A pyrimidine-like nickel(II) DNA base pair

Christopher Switzer* and Dongwon Shin

Received (in Cambridge, UK) 5th October 2004, Accepted 12th November 2004 First published as an Advance Article on the web 19th January 2005 DOI: 10.1039/b415426f

4-(2'-Pyridyl)-pyrimidinone deoxyriboside is synthesized and characterized as a DNA metallo base-pair; this novel nucleoside forms a self-pair in the presence of Ni(II) and stabilizes double helical DNA to the same extent as a G·C pair.

All natural nucleobases support some level of self-pairing. In a genomic context, A, G, C and T self-pairs are undesirable and can lead to mutations. Nevertheless, from the standpoint of *de novo* design, bases capable of high fidelity self-recognition hold a theoretical advantage of fewer possible mispairs and less synthetic overhead, balanced against their diminished informational capacity. Synthetic base-pairs have been devised whose recognition depends on van der Waals interactions,¹ metal-coordination² and hydrogen-bonds,³ some of which rely on self-recognition. Here we report the successful realization of the most improbable of naturally inspired self-pairs, one based on a pyrimidine scaffold. 4-(2'-Pyridyl)-pyrimidinone (Pyr^p, Fig. 1) is found to bind nickel(II) selectively over other divalent ions, forming a Pyr^p·Ni·Pyr^p base-pair with stability and mismatch discrimination rivaling natural Watson–Crick pairs.

Pyr^p (Fig. 1) is formally derived from the natural nucleobase cytosine by replacement of its 4-amino group with pyridine. This transformation leads to Lewis basic nitrogen atoms in an optimal 1,4 relationship for metal ion coordination. The synthesis of Pyr^p is summarized in Fig. 2. The critical step was a modified Negishi coupling⁴ of pyridyl zinc bromide with the chloropyrimidinone deoxyriboside derived from 1 to provide pyridylpyrimidinone deoxyriboside **2**. Nucleoside **2** was then converted in three steps to phosphoramidite **3**. Two complementary DNA dodecamer strands bearing single Pyr^p residues, 5'-d-CTTTCTPyr^pTCCCT (**4**) and 5'-d-AGGGAPyr^pAGAAAG (**5**), were prepared using an ABI 394 synthesizer and phosphoramidite **3**. Oligonucleotides were

Fig. 1 4-(2'-Pyridyl)-pyrimidinone (Pyr^p) metallo base-pair.

*switzer@citrus.ucr.edu

purified by PAGE, and their identities confirmed by MALDI-TOF mass spectrometry.

Pyr^p metallo base-pair formation was assayed by UV monitored thermal denaturation of the 4/5 duplex in the presence of divalent metal ions (Table 1). Denaturation profiles are displayed in Fig. 3. Specifically, the assay consisted of comparing $T_{\rm m}$'s of Pyr^p/Pyr^p containing duplex 4/5 in the presence of the various divalent metal ions to the $T_{\rm m}$ obtained in the absence of any divalent ion (bottom of first column, Table 1). Of the six divalent metal ions screened, Ni²⁺ led to far and away the greatest duplex stabilization—a dramatic increase in $T_{\rm m}$ of 16.5 °C relative to the metal free control. Also significant, the data in Table 1 indicate $Pyr^{p} \cdot Ni^{2+} \cdot Pyr^{p}$ is as stabilizing to a double helix as C·G (41.2 versus 40.2 °C). Finally, in control experiments, essentially no effect was observed on $T_{\rm m}$ values of the T/A or C/G duplexes when denatured in the presence or absence of Ni²⁺ (bottom of second region, Table 1), or the $Pyr^{p} \cdot Ni^{2+} \cdot Pyr^{p}$ duplex when denatured at pH 8 rather than 7. The latter result when taken with a mixing curve determined in earlier work⁵ on the parent 11/9 duplex supports a duplex (as opposed to a triplex) structure for 4/5.

Mismatch discrimination of Pyr^p was assessed by measuring the stability of the four natural bases against Pyr^p in the presence of Ni²⁺ (top of second region, Table 1). These data show Pyr^p·Ni²⁺ is a mismatch against all four natural bases as $\Delta T_{\rm m}$ values of the mismatched pairs relative to Pyr^p·Ni²⁺·Pyr^p ranged from 18.3–21.9 °C (these values are distinct from the Δ values in Table 1 that are rooted to the C/G pair). As a reference, natural T/G and C/A mismatches of the parent duplex under the same conditions show $\Delta T_{\rm m}$ values of 7.4 and 18.5 °C.⁵ Therefore, all four Pyr^p·Ni²⁺ mismatches are similar to severe natural nucleobase mismatches in their instability.

