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ABSTRACT: Recent research has highlighted the key role played by the
electron affinity of the active metal-nitrene/imido oxidant as the driving
force in nitrene additions to olefins to afford valuable aziridines. The
present work showcases a library of Co(II) reagents that, unlike the
previously examined Mn(II) and Fe(II) analogues, demonstrate reactivity
trends in olefin aziridinations that cannot be solely explained by the
electron affinity criterion. A family of Co(II) catalysts (17 members) has
been synthesized with the assistance of a trisphenylamido-amine scaffold
decorated by various alkyl, aryl, and acyl groups attached to the equatorial
amidos. Single-crystal X-ray diffraction analysis, cyclic voltammetry and
EPR data reveal that the high-spin Co(II) sites (S = 3/2) feature a minimal
[N3N] coordination and span a range of 1.4 V in redox potentials.
Surprisingly, the Co(II)-mediated aziridination of styrene demonstrates
reactivity patterns that deviate from those anticipated by the relevant
electrophilicities of the putative metal nitrenes. The representative L4Co catalyst (−COCMe3 arm) is operating faster than the L8Co
analogue (−COCF3 arm), in spite of diminished metal-nitrene electrophilicity. Mechanistic data (Hammett plots, KIE, stereocontrol
studies) reveal that although both reagents follow a two-step reactivity path (turnover-limiting metal-nitrene addition to the Cb atom
of styrene, followed by product-determining ring-closure), the L4Co catalyst is associated with lower energy barriers in both steps.
DFT calculations indicate that the putative [L4Co]NTs and [L8Co]NTs species are electronically distinct, inasmuch as the former
exhibits a single-electron oxidized ligand arm. In addition, DFT calculations suggest that including London dispersion corrections for
L4Co (due to the polarizability of the tert-Bu substituent) can provide significant stabilization of the turnover-limiting transition
state. This study highlights how small ligand modifications can generate stereoelectronic variants that in certain cases are even
capable of overriding the preponderance of the metal-nitrene electrophilicity as a driving force.

■ INTRODUCTION

The role of aziridines1 as intermediates and end products of
synthetic and biological chemistry is hard to overstate. Not only
do aziridines afford avenues for further structural development
by taking advantage of the energetic content and stereochemical
disposition of their strained three-atom ring (ring opening,
expansion, or rearrangement),2 but also they constitute valuable
functionalities in the framework of several natural products
possessing antibiotic or antineoplastic activities.3 In addition to
the central role exercised by aziridines as fine chemicals and
pharmaceutical agents,4 their contribution to the chemistry of
materials has been increasingly recognized,5 especially as key
entities for the development and postmodification of polymeric
scaffolds.

Synthetic protocols for the generation of aziridines abound,
but largely rely on threemajor methodologies. The cyclization of
1,2-amino precursors constitutes a traditional approach that has
been more recently complemented by addition of either C1

sources to imines or electrophilic N1 donors to alkenes.6 The
latter “C2 + N1” addition is extensively implemented due to its
operational simplicity and availability of a wide range of suitable
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substrates and catalysts. The N1 donors encompass a variety of
nitrene/nitrenoid precursor oxidants such as iminoiodanes
(ArINR),7 haloamines (RNNaX, X = Cl, Br),8 O/N-
substituted hydroxylamines and N-tosyloxycarbamates (RN-
(X)−OR′, X = H, leaving group)9 or atom-economical organic
azides (RN3).

10 As opposed to oxo-transfer chemistry, the
corresponding nitrene/nitrenoid transfer relies significantly on
the choice of the attendant R group to control the electro-
philicity of the active moiety and provide activated (R = SO2R,
CO2R, COR, carbamoyl, sulfamoyl) or nonactivated aziridines
(R = H, alkyl, aryl, silyl) with differential reactivity.11

A wide range of catalysts has been explored to influence
reactivity and selectivity outcomes in nitrene transfer to alkenes,
including several organocatalytic12 and metal-mediated pro-
cesses.13 In the latter case, the presumptive and rather elusive
metal-nitrene (MNR) active species are entities with rich and
variable stereoelectronic attributes, inherent and/or ligand
induced, whose operation vis-a-̀vis olefinic substrates is a matter
of intense investigation. The variety of transition metals
employed, both from the first-row (Mn, Fe, Co, Ni, Cu)14−22

and from the heavier platinum-group23−25 and coinage
elements,26,27 coupled with a range of ancillary ligand frame-
works (e.g., porphyrinoids, salens, bis-oxazolines, tetracarbox-
ylate paddlewheels, trispyrazolyl-borates/methanes, polypyr-
idines) is a testament to the vigorous activity in this field and that
of the closely related C−H bond amination reactions.28

