

Available online at www.sciencedirect.com

Bioorganic & Medicinal Chemistry Letters

Bioorganic & Medicinal Chemistry Letters 18 (2008) 808-811

A novel bicyclic hexapeptide, RA-XVIII, from *Rubia cordifolia*: Structure, semi-synthesis, and cytotoxicity

Ji-Ean Lee, Yukio Hitotsuyanagi, Ik-Hwi Kim, Tomoyo Hasuda and Koichi Takeya*

School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan

Received 17 September 2007; revised 2 November 2007; accepted 9 November 2007 Available online 17 November 2007

Abstract—A new bicyclic peptide of RA-series, RA-XVIII (3), was isolated from the roots of *Rubia cordifolia* L. Its structure was established to be a hydroxylated derivative of RA-VII by the semi-synthesis of 3 from deoxybouvardin, and its cytotoxicity against P-388 cells was $0.012 \mu g/mL$.

© 2007 Elsevier Ltd. All rights reserved.

Natural antitumor bicyclic hexapeptides, RA-VII $(1)^1$ and deoxybouvardin (2),² and their congeners,³ characterized by unique structural features of having a 14-membered strained cycloisodityrosine unit, have attracted considerable attention recently (Fig. 1). They are provided with unique biological actions including inhibition of protein synthesis through interaction with eukaryotic ribosomes,^{4,5} and peptide 1 was recently shown to cause conformational changes of F-actin and stabilization of actin filaments to induce G₂ arrest.⁶ As part of our series of studies on the RA-series peptides from *Rubia cordifolia* $L_{.,7}^{7}$ the present paper describes the isolation and structure elucidation of a new peptide, RA-XVIII (3). Semi-syntheses of 3 and its analogues from 2 and 1, and the cytotoxicity of representative analogues of this series against P-388 leukemia cells are also described.

Peptide **3** was prepared from a chloroform–methanol (10:1)-soluble portion of a methanol extract of the dried roots of *R. cordifolia* (55 kg), by a series of column chromatography using silica gel, alumina, and then aminopropyl-bonded silica gel eluting with a chloroform–methanol mixture. The resulting RAs-rich fraction obtained after removal of the solvent was crystallized from methanol to give a crude crystalline RA mixture, which was subjected to separation by reversed-phase HPLC (ODS) to afford RA-XVIII (3)⁸ [4.8 mg, 8.7×10^{-60} /6,

RA-VII (1): $R^1 = Me$, $R^2 = H$ deoxybouvardin (2): $R^1 = R^2 = H$ RA-XVIII (3): $R^1 = Me$, $R^2 = OH$

Figure 1.

amorphous solid, $[\alpha]_D^{25}$ –222 (*c* 0.13, MeOH)]. The molecular formula C₄₁H₅₀N₆O₁₀ of **3** was obtained from the [M+H]⁺ ion, *m*/*z* 787.3677 (calcd for C₄₁H₅₁N₆O₁₀, 787.3667), in HR-ESI-MS. The ¹H and ¹³C NMR spectra of **3** in CDCl₃ (Table 1) showed signals typical of an RA-series peptide, demonstrating the presence of two conformers in a ratio of 89:11.^{9,10} The structure of **3** was determined by using the resonances caused by the major conformer, which included signals for three secondary methyl groups (δ_{H}/δ_{C} 1.11/18.5, 1.30/20.7, 1.35/ 16.6), three *N*-methyl groups (δ_{H}/δ_{C} 2.69/29.3, 2.86/ 39.8, 3.11/30.5), two *O*-methyl groups (δ_{H}/δ_{C} 3.79/55.3, 4.09/61.4), six *N*-substituted methines (δ_{H}/δ_{C} 3.58/68.4, 4.36/47.9, 4.51/57.3, 4.74/46.4, 4.84/44.6, 5.39/54.2), a

Keywords: RA-XVIII; Deoxybouvardin; Cytotoxicity; Rubia cordifolia; Synthesis.

^{*} Corresponding author. Tel.: +81 42 676 3007; fax: +81 42 677 1436; e-mail: takeyak@ps.toyaku.ac.jp

⁰⁹⁶⁰⁻⁸⁹⁴X/\$ - see front matter @ 2007 Elsevier Ltd. All rights reserved. doi:10.1016/j.bmcl.2007.11.030