Three coordination geometries are possible in principle for Pyr^p·Ni²⁺·Pyr^p: square planar, D₂^d, and tetrahedral. All other factors being equal, a square planar geometry should be preferred to minimize disruption of base-stacking in the DNA double helix. Square planar geometries are predicted to be accessible for Ni²⁺, Co^{2+} , and Cu^{2+} , three of the metal ions screened for their ability to stablize the Pyr^p₂ bearing helix. Ab initio geometry optimization of Pyr^p·Ni²⁺·Pyr^p at the B3LYP/6-31G*(CHN)/LACVP*(Ni) level of theory led to a square-planar geometry as a (local) minimum as depicted in Fig. 4a. Remarkably, the N1-N1' (pyrimidine numbering) distance in the optimized Pyrper Ni2++Pyrper structure spans only 4.9 Å (also depicted in Fig. 4a). In contrast, the corresponding N9-N1', Pur-Pyr, distance in natural B-DNA helices for both G/C and A/T base-pairs is 9.1 Å (structure not shown). Thus, despite a predicted base to base distance of approximately half (i.e., 54%) of the corresponding distance of a natural base-pair, Pyr^p·Ni²⁺·Pyr^p nonetheless confers stability to a helix equivalent to a G·C base-pair. Bipyridyl-2'-deoxyriboside^{2g,6}

Fig. 2 Synthesis of 2'-deoxyribosyl-1-[6-(2"-pyridyl)-pyrimidinone]

Table 1 DNA duplex melting temperatures in the presence and absence of divalent ions. Samples contained 2.5 μ M of each DNA strand, 10 μ M divalent ion where indicated, 50 mM NaCl, and 10 mM NaH₂PO₄, pH 7

5'-d-CTTTCTXTCCCT 3'-d-GAAAGAYAGGGA									
Pyr ^p /Pyr ^p	4/5	Ni ²⁺	41.2	+1.1	Pyr ^p /T	4/6	Ni ²⁺	19.5	-20.6
Pyr ^p /Pyr ^p Pyr ^p /Pyr ^p	4/5 4/5	Co^{2+} Cu^{2+}	29.9 26.8	-10.2 -13.3	Pyr ^p /C Pyr ^p /A	4/7 4/8	N1 ²⁺ Ni ²⁺	19.3 19.7	-20.8 -20.4
Pyr ^p /Pyr ^p	4/5	Zn ²⁺	24.1	-16.0	Pyr ^p /G	4/9	Ni ²⁺	22.9	-17.2
Pyr ^p /Pyr ^p	4/5 4/5	Fe^{2+} M n^{2+}	24.0	-16.1	T/A T/A	10/8		36.8	-3.3
Pyr ^p /Pyr ^p	4/5		23.9	-15.4	C/G C/G	10/8 11/9 11/9	Ni ^{2+b}	40.2 40.1	+0.1 0.0

^{*a*} Difference in $T_{\rm m}$ compared to X/Y = C/G. ^{*b*} Divalent ion was added in these cases as a control.

Fig. 3 Absorbance *versus* temperature denaturation profiles. Conditions as reported in the legend to Table 1.

is structurally similar to Pyr^p, but to date self-pairing has been reported only in the absence of metal ions.

The remarkable stability of $Pyr^{p} \cdot Ni^{2+} \cdot Pyr^{p}$ in the face of its predicted dimensions is best appreciated in the context of natural pyrimidine–pyrimidine mismatches. The C·T mismatch is particularly illustrative as a comparison since it is in effect a hydrogenbonding counterpart to $Pyr^{p} \cdot Ni^{2+} \cdot Pyr^{p}$. Where C·T forms two hydrogen bonds, $Pyr^{p} \cdot Ni^{2+} \cdot Pyr^{p}$ forms two coordination bonds (per base), and both pairs have opposing 2-carbonyl groups (Fig. 4b *vs.* 4a). Despite outward similarities, the properties of $Pyr^{p} \cdot Ni^{2+} \cdot Pyr^{p}$ and C·T are divergent as C·T is among the most destabilizing mismatches to a DNA helix.⁷ Structural studies of C·T(U) mismatches in DNA and RNA helices indicate a single direct hydrogen bond between the bases (N4H–O4) and a water mediated hydrogen bond (N3–H₂O–N3H) (Fig. 4c) rather than two direct hydrogen bonding interactions between the two sets of

Fig. 4 Optimized geometries (B3LYP/6-31G*(CHN)LACVP*(Ni)) using Jaguar 3.5 (Schrodinger Inc.) of: a) $Pyr^{p} \cdot Ni^{2+} \cdot Pyr^{p}$ (stereo view), b) C·T, and c) C·H₂O·T.

