Regioselective Buta-1,3-dienylation of Aldehydes via Transmetallation of 2-Tributylstannylbuta-1,3-diene

Meiming Luo, Yoshiharu Iwabuchi, Susumi Hatakeyama*

Faculty of Pharmaceutical Sciences, Nagasaki University, Nagasaki 852-8521, Japan Fax +81-95-848-4286; E-mail: susumi@net.nagasaki-u.ac.jp *Received 14 April 1999*

Abstract: Transmetallation of 2-tributylstannylbuta-1,3-diene with SnCl₄ followed by Lewis base promoted addition of the resulting 1-trichlorostannyl-2,3-butadiene to aldehydes in the presence of DMF allows their buta-1,3-dienylation to take place at the C2 position with complete regioselectivity in high yields.

Key words: buta-1,3-dienes, tin compounds, transmetallations, buta-1,3-dienylations, Lewis base promoted reaction

Dienols of general structure 1 are valuable precursors for the syntheses of a variety of natural products.^{1,2} Buta-1,3dienylation of aldehydes utilizing 2-metallated buta-1,3dienes 2 derived from 2-chlorobuta-1,3-diene (chloroprene), an industrial material, is obviously the simplest approach for the synthesis of 1 although several other methods have already been developed.³ However, existing methods⁴ using 2 (M = MgCl or Li) following this approach have the serious disadvantage of poor regioselectivity or low chemical yield. We now report a facile and efficient buta-1,3-dienvlation of aldehydes giving 1 with complete regioselectivity by use of 2-tributylstannylbuta-1,3-diene 3, readily available from chloroprene.3e,5

Allylstannanes are known to react with Lewis acids (MX_n) to generate the corresponding allylmetal compounds through a transmetallation process normally with migration of the olefinic double bond.⁶ We envisaged that such transmetallation of 2-tributylstannylbuta-1,3-diene **3** would produce buta-2,3-dienylmetal **4**, which is expected to react with aldehydes in 1,3-rearrangement fashion⁷ to give dienols **1**.

Scheme 1

To assay the possibility of the above-mentioned approach we first surveyed various Lewis acids $(SnCl_4, ^6 BCl_3,$ $TiCl_4$,⁶ SiCl_4, InCl_3,⁸ CoCl_2⁹) in the reaction of **3** with hydrocinnamaldehyde. Thus, 2-tributylstannylbuta-1,3-diene **3** was treated with Lewis acid in CH_2Cl_2 and after disappearance of 3 on TLC, hydrocinnamaldehyde was added to the reaction mixture. As shown in Table 1,¹⁰ only SnCl₄ and BCl₃ turned out to promote the desired reaction to give dienol 1 ($R = CH_2CH_2Ph$) although the yields were moderate (entries 2 and 4). 2-Tributylstannylbuta-1,3-diene 3 itself did not react with hydrocinnamaldehyde even under refluxing conditions when no Lewis acid was used (entry 1). It should be stressed that addition of DMF, HMPA, or isoquinoline N-oxide dramatically improved the yield of this reaction, in particular, when $SnCl_4$ was used for the transmetallation (entries 5-7 and 9).

Entry	Lewis acid	Additive ^b	T (°C)	Time (h)	Yield $(\%)^{e}$
1	none	none	reflux	12	0^{f}
2	BCl ₃	none	-78 ^d	2	37
3	BCI,	DMF	rt	9	51
4	SnCl₄	none	-30^{d}	4	30
5	SnCl ₄	DMF	rt	12	88
6	SnCl ₄	DMF^{c}	rt	6	82
7	SnCl ₄	HMPA	rt	8	81
8	SnCl ₄	CH ₃ CN ^c	0	2	52
9	SnCl ₄	isoquinoline N-oxide	rt	18	72

^a See the representative procedure in ref. 10. ^b 3 equiv. of additive were used unless otherwise stated. ^c Half volume of CH_2Cl_2 was used. ^d A complex mixture was obtained when the reaction was carried out at room temperature. ^e Isolated yield. ^f No reaction.

LETTER

Table 2 summarizes $SnCl_4$ promoted addition of **3** to various aldehydes. It is evident that this reaction proceeds with complete regioselectivity and has broad applicability for the preparation of **1**. Entry 6 clearly indicates the chemoselectivity of this reaction and an acetal group is intact under the reaction conditions, showing its advantage in comparison with other buta-1,3-dienylations.³ The diastereoselectivity of this reaction can be also evaluated by the examples listed in entries 7-9 and high *anti*-selectivity (80% de) was observed in the case of 2,3-*O*-isopropylidene-D-glyceraldehyde.