Position		$\delta_{ m H}{}^{ m a}$	$\delta_{\rm C}{}^{\rm b}$	Position		$\delta_{ m H}{}^{ m a}$	$\delta_{C}{}^{b}$
D-Ala-1	α	4.36 (qd, 7.0, 6.6)	47.9		βa	2.63 (dd, 11.4, 3.1)	37.0
	β	1.30 (d, 6.8, 3H)	20.7		βЬ	3.67 (t, 11.4)	
	C=O		172.3		γ		135.4
	NH	6.44 (d, 6.6)			δa	7.25 (dd, 8.4, 2.2)	132.7
Ala-2	α	4.84 (dq, 8.4, 7.0)	44.6		δb	7.41 (dd, 8.4, 2.2)	131.0
	β	1.35 (d, 7.0, 3H)	16.6		εа	6.85 (dd, 8.4, 2.5)	124.1
	C=O		172.6		εb	7.18 (dd, 8.4, 2.5)	125.8
	NH	6.35 (d, 8.4)			ζ		158.0
Tyr-3	α	3.58 (dd, 10.6, 5.0)	68.4		C=O		169.2
	βa	3.38 (dd, 14.1, 5.0)	32.7		NMe	3.11 (s, 3H)	30.5
	βb	3.34 (dd, 14.1, 10.6)		Tyr-6	α	4.51 (dd, 11.9, 3.7)	57.3
	γ		130.7		βa	3.01 (dd, 18.2, 11.9)	35.9
	δ	7.05 (d-like, 8.6, 2H)	130.2 ^c		βb	2.88 (dd, 18.2, 3.7)	
	3	6.83 (d-like, 8.6, 2H)	114.1 [°]		γ		131.2
	ζ		158.4		δa	6.24 (d, 1.9)	107.5
	C=O		168.0		δb	3.89 (d, 1.9)	106.0
	NMe	2.86 (s, 3H)	39.8		εа		149.4
	OMe	3.79 (s, 3H)	55.3		εb		155.9
Ala-4	α	4.74 (dq, 7.7, 6.6)	46.4		ζ		133.9
	β	1.11 (d, 6.6, 3H)	18.5		C=O		170.6
	C=O		171.8		NMe	2.69 (s, 3H)	29.3
	NH	6.71 (d, 7.7)			OMe	4.09 (s, 3H)	61.4
Tyr-5	α	5.39 (dd, 11.4, 3.1)	54.2		OH	5.91 (br s)	

Table 1. NMR data for the major conformer of RA-XVIII (3) in CDCl₃ at 300 K

^{a 1}H spectrum recorded at 500 MHz referenced to residual CHCl₃ (7.26 ppm); J-values given in Hz in parentheses.

^{b 13}C spectrum recorded at 125 MHz referenced to CDCl₃ (77.03 ppm).

° 2C.

1,4-substituted benzene ring ($\delta_{\rm H}/\delta_{\rm C}$ 6.83/114.1 × 2, 7.05/ 130.2×2), two aromatic rings, methylenes of the three tyrosine residues ($\delta_{\rm C}$ 32.7, 35.9, 37.0), six amide carbonyl groups ($\delta_{\rm C}$ 168.0, 169.2, 170.6, 171.8, 172.3, 172.6), and three amide protons ($\delta_{\rm H}$ 6.35, 6.44, 6.71). The ¹H NMR data of 3 were very similar to those of 1^{10} except that the H-ba signal of Tyr-6 in 3 was at $\delta_{\rm H}$ 6.24 as a *meta*-coupled doublet (J = 1.9 Hz), whereas that in 1 was at $\delta_{\rm H}$ 6.57 as a doublet of doublets (J = 8.3, 2.0 Hz). Consequently, **3** was suggested to be an analogue of 1 with a modified aromatic ring of Tyr-6. The molecular formula of 3 showed that it was equivalent to that of 1 with one additional oxygen. The additional oxygen atom in 3 indicated the presence of a hydroxyl group in 3; the proton signal of which was observed as a broad singlet at $\delta_{\rm H}$ 5.91 in the ¹H NMR spectrum. HMBC correlations from the hydroxyl proton to C-δa, C-εa, and C-ζ (Fig. 2) placed this hydroxyl group at the *ea*-position of Tyr-6 in 3, which was verified by the chemical shift value of the C- ϵ a signal, $\delta_{\rm C}$ 149.4. Therefore, 3 was concluded to be an analogue of 1 with

a hydroxyl group at the ϵ a-position of Tyr-6, which was further confirmed by the semi-synthesis of **3** from **2**.

Semi-synthesis of 3 from 2 was performed as shown in Scheme 1. Thus, treatment of 2 with nitric acid and sulfuric acid in a chloroform-acetic acid mixture afforded nitro compound 4.¹¹ The position of the nitro group was confirmed by observation of the H- δa of Tyr-6 as a singlet signal (δ_H 7.46) which showed an NOE correlation with H- βa . *O*-Methylation of 4 with (trimethylsilyl)diazomethane gave methyl ether 5, which gave, by subsequent catalytic hydrogenation over Pd/C, amine 6. Amine 6 was then converted into a diazonium intermediate, which, on treatment with copper(II) nitrate and copper(I) oxide in an aqueous media,¹² produced a compound, $[\alpha]_D^{25} -223$ (*c* 0.12, MeOH), which was found to be identical to natural 3 by comparison of their optical rotations, ¹H and ¹³C NMR, and mass spectra. Accordingly, the absolute structure of 3 was determined to be as shown in Figure 1.