complementary donor/acceptor groups (Fig. 4b).⁸ *Ab initio* optimization of both these latter structures provided the N1–N1' interatomic distances shown (Fig. 4b/c). It is apparent from a comparison of these distances that recruiting a water molecule into the C·T base-pairing motif causes a favorable increase in the interaction distance of the bases relative to the distance in a natural helix (glycosidic N–N distances of 9.6 Å/C·H₂O·T, Fig. 4c, *vs.* 9.1 Å/A·T & G·C, data not shown). However, there is at least one report that the C·H₂O·T structure disrupts stacking interactions.^{8c} In the case of Pyr^p·Ni²⁺·Pyr^p we suggest its high stability derives from two unique features: (i) stacking interactions provided by the pyridyl groups, and (ii) the greater strength of coordination bonds

in comparison to hydrogen bonds. As a result, $Pyr^{p} \cdot Ni^{2+} \cdot Pyr^{p}$ is able to surmount its acute dimensional shortfall and still strongly stabilize a double helix.

In summary, the $Pyr^{p} \cdot Ni^{2+} \cdot Pyr^{p}$ metallo base-pair has fidelity and stability on a par with natural Watson–Crick base-pairs despite assuming a non-natural dimension. We are actively pursuing materials incorporating this motif with applications in nano-electronics and artificial biology.

This work was funded by DOD/DARPA/DMEA under Award No. DMEA90-02-2-0216 and the NASA exobiology program under Award No. NAG5-9812.

Christopher Switzer* and Dongwon Shin

Department of Chemistry, University of California, Riverside, CA, USA. E-mail: switzer@citrus.ucr.edu; Fax: 951-827-4713; Tel: 951-827-7266

Notes and references

- (a) B. A. Schweitzer and E. T. Kool, J. Am. Chem. Soc., 1995, 117, 1863;
 (b) D. L. McMinn, A. K. Ogawa, Y. Q. Wu, J. Q. Liu, P. G. Schultz and F. E. Romesberg, J. Am. Chem. Soc., 1999, 121, 11585.
- 2 (a) E. Meggers, P. L. Holland, W. B. Tolman, F. E. Romesberg and P. G. Schultz, J. Am. Chem. Soc., 2000, **122**, 10714; (b) H. Weizman and

Y. Tor, J. Am. Chem. Soc., 2001, 123, 3375; (c) K. Tanaka, Y. Yamada and M. Shionoya, J. Am. Chem. Soc., 2002, 124, 8802; (d) T. Tanaka,
A. Tengeiji, T. Kato, N. Toyama, M. Shiro and M. Shionoya, J. Am. Chem. Soc., 2002, 124, 12494; (e) N. Zimmerman, E. Meggers and
P. G. Schultz, J. Am. Chem. Soc., 2002, 124, 13684; (f) K. Tanaka,
A. Tengeiji, T. Kato, N. Toyama and M. Shionoya, Science, 2003, 299, 1212; (g) C. Brotschi and C. J. Leumann, Nucleosides, Nucleotides and Nucleic Acids, 2003, 22, 1195.

- 3 (a) C. Switzer, S. E. Moroney and S. A. Benner, J. Am. Chem. Soc., 1989, 111, 8322; (b) J. A. Piccirilli, T. Krauch, S. E. Moroney and S. A. Benner, *Nature*, 1990, 343, 33.
- 4 M. Hocek, A. Hol, I. Vortuba and H. Dvoáková, *Collect. Czech. Chem. Commun.*, 2001, **66**, 483.
- 5 H. Hashimoto, M. G. Nelson and C. Switzer, J. Am. Chem. Soc., 1993, 115, 7128.
- 6 C. Brotschi, A. Haberli and C. J. Leumann, *Angew. Chem., Int. Ed.*, 2001, 40, 3012.
- 7 (a) F. Aboul-ela, D. Koh, I. Tinoco and F. H. Martin, *Nucleic Acids Res.*, 1985, **13**, 4811; (b) H. Werntges, G. Steger, D. Riesner and H.-J. Fritz, *Nucleic Acids Res.*, 1986, **14**, 3773.
- 8 (a) Y. Boulard, J. A. H. Cognet and G. V. Fazakerly, J. Mol. Biol., 1997, 268, 331; (b) Y. Tanaka, C. Kojima, T. Yamazaki, T. S. Kodama, K. Yasuno, S. Miyashita, A. M. Ono, A. S. Ono, M. Kainosho and Y. Kyogoku, Biochemistry, 2000, 39, 7074; (c) W. B. T. Cruse, P. Saludjian, E. Biala, P. Strazewski, T. Prangé and O. Kennard, Proc. Natl. Acad. Sci. USA, 1994, 91, 4160; (d) S. R. Holbrook, C. Cheong, I. Tinoco and S. H. Kim, Nature, 1991, 353, 579.