Table 2. SnCl₄ promoted addition of **3** to aldehydes giving 1^{a}

Entry	R	T (°C)	Time (h)	Yield (%) ^b
1	Ph	rt	12	89
2	PhCH ₂	rt	12	73
3	(E)-PhCH=CH	rt	12	70 (98) [°]
4	$CH_3(CH_2)_6$	rt	12	82
5	$c - C_6 H_{11}$	rt	12	79
6	$(CH_3O)_2CH(CH_2)_2$	0	4.5	69
7	Ph(CH ₃)CH	rt	12	$65(58:42)^{a}$
8	CH ₃ (OBn)CH	rt	12	92 (60 : 40) ^e
9	$\frac{1}{2}$	rt	12	98 (90 : 10) ^e

^a See the representative procedure in ref. 10. ^b Isolated yield. ^c Yield in parenthesis based on the consumed aldehyde. ^d Not determined which is *anti*- or *syn*-isomer. ^e *anti* : *syn*.

In order to further understand this reaction, the following NMR experiments were undertaken. Thus, 3 was treated with 1 equivalent of $SnCl_4$ at -60 °C in CDCl₃ and after completion of the transmetallation, 3 equivalent of DMF were added and then the mixture was allowed to warm to room temperature. After 30 min at room temperature, 1-trichlorostannylbuta-2,3-diene 5¹¹ and 2-trichlorostannylbuta-1,3-diene 6^{12} were observed in a ratio of ca. 1:1 each as complex with DMF and this ratio changed only slightly even after 6 h.13 Interestingly, when hydrocinnamaldehyde was added to this mixture, dienol 1 $(R = CH_2CH_2Ph)$ was produced in ca. 40% yield by ¹H NMR-measurement. On the other hand, in a control experiment without DMF, 5 isomerized to 6 completely within 6 h and addition of hydrocinnamaldehyde and DMF to this mixture did not cause production of dienol 1 $(R = CH_2CH_2Ph)$ at all. These results suggest that addition of DMF retards the isomerization rate from 5 to 6 by coordination and only coordinated **5** participates in the reaction with an aldehyde possibly via six-centered cyclic transition structure **7** even if both **5** and **6** exist as coordinated complexes. This reaction, therefore, can be regarded as Lewis base promoted reaction of 1-trichlorostannylbuta-2,3-dinene with an aldehyde, similar to the recently discovered reactions of allylhalosilanes¹⁴ and allylhalostannanes.^{6c,15}

Scheme 2

In conclusion, we have developed a simple buta-1,3-dienylation of aldehydes giving **1** using readily available 2tributylstannylbuta-1,3-diene **3** as the diene source. The present work exhibits the first example of Lewis base promoted reaction of 1-trichlorostannylbuta-2,3-dinene **5** prepared in situ by transmetallation of 2-tributylstannylbuta-1,3-diene **3** with SnCl₄. The development of an asymmetric version of this reaction using a chiral Lewis base ligand is the focus of current investigations.

Acknowledgment

This work was supported by the Japan Society for the Promotion of Science (postdoctoral fellowship for M.L.). We gratefully acknowledge Tosoh Corporation (Nanyo Reserch Laboratory, Japan) for providing chloroprene.

References and Notes

- For a review, see: Hatakeyama, S. J. Synth. Org. Chem. Jpn. 1997, 55, 793.
- (2) Hatakeyama, S.; Yoshida, M.; Esumi, T.; Iwabuchi, Y.; Irie, H.; Kawamoto, T.; Yamada, H.; Nishizawa, M. *Tetrahedron Lett.* **1997**, *38*, 7887.
- (3) a) Hatakeyama, S.; Sugawara, K.; Takano, S. *Tetrahedron Lett.* **1991**, *32*, 4509. b) Zheng, B.; Srebnik, M. *J. Org. Chem.* **1995**, *60*, 486. (c) Soundararajan, R.; Li, G.; Brown, H. C. *J. Org. Chem.* **1996**, *61*, 100. d) Yu, C.-M.; Yoon, S.-K.; Lee, S.-J.; Lee, J.-Y.; Kim, S. S. *J. Chem. Soc., Chem. Commun.* **1998**, 2749. e) Luo, M.; Iwabuchi, Y.; Hatakeyama, S. *J. Chem. Soc., Chem. Commun.* **1999**, 267.
- (4) a) Kondo, K.; Dobashi, S.; Matsumoto, M. Chemistry Lett. 1976, 1077. b) Nunomoto, S.; Yamashita, Y. J. Org. Chem. 1979, 44, 4788. c) Wada, E.; Kanemasa, S.; Fujiwara, I.; Tsuge, O. Bull. Chem. Soc. Jpn. 1985, 58, 1942. d) P. R. Jenkins, P. A. Brown, Tetrahedron Lett. 1982, 23, 3733-487. e) Jenkins, P. R.; Brown, P. A. J. Chem. Soc., Perkin Trans. 1 1986, 1129. f) Nativi, C.; Taddei, M. Tetrahedron 1989, 45, 1131.

