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M O D E L I N G  OF T H E  T E L E S C O P E  M I R R O R  D E F O R M A T I O N  P R O C E S S  
G .  A.  C h e c h k o ,  Yu.  Z. P rokhur~  a n d  V. N. S k l e p o v o i  UDC 539.3 

We study the influence of a system of bar supports, which are positioned symmetrically with respect to 
the telescope avis, on the deformation of the optical surface of the mirror. We show that two circular 
rows of bar supports do not provide the necessary degree of mirror deformation allowed for practical use. 
Bibliography: 1 title. 

Increasing the effectiveness of optical telescopes and improving their informational properties depend 
to a large extend on the correct choice of a new class of active adaptive mirrors. This gives rise to the 
necessity of carrying out  a theoretical s tudy of physical properties and construction principles for such 
mirrors, taking into account the conditions imposed by the technical and technological requirements and 
the operat ing conditions. This was the topic of a seminar of leading experts of the former Soviet Union 
countries conducted in Moscow in Spring 1997 and devoted to the relieve problem for the telescope main 
mirror 

The  aim of this article is to s tudy the influence of a system of bar supports that are posi t ioned 
symmetrical ly with respect to the axis of the telescope main mirror on the deformation of the optical 
surface of the mirror held in the gTavitational field. 

The  body  of the telescope main mirror is a portion of a spherical shell of constant width h bounded  
by two parallel planes with base radii ro and R on the inner and outer parts of the reflecting surface, 
respectively. The support  points are uniformly located in two cylindrical cross sections that  are symmetr ic  
with respect  to the axis of the telescope. This allows one to split the entire space of the telescope into n 
sections, each of which is in the same stress condition. The number n corresponds to the number of suppor t  
points in each of the two cross sections (Fig. 1). 
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FIG. 1. A diagTam of the telescope: 1-3 are zone numbers: �9 are support  
points. 

Since the curvature of the reflecting surface of the main mirror is small and the thickness of the spherical 
shell is significantly smaller than the outer diameter of the telescope, the study of the deformation, with 
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the first order of accuracy, can be reduced to a study of the bend of a round annular plate caused by its 
own weight if the plate is supported at the support points, which are symmetr ic  with respect to the  center 
of  the plate [1]. 

We will look for a solution of the problem on the plate bend with the assumption that  the bends w of 
the plate are small compared to its thickness h and that the value of the concentrated force (the supporting 
force) is not large. The problem will be solved in polar coordinates (r, 0). The  direction of the  coordinates 
is shown in Fig. 2. 
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FIG. 2 

Then the relation between the polar and Cartesian coordinates is given by 

r2 = x2 + y o, O = arctan ( y / x ) .  

Let us write a differential equation for the surface bend of a transversely stressed round plate in the 
polar coordinates: 

0 2 1 cO - - ~  \cOt2 + + = q / D .  (1) AA =  77" r 002] 

Here q = pgh is the stress applied to the plate caused by its weight, p is the  density of the material,  g is 
the acceleration of the gravitational field, D = Eh3/[12(1 - a2)] is the bend rigidity of the plate, E is the 
Young modulus, and a is the Poisson coefficient. 

Vv'e represent the general solution of Eq. (1) as 

W --~ W 0 Jr- W 1 , 

where w0 is a particular solution of Eq. (1), while Wl is a solution of the homogeneous equation 

AAwl  = 0. (2) 

In this case, it is convenient to write this solution as [1] 

wl  = Ro(r )  + Rl( r )cosn0 ,  (3) 

where R0(r) and R1 (r) are fimctions of the radial coordinate. 

3838 



Substituting expressions (3) into Eq. (2) for each of these functions we get the  differential equations 

( d  2 1 d )  ( aeR0  l d R 0 )  
+ - + - - -  = o: (a) 

r dr  \ dr 2 r dr 

1 d n 2 )  (d2R1 l d R 1  n 2 R t )  
r dr ~5 \ dr2 + r dr r'-~ ] = 0. (5) 

d o 
~ +  

Equations (4) and (5) are easily integrated. Their  general solutions have the form 

R0(r) = Ao + Bor 2 + Co ln r + Dor 2 Inr; 

Rx(r) = A1 rn H- Bzr  -~ + C1 rn+2 H- D1 r-n+2. 

