
Solvent-Free Synthesis
DOI: 10.1002/anie.200700679

Parallel Syntheses of (+)- and (�)-a-Cuparenone by Radical
Combination in Crystalline Solids**
Arunkumar Natarajan, Danny Ng, Zhe Yang, and Miguel A. Garcia-Garibay*

Among the forces shaping the future of organic synthesis is
the drive for environmentally friendly processes in keeping
with the principles of green chemistry.[1] Strategies under
development include the engineering of microorganisms and
enzymes,[2] the application of efficient catalysts[1,3] and
environmentally friendly solvents,[4] and whenever possible,
the use of chemical processes without solvents.[5,6a] It is also
expected that photochemical reactions will play an important
role in the synthesis of natural products and specialty
chemicals.[6, 7] A promising reaction in this context is the
solvent-free photodecarbonylation of crystalline ketones
(Scheme 1).[6a,8] While the reaction is ideal for the synthesis

of molecules with adjacent quaternary stereogenic centers,[9]

its application for the synthesis of enantiomerically pure
natural products has not been demonstrated.[10,11] With that in
mind, we report here a very efficient synthesis of the natural
product (a)-cuparenone (1), in which the two quaternary
centers are formed in the crystalline state with complete
stereocontrol (Scheme 2).

(a)-Cuparenone (1) is a crystalline compound and a
suitable candidate for a solid-to-solid photochemical reaction.
(S)-(+)-(a)-Cuparenone was first isolated from the wood of
the Mayur Pankhi in 1964[12] and (R)-(�)-(a)-cuparenone
from the liverwort Mannia fragrans in 1976.[13] With two
adjacent quaternary centers, one of which is stereogenic, (a)-
cuparenone has been one of the most sought-after targets to

test novel methodologies, thus providing a good standard for
comparison.[14] As a starting point, we prepared racemic
cyclohexanedione (� )-2 in four simple steps in 59.7% overall
yield from methyl 2-tolyl-acetate (3) (Scheme 3). Clear
prisms of (� )-2 (m.p. 63.0–65.5 8C) obtained from hexane
were suitable for photochemical studies.

Irradiation of (� )-2 in degassed 0.1m benzene solutions
with a medium-pressure Hg Hanovia lamp using a Pyrex filter
(l> 290 nm) gave (� )-(a)-cuparenone in 34% yield along
with several other products after 100% percent conversion.[15]

In contrast, irradiation of (� )-2 in powder form (20 mg) at
�20 8C yielded (� )-(a)-cuparenone as the only product at
70% conversion. Larger samples (0.1 g) conveniently irradi-
ated at ambient temperature as nanocrystalline suspen-
sions[16–18] provided (� )-a-cuparenone in 85% yield.

To prepare the enantiomerically pure natural products we
carried out a classical resolution of (� )-2 via the diastereo-

Scheme 1. Hexasubstituted acetones with radical-stabilizing substitu-
ents at both a carbons react photochemically in the crystalline state to
generate radical pairs that bond to form adjacent quaternary stereo-
genic centers in a highly stereospecific process.

Scheme 2. Retrosynthesis of (a)-cuparenone (1) by stereospecific
solid-state photodecarbonylation of diketone 2. The dotted line repre-
sents the reaction cavity; Ar=4-MeC6H4.

Scheme 3. a) KH, MeI, THF, 0 8C, 92%; b) LDA, ethyl vinyl ketone,
THF, 0 8C, 81%;c) Na, MeOH, reflux, 99%; d) KH, MeI, DMF, 75 8C,
81%.
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meric difluorodioxaborinane complexes of b-keto-(S)-(a)-
methylbenzylamide (7) (Scheme 4)[19] b-Ketoester (� )-5 was
obtained in 92% yield by selective C-acylation of (� )-2 with
methyl cyanoformate, and subsequent treatment with

BF3OEt2 gave difluorodioxaborinane (� )-6 in > 98% yield.
Reaction of (� )-6 with (�)-(S)-(a)-methylbenzylamine in
acetonitrile yielded 80% of diastereomers 7. Separation by
column chromatography (EtOAc/hexane 2:8) led to pure 7A
and 7B, with Rf values of 0.4 and 0.3, respectively. Crystal-
lization from ether gave 7A and 7B as colorless X-ray-quality
needles (224–227 8C) and platelike crystals (192–198 8C),
respectively.