- (5) a) Wada, E.; Kanemasa, S.; Fujiwara, I.; Tsuge, O. *Bull. Chem. Soc. Jpn.* **1985**, *58*, 1942. b) Bates, G. S.; Fryzuk, M. D.; Stone, C. *Can. J. Chem.* **1987**, *65*, 2612.
- (6) a) Thomas, E. J. In *Houben-Weyl, Methods of Organic Chemistry*, Vol. E21b; Helmchen, G.; Hoffmann, R. W.; Mulzer, J.; Schaumann, E., Eds.; Thieme: Stuttgart, 1995; p 1508. b) Marshall, J. A. *Chem. Rev.* **1996**, *96*, 31. c) Thomas, E. J. J. Chem. Soc., Chem. Commun. **1997**, 411.
- (7) Buta-2,3-dienylsilanes, stannanes, and boronates are known to react with aldehydes regioselectively in 1,3-rearrangement fashion (see ref. 3).
- (8) Marshall, J. A.; Hinkle, K. W. J. Org. Chem. 1995, 60, 1920.
- (9) Iqbal, J.; Joseph, S. P. Tetrahedron Lett. 1989, 30, 2421.
- (10) Representative procedure (entry 5 in Table 1): To a stirred solution of **3** (342 mg, 1.0 mmol) in CH₂Cl₂ (4 ml) at -78 °C under argon was added SnCl₄ (117 µl, 1.0 mmol). After stirring at -78 °C for 45 min, DMF (232 µl, 3.0 mmol) was added and the mixture was stirred at -78 °C for 10 min. Hydrocinnamaldehyde (67 mg, 0.5 mmol) was added and the mixture was basified with 5% NaOH (5 ml) and extracted with Et₂O. The extract was washed with water, dried over MgSO₄, and concentrated in vacuo. Purification by column chromatography [SiO₂ (10 g) pretreated with Et₃N (1 g), *n*-hexane : AcOEt = 8:1] afforded **1** (R = Ph(CH₂)₂) (82.5 mg, 88%).
- (11) ¹H NMR (CDCl₃, 300 MHz) δ 5.37 (m), 5.01 (dt, *J* = 6.6, 2.5 Hz, 2H), 3.03 (dt, *J* = 8.2, 2.5 Hz, 2H); ²*J*(^{117 and 119}Sn-¹H) are

not given. When DMF was added, two methylene peaks shifted to 4.84 and 2.65, respectively but the corresponding methine peak could not be clearly identified.

- (12) ¹H NMR (CDCl₃, 300 MHz) δ 6.75 (dd, *J* = 16.8, 10.2 Hz, 1H), 6.23 (s, 1H), 5.90 (s, 1H), 5.56 (d, *J* = 16.8 Hz, 1H), 5.56 (d, *J* = 10.2 Hz, 1H)); ²*J*(^{117 and 119}Sn-¹H) are not given. When DMF was added, these peaks shifted to 6.72, 6.15, 5.89, 5.43, and 5.32, respectively.
- (13) DMF-complex of **5** isomerized to DMF-complex of **6** almost completely 30 h later.
- (14) a) Kobayashi, S.; Nishio, K. *Tetrahedron Lett.* 1993, 34, 3453.
 b) Denmark, S. E.; Coe, D. M.; Pratt, N. E.; Griedel, B. D. J. Org. Chem. 1994, 59, 6161. c) Kobayashi, S.; Nishio, K. J. Org. Chem. 1994, 59, 6620. d) Iseki, K.; Kuroki, Y.; Takahashi, M.; Kobayashi, Y. *Tetrahedron Lett.* 1996, 37, 5149. e) Wang, Z.; Wang, D.; Sui, X. J. Chem. Soc., Chem. Commun. 1996, 2261. f) Angell, R. M.; Barrett, A. G. M.; Braddock, D. C.; Swallow, S.; Vickery, B. D. J. Chem. Soc., Chem. Commun. 1997, 919. g) Short, J. D.; Attenoux, S.; Berrisford, D. J. *Tetrahedron Lett.* 1997, 38, 2351-2354. h) Nakajima, M.; Saito, M.; Shiro, M.; Hashimoto, S. J. Am. Chem. Soc. 1998, 120, 6419.
- (15) Kobayashi, S.; Nishio, K. Tetrahedron Lett. 1995, 36, 6729.

Article Identifier:

1437-2096,E;1999,0,07,1109,1111,ftx,en;Y08899ST.pdf