qr 4 

64D" 

If q = const, a particular solution of (1) is known: 

w o -  

Then the general solution of (1) can be wr i t ten  as 

q ra (Air  n B l r  -~ C1 rn+2 w ( r , O ) = A o + B o r e + C o l n r + D o r 2 1 n r + - ~ - ~ +  + + +Dlr-n+2)  cosnO. (6) 

Let us subdivide the region 7" E [r0, R] into three zones: r E [a, R], r �9 [b, a], and r �9 [r0, b]. For each of 
these zones there is a solution of type (6) but  with different integration constants. Label these zones with 
indices 1, 2, and 3 (Fig. 1) and let wl, w2, and w3 be the bends of the plate in the zones. We have 

~ qra (Ailr  r~ B i l r - "  Cilr n+2 Dilr -n+2) nO, wi = Aio -F Bio r~ + Cio In r + Dior" In r + ~ + + + + cos (7) 

i = 1,2,3. 

The cylindrical cross sections 7" = b and r = a, r0 < b < a, b < a < R, correspond to the circles where the 
support points are located. At these points, the cutting force has a discontinuity, since the concentrated 
force (the supporting force) is applied at these points [1]. This leads to the necessity of subdividing the 
plate region into three zones with boundaries passing in the cross sections r = a and r = b. 

Let us write the expressions for the bending and torque moments:  

1 

M~ = - D  L or2  + ~ k~ 0 r  + r~ 002 s J  (s) 

5,[ro = (l  _ ~r)D ( ~  O2w 1 Ow)  
OrO0 r 2 O0 (9) 

Tile cutting force in the cross section r is given by the expression 

Q~ = - D  O (Zxw) (zo) 

Equation (1) must satisL" the following boundary-value conditions. In the free boundary of the plate, for 
7" = r0 and r = R, the bend moment and cut t ing forces equal zero: 

10-~I~o) = O, (11) 
(M,.),.=,.o = 0 ,  v =  O.  r O0 ~---o 

i 03I~0 ) = 0. (12) (M,.)r=R=0, V =  Q. Z b-Y r=R 
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Since no external moments  are applied to the circles with radii r = b and r = a, the continuity conditions 
on the circles can be writ ten as 

Owi Owe 02wl 92u,e 
. . . .  for r = a; (13) wi  = w2, Or Or ' Or 2 Or 2 

0U'2 0//23 02W2 ~2W3 
- - -  - for r = b. (14) W2 = W3, Or Or ' Or 2 Or 2 

Moreover, the bends and bending moments  are equal to zero at support points for the cross sections r = b 
and r = a: 

wi(a;/9i) = O; ltIr(a;Oi) = O; (15) 

w2 (b; 0i) = 0 ,&s (b; 0~) = 0, (16) 

where ~i = 27ri/n, i = 1, 2 , . . . ,  n. 
Introduce dimensionless variables by the following relations: zb = w / R ,  f = r / R ,  5 = a /R ,  b = b /R,  

and /~  = R / R  = 1. Vvu the solution of Eq. (1) for each zone in dimensionless form: 

Rr~ 4 
zb~ = A~0 + B~o ~2 + C~0 ln~ + D,.0~ e lnr  ~ + ~ + (A~if ~ + B~i f - ~  + C ~ f  ~+2 + D~lf -n+2) cos nS, (17) 

i = 1, 2, 3, 

where R.  = p g h R 3 / ( 8 D )  is a dimensionless variable. In the sequel, we omit the tilde over dimensionless 
quantities. 

Substituting solutions of (17) into boundary-value conditions (11)-(16), we get a system of 24 linear 
algebraic equations for determining the  unknown integration constants. This system is solved by using 
Ganssian elimination. We solve this system by the Gauss method. The magnitudes of deformation, wi, 
i = 1, 2, 3, were determined from formulas (17). The calculations were carried out for the following values of 
the physicM and geometric parameters of the problem: h = 0.1 m; R0 = 9.3333 m: R = 0.857 m; r0 = 0.33 m; 
n = 18: E = 9.806651010 N/m2: r" = 2.46103 kg/m3; s = 0.236. The quantities a and b were chmaging over 
the study. A numerical experiment was carried out in order to determine stable equilibrium positions of the 
annular plate so tha t  its surface experiences minimal deformations. The studies showed that the maximal 
bends of the surface of the telescope mirror do not exceed several tenths of a micrometer. It is clear tha t  
to decre~e further the deformation to reach one tenth of a micrometer or less, one needs to have three 
circular rows of supports,  to increase the  total number of support points, and to determine their optimal 
location. 