In this series of peptides, hydroxylation of the Tyr-6 aromatic ring apparently increases the electron density of this ring and changes the polarity of the molecules, which may affect their biological activities. To investigate such a positional effect of the hydroxyl group on the cytotoxic activity in the peptides of this series, an isomeric δ -hydroxide, 7, was prepared from 1 by using a similar protocol employed in the synthesis of 3 from 2 (Scheme 2). Nitration of 1 gave nitro compound 8, whose nitro group was confirmed to be at the δ a position of Tyr-6 by observation of H- ϵ a of Tyr-6 as a singlet signal ($\delta_{\rm H}$ 7.74) and an NOE correlation of this signal with the methoxyl proton of Tyr-6 ($\delta_{\rm H}$ 4.03).¹¹

Scheme 1.

Then, 8 was subjected to catalytic hydrogenation to yield amine 9, which was then converted into phenol 7.

The present new peptide **3**, its analogues **4**–**9**, and as references, **1** and **2**, were evaluated for their cytotoxicity against P-388 leukemia cells. The results are summarized in Table 2. The IC₅₀ value of **3** was $0.012 \mu g/mL$, indicating that its cytotoxicity was one-fourth of that of **1**, though slightly higher than that of **2**. Analogues **4**–**9** were all less cytotoxic than peptide **1**, thus suggesting that introduction of a hydroxyl, a nitro, or an amino group at the δa or the ϵa position of Tyr-6 causes a decrease in the cytotoxic activity. As regards the effect of a substituent at different positions of Tyr-6, introduction of a substituent at the δa position seemed to decrease the activity more than that at the ϵa position: the activities of **3**, **5**, and **6** tended to be higher than those of the corresponding analogues **7**, **8**, and **9**, respectively.

Table 2. Cytotoxicity of RA-VII (1), deoxybouvardin (2), RA-XVIII(3), and their analogues 4–9 against P-388 leukemia cells

Compound	IC ₅₀ (µg/mL)		
1	0.0030		
2	0.014		
3	0.012		
4	0.014		
5	0.010		
6	0.0071		
7	0.093		
8	0.056		
9	0.70		

RA-XVIII (3) is a natural peptide of the RA-series in which the a position of Tyr-6 is hydroxylated. Since cytotoxic peptides 3 and 6, having an additional hydroxyl or amino group on the Tyr-6 aromatic ring, are readily prepared from 2, the most accessible congener in nature, these peptides may be expected to be useful starting materials for producing new modified RA-series peptides.

References and notes

- Itokawa, H.; Takeya, K.; Mihara, K.; Mori, N.; Hamanaka, T.; Sonobe, T.; Iitaka, Y. *Chem. Pharm. Bull.* 1983, *31*, 1424.
- Jolad, S. D.; Hoffman, J. J.; Torrance, S. J.; Wiedhopf, R. M.; Cole, J. R.; Arora, S. K.; Bates, R. B.; Gargiulo, R. L.; Kriek, G. R. J. Am. Chem. Soc. 1977, 99, 8040.
- Itokawa, H.; Takeya, K.; Hitotsuyanagi, Y.; Morita, H. In *The Alkaloids*; Cordell, G. A., Ed.; Academic Press: NY, 1997; Vol. 49, p 301.
- Zalacaín, M.; Zaera, E.; Vázquez, D.; Jiménez, A. FEBS Lett. 1982, 148, 95.
- 5. Sirdeshpande, B. V.; Toogood, P. L. *Bioorg. Chem.* 1995, 23, 460.
- Fujiwara, H.; Saito, S.; Hitotsuyanagi, Y.; Takeya, K.; Ohizumi, Y. Cancer Lett. 2004, 209, 223.

- 7. Hitotsuyanagi, Y.; Ishikawa, H.; Hasuda, T.; Takeya, K. *Tetrahedron Lett.* 2004, 45, 935.
- IR v_{max} (film) cm⁻¹: 3297, 2926, 1660, 1635, 1513, 1259, 1094, 1034.
- Bates, R. B.; Cole, J. R.; Hoffmann, J. J.; Kriek, G. R.; Linz, G. S.; Torrance, S. J. J. Am. Chem. Soc. 1983, 105, 1343.
- Morita, H.; Kondo, K.; Hitotsuyanagi, Y.; Takeya, K.; Itokawa, H.; Tomioka, N.; Itai, A.; Iitaka, Y. *Tetrahedron* 1991, 47, 2757.
- 11. The location of the nitro group in the resulting nitration reaction product is apparently controlled by the nature of the substituent at the ζ position of Tyr-6. In 2, the hydroxyl group at ζ having a strong electron-donating effect causes the nitro group to be introduced to εa to produce an ortho-nitrated compound, 4, whereas, in the case of 1, the methoxyl group at ζ sterically inhibits the introduction of a nitro group to the corresponding position, so that the nitro group is introduced to the less-hindered δa position, which is also activated by the diphenyl ether oxygen, and the nitration product is 8.
- Boger, D. L.; Zhou, J.; Borzilleri, R. M.; Nukui, S.; Castle, S. L. J. Org. Chem. 1997, 62, 2054.