Among the late 3d transition elements, the case of cobalt is
most intriguing, inasmuch as isolable or even putative CoNR
units have been invoked with a variety of oxidation states (from
II to V), electronic ground-state spins (S = 0, 1/2, 1, 3/2, 2), and
coordination numbers (from 2 to 5).29 The most common
configuration is that of diamagnetic Co(III) imidos (S = 0),30

mostly supported by C3 or C2 symmetric ligands. In a handful of
cases, open-shell spin-states were observed for Co(III) imidos,
as for instance with (trispyrazolylborato)CoIII(NAd) (S = 1, atT
> 280 K),31 (dipyrrin)CoIII(NR) (S = 1 for R = Mes; S = 0 or 0
→ 2 transition, for R = tBu, 1-Ad, other alkyls),32

[(hmds)2Co
III(NtBu)]− (S = 1; hmds = N(SiMe3)2),

33 and
possibly bimetallic Zr(μ-NMes)CoIII(NMes) (S = 0 → 2
transition, near room temperature).34 None of these com-
pounds have been reported to mediate nitrene-transfer to
alkenes. Observable reactivity includes (i) nitrene-transfer to
carbon monoxide;30g,31a,35 (ii) insertion of nitrene into ligand-
derived carbene residues;30e (iii) formal hydrogen-atom
abstraction from a tBu or Mes ligand moiety by open-shell
CoNR, presumably generating an amidoCo−NHRunit and a
carbon centered radical; the latter can then recombine with the
amido,31a dimerize,31b or generate a Co−C bond;31b,32a (iv)
intramolecular C−H bond insertion into alkyl azides (source of
imido), mediated by (dipyrrin)CoIII(NR), to generate sub-
stituted N-heterocycles;32b,c and (v) a rare instance of
intermolecular hydrogen-atom abstraction from C−H bonds
of various substrates with BDEC−H ≤ 92 kcal mol−1 by
[(hmds)2Co

III(NtBu)]−,33 leading to the corresponding Co(II)
amido; the amido can then react with another equivalent of
substrate (C−H) to perform either proton transfer (frequently
with the concomitant formation of CoII−C organometallics) or
formal hydrogen-atom abstraction via stepwise proton/electron
transfer or direct HAT, giving rise to Co(I) and substrate
dehydrogenation product. In several instances noted above, the
carbophilic character of cobalt is notable as a product-
determining factor.

Cobalt(II) imidos are more recent additions to the repertoire
of cobalt reagents, and encompass both high-spin (S = 3/2)36

and low-spin (S = 1/2)37 cases as two- and four-coordinate
compounds, respectively. The high-spin examples have been
reported to perform nitrene-transfer to ethylene to afford RN
CHCH3, presumably due to a [2π + 2π] activation mode.
Similarly, certain C(sp)−H and Si−H bonds are activated not
via H atom abstraction, but by means of [2π + 2σ]
interactions.36b On the other hand, the low-spin Co(II) imidos
are unreactive versus alkenes, although they engage in nitrene-
transfer and/or nitrene-exchange with O/S with respect to
substrates such as CO, PMe3, PhCHO, and CS2.

37 Finally, two
examples of high-valent Co(IV) and Co(V) bis-imido
complexes ([IMes]Co(NDipp)2]

0/+), possessing low-spin
ground states of S = 1/2 and 0, respectively, proved to be
rather unreactive.38 The open-shell Co(IV) congener is the only
one that exhibits intramolecular nitrene C−H insertion into the
o-Me group of the Mes residue, possibly via an ortho-cobaltation
intermediate (Co−C).29
Whereas the catalytic formation of new C−N bonds by means

of the isolable cobalt imidos noted above is only rarely observed,
the advent of a library of CoII(Por) complexes that give rise to
CoIII−nitrenoid radicals [(Por)CoIII−•NR] or [(Por•)CoIII−
(•NR)2] has provided numerous instances of highly effective
catalytic systems for the stereo-, chemo-, and site-selective
aziridination of alkenes and amination of C−Hbonds.19 Starting
with Co(TPP), and electron-deficient analogues, several
generations of CoII(Por) reagents with richly decorated
porphyrins have been introduced in the past two decades to
facilitate the activation of various organic azides, leading to the
generation of well characterized low-spin (S = 1/2) CoIII−•NR
moieties, with spin density largely localized on the N atom.19f,39