Now we pass to the study of the influence of the spherical surface of the mirror on its deformation as 
compared with the deformation of the round annular plate of constant thickness. Since it is not an easy 
problem to solve the biharmonic equation for the bend of the surface of a flat gradient spherical shell in 
spherical coordinates, we rewrite the equation for the bend in polar coordinates. 

The equation for the bend in spherical coordinates has the form 

AAw = q /D,  (18) 

where 

is the Laplacian. 
Introduce the change of variables 

(. ow) 1 l 1 0 sm g ~  + 
+ s in~ c9~ sin 2 ~ c_9~ 2 J 

r = R o s i n ~ ,  9 = 9 ,  (19) 

where r and ~9 are polar coordinate and R0 is the radius of the spherical surface of the telescope mirror 
(Fig. 3). 
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FIG. 3 

Since we are looking for an equation for the bend of the reflecting surface of the  telescope mirror,  
Eq. (18) does not depend on 7". Passing to variables (19) in Eq. (18), we get 

, c ~ a 1 02 c ~ a / a~,~ _a2~ l 
0,. ~ cos ~ + ~ ~ 0~ kT cos ~ ~ } + ~2 005 ] = ~ '  

where cos ~ = v/1 - r2/R 2, 0 < r < R. 
Equat ion (20) describes in polar coordinates the magnitude of deviation of points on the surface of the  

spherical shell from the initial stress-free state in the direction parallel to the telescope axis. 
As Ro --*~, Eq. (20) becomes an equation for the bend of the plate in polar  coordinates, since 

limRo--.or V/1 -- r2/R 2 = 1. The maximal value of the ratio (r2/R 2) equals e = R2/Ro, and, in the case 
under consideration, it is of the order of -'~10 -2. Therefore, we can consider e as a small parameter. T h e n  
the differential equation for the bend of the spherical mirror in polar coordinates, if only the first-order 
approximation is considered, is as follows: 

[ ( ) [ 1 
( l - e )  ~ r  2 + r ~ r r  + r  2002j  ( l - e )  \ 0 r  2 + r  0 r /  + r  2 082j  = q / D "  (21) 

It is easy to see from Eq. (21) that  the influence of the spherical shape on the  deformation of the  
telescope mirror does not exceed 2e times the deformation of the annular plate. 

It should be noted that  the method used in the paper is applicable for solving problems on the bend 
of an anmflar plate that is stressed by its weight if a system of concentrated forces is applied symmetrical ly 
with respect  to the center of the plate and located evenly in three or more concentric circles. 

As a result of the calculations, it was found that  by using a system of supports  evenly distributed on 
two concentric circles, it is not possible to obtain a value for the transversal deformation of the telescope 
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mirror that would be less than the given value of w --- 0.05 #m, which is admissible for practical use. This 
leads to the need for studying the deformation in the case of three circular rows of supports. 

The calculations carried out for the case of three circular rows of supports show that it is possible to 
achieve the maximal bend of the telescope mirror less than 0.01 #m. Due to the cumbersome exposition, 
we do not give the setting of this problem. 

Finally, we note that the given method for solving the problem differs from the known method of 
Timoshenko [1], although it trees its main points. For example, the region under consideration is subdivided 
into zones depending on the location of the concentrated forces (the supporting forces). On the boundaries 
of the zones, the cutting forces have a discontinuity which is a boundary-value condition and includes the 
supporting forces, which, in our case, it is not possible to calculate. The boundary-value conditions of 
the discontinuity of the cutting forces were replaced by the conditions that the values of the bends and 
bending moments at support points equal zero, which allowed one to obtain a solution of the problem. An 
advantage of the method used in the article is that we choose a form of the solution that takes into account 
the uniqueness of the solution in n sectors, since the supports are located symmetrically with respect to the 
vertex of the telescope mirror, and this is a significant distinction between the solution given in this paper 
and the one found in [1]. 
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