 (calcd for
C11Hig02, 182.1307); MS mjz 105 (12), 126 (63), 139 (73), 142 (22),
141 (17), 149 (100), 182 (base). IR: (neat) 2930 (m), 2859 (w), 1717
(C=0, s), 1274 (m), 999 (m), 850 (w).
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