These relatively long-lived CoIII−nitrene-radical intermediates
owe their stability to hydrogen-bonding interactions of the
nitrene moieties with porphyrin-appended amido residues
(−NHCOR*), which can further introduce and metal-orient
chiral auxiliaries via their R* functionality in D2-symmetric
overall geometries. Detailed theoretical and experimental
studies19f,39 have established that the mode of operation of
[(Por)CoIII−•NR] metalloradicals vis-a-̀vis CC or C−H
bonds consists of a two-step process: initial formation of a new
N−Cbondwith alkenes and relocation of the spin density on the
distal carbon atom (CoIII−N(R)−C−•C−) (or formation of a
CoIII−NHR amido and a substrate-bound radical via hydrogen-
atom abstraction from a C−H bond), followed by an essentially
barrierless collapse of the carbon-centered radical with the N
atom to generate the product of aziridination (or amination)
along with CoII(Por).
More recently, the structurally related [CoIII(TAMLred)]−

and [CoIII(TAMLsq)] compounds, featuring the tetraamido
macrocyclic ligand TAML in its intact reduced form TAMLred

and one-electron oxidized variant TAMLsq (sometimes denoted
as TAML+•), have been shown to give rise to [CoIII(TAMLq)-
(•NR)2]

− (S = 1) and [CoIII(TAMLq)(•NR)] (S = 1/2),
respectively (TAMLq = doubly oxidized, diamagnetic ligand;
CoIII site is low-spin, S = 0).40 These cobalt nitrenes have
emerged as capable catalysts for the aziridination of largely
styrene substrates by imidoiodinanes (PhINNs, PhINTs,
PhINTces).41 Their mode of operation is considered to be
unique, inasmuch as the turnover-limiting, initial N−C bond
formation with styrenes features an asynchronous transition
state, encompassing a partial electron-transfer to form a styrenyl
radical cation, in turn undergoing a nucleophilic attack by the
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nitrene lone pair (see below for more details). This initial
charge-transfer has also emerged as a central component of the
operation of iron(IV) imido species developed by Latour and
co-workers for alkene aziridinations, further underscoring the
importance of the electron affinity of the metal nitrene as a
commonly encountered driving force.42

Finally, of great interest are recently reported Co(II)
organoazides,43 which either thermally or photolytically can
extrude N2 to give rise to nitrenoids best described as iminyl
[CoIII−•NR] units (R = aryl, alkyl). Although the electronics of
these fleeting intermediates are not yet known, crystal structures
of such species (R = alkyl) have been determined following N2
expulsion from single crystals of metal azides in the solid state.
For R = aryl, the cobalt(II) organoazide can promote nitrene-
transfer by means of unisolable [CoIII−•NR], both intra-
molecularly ([3 + 2] annulation) and intermolecularly (C−H
allylic amination or styrene aziridination in modest yields). The
reactivity of the Co(II) aliphatic azides is more complex and
includes (i) α-H atom abstraction via the incipient
[CoIII−•NCH2R] to generate the imine (RCHNH), if strong
δ-C−H bonds (sec, prim) are present; (ii) δ-H atom abstraction
and amination of relatively weaker δ-C−H bonds (benzylic,
tertiary) by the cobalt alkyl azide itself (initial N2 extrusion is not
needed), leading to substituted pyrrolidines; and (iii) intra-
molecular 1,3-dipolar cycloaddition of cobalt-bound CH2
CH(CH2)4N3 to afford 1,2,3-dihydrotriazole.
In the present work, we examine a library of high-spin Co(II)

reagents (S = 3/2), supported by a modular trisphenylamido-
amine ligand framework, giving rise to a weak equatorial field.
Previous DFT calculations44 on one member of this library of
reagents indicated that exposure to a nitrene source (PhI =NTs)
generates a Co(III)−nitrene radical (CoIII−•NTs) with a high-
spin ground state (S = 5/2). The corresponding doublet and
quartet [Co]NTs states lie slightly higher than the sextet byΔG
values of 0.4 and 1.5 kcal mol−1, respectively. The computed spin
density for the S = 5/2 state places∼1.1 unpaired electron on the
nitrene N atom, and ∼3.3 unpaired electrons on Co, with the
remaining spin density being distributed to other atoms.
Similarly to the low-spin porphyrin-supported CoIII−nitrene-
radical (S = 1/2) noted above, the high-spin congener is capable
of performing alkene aziridinations in a two-step process
(successive formation of two N−C bonds). Remarkably, the
computed transition-state barrier (ΔG‡ = 23.4 kcal mol−1 vs
CoIII−•NTs/styrene) for the rate-determining, initial Cβ···NTs

bond-forming step of the high-spin system is very similar to that
reported for the corresponding low-spin Co(Por) (ΔG‡ = 24.1
kcal mol−1) or Co(AmidoPor) (ΔG‡ = 22.8 kcal mol−1) with
respect to CoIII−•NSO2Ph/styrene.