Since we knew that the absolute configuration of the (a)-
methylbenzylamine enantiomer used is S, we could determine
by single-crystal X-ray diffraction analysis[20] that the quater-
nary carbon of 7A also has the S configuration (Figure 1).
With the (S,S)-7 configuration assigned to the less polar
diastereomer A, the configuration of the more polar isomer
was assigned as (S,R)-7. Optical rotation measurements
revealed [a]D

23 (c= 0.25) values of + 608 and �2378, for

(+)-(S,S)-7 and (�)-(S,R)-7, respectively. Circular dichroism
in CH2Cl2 displayed approximately opposite Cotton effects
with different intensities in the region of 220–350 nm (see the
Supporting Information).

Removal of the chiral auxiliary from (+)-(S,S)-7
exposed one of the limitations of solid-state photo-
chemistry. Samples of (�)-(S)-2 ([a]D

20 (c= 1)=
�358)[21] failed to crystallize under a wide variety of
experimental conditions, and solid-state irradiation
could not be carried out. Solution irradiation of (�)-
(S)-2, as expected, gave low yields of the desired product
with complete racemization. Nonetheless, the syntheses
of (+)- and (�)-(a)-cuparenone were completed by
taking advantage of the high melting points of the
ketoamide complexes 7. Parallel UV/Vis irradiation of
suspended nanocrystals of (+)-(S,S)-7 and (�)-(S,R)-7
(100 mg) in aqueous cetyltrimethylammonium bromide
(CTAB) solutions led to the clean formation of the (a)-
cuparenone ketoamide derivatives (+)-(S,S)-8 and (�)-
(S,R)-8 with 100% stereoselectivity in 80% yield
(Scheme 5).[22] Removal of the BF2 unit with NaOAc
in ethanol followed by amide hydrolysis and decarbox-
ylation gave the the two natural products each in 90%
yield. The optical rotation of the two final products
matched the values reported in the literature[23,24] and

the CD spectra display a perfect mirror-image relation with
maxima at 300 nm (see the Supporting Information).

Previous syntheses of (a)-cuparenone range from 3 to 15
steps for racemic samples and from 7 to 20 steps for the
enantiomerically enriched natural product (see the Support-
ing Information). The highest overall yields are 56% for the
racemic sample and 29% (96.5% ee) for (�)-(a)-cupare-
none.[14] Using a photochemical solid-to-solid reaction as the
key step, we report here the total synthesis of (� )-(a)-
cuparenone in four steps and 60% overall yield. For the
parallel synthesis of the two enantiomerically pure natural
products, five reactions and one diastereomeric separation
starting from (� )-2 led to (S)-(+)-1 and (R)-(�)-1 in 100% ee
and 52% total yield (26% of each pure enantiomer).

Scheme 4. a) LiHMDS, MeO(CO)CN, 92%; b) BF3OEt2, toluene, 100%;
c) (S)-(a)-methylbenzylamine, MeCN, 80%; d) silica gel chromatography
(EtOAc/hexane 2:8). LiHMDS= lithium hexamethyldisilylazide.

Figure 1. X-ray structure of the less polar diastereomer, 7A, shown to
have the absolute configuration (S,S)-7; ellipsoids at the 30% proba-
bility level.

Scheme 5. a) hn, suspension of nanocrystals in aq. CTAB solution,
80%; b) MeCO2Na, EtOH, 70 8C, >98%; c) 6.0m HCl, 100 8C, 90%.
CTAB= cetyltrimethylammonium bromide; MBA=methyl benzyl
amine.
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In conclusion, the photoinduced decarbonylation of
crystalline hexasubstituted ketones offers a very simple
approach for the stereospecific synthesis of natural products
with adjacent stereogenic quaternary centers. With higher
yields, fewer steps, ideal selectivities, and easy scaleup, solid-
to-solid reactions may have a strong impact on natural
product synthesis and green chemistry.
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