19f The present work
significantly enlarges the scope of high-spin Co(II) compounds
as nitrene-transfer reagents, and provides insights in their
operational characteristics, not only vis-a-̀vis the reported low-
spin (Por)Co(II) paradigms, but also in comparison with the
previously examined libraries of Mn(II) and Fe(II) reagents,
supported by the same trisphenylamido-amine ligand frame-
work.44 Whereas the nitrene-transfer reactivity of the Mn(II)
reagents in alkene aziridinations largely depends on the
electrophilicity of the presumptive MnIII−•NR (S = 3/2)
moiety, underscoring the role of the electron affinity of the metal
nitrene as a dominant factor, the reactivity of the corresponding,
more reactive, Co(II) reagents is affected by additional subtle
electronic and steric factors. These most likely arise from the
tighter disposition of the reaction cavity, resulting in ligand-
coordination flexibility, electronic rearrangement, and secon-
dary stabilizing interactions. In this publication we show that
even an otherwise small change in ligand substitution can have a
significant effect on nitrene-transfer reactivity in aziridination
reactions, occasionally overriding the preponderance of the
metal-nitrene electrophilicity as a driving force.

■ RESULTS AND DISCUSSION
Synthesis and Characterization of New Ligands and

Co(II) Complexes. The family of trisphenylamido-amine
ligands (L1H3−L17H3) employed in this study is shown in
Figure 1. Themajority of these ligands (L1H3−L15H3) have been
used and reported in previous studies.44−48 They are all
derivatives of the common 2,2′,2″-triaminotriphenylamine
framework,45 featuring carbonaceous arm substituents (alkyl,
aryl acyl). Ligand L16H3 is prepared by methylation of
deprotonated (KH) 2,2′,2″-triaminotriphenylamine by MeI in
THF, and ligand L17H3 is derived via condensation of the same
triamine with the corresponding chiral acyl chloride in the
presence of Et3N in dichloromethane. The solid-state structures
of these two new ligands (Figure S1) are indicative of their
favorable preorganization for metalation, in a cavity that is
buttressed by alkyl and acyl arms, respectively.
CoII complexes were synthesized with all ligands, by reacting

the deprotonated (KH) ligand with anhydrous beads of CoCl2
in THF (alkyl and aryl armed ligands) or N,N-dimethylaceta-

Figure 1. Ligands employed in the present study.
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mide (DMA) (acyl armed ligands). A subset of CoII compounds,
namely L3Co (3), L5Co (5), L8Co (8a), L9Co (9), L10Co (10),
and L13Co (13), has been previously reported in a study that
examined the use of these catalysts in controlled radical
polymerization of olefins.48 In addition, L8Co (8b) has been
explored in conjunction with the L8 Mn and L8Fe congeners,
toward establishing metal-dependent trends in catalytic nitrene
transfer to olefins.44 Figure 2 depicts representations of the

minimal coordination site of each CoII site, derived from single-
crystal X-ray diffraction data. In all cases the ligand coordinates
in a trigonal pyramidal [N3(amido)Namine] mode, exhibiting
various degrees of distortion, although in two instances (7,
17) the coordination to the axial Namine residue can be best
described as a long contact. Moreover, compound 11 features a
noncoordinating amido residue that has been protonated. The
dominant four-coordinate [N3N] pattern is retained as the sole

Figure 2. Minimal coordination of CoII compounds with ligands L1−L17 explored in this study.
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Figure 3. ORTEP diagrams (from left to right) of {[K(L4)CoII]·Diethyl Ether}n (4), [K(MeCN)(L6)CoII−NCMe]·2MeCN (6), [K2(DMA)4]-
[[K(L7)2Co

II
2]2·2DMA (7), [K2(DMA)3(L

8)CoII]2 (8c), [K(DMA)(L14)CoII]·DMA (14), [K(THF)3(L
15)CoII]·THF (15), and [K(THF)K-

(L17)2Co
II
2]2·3Pentane (17), drawn with 40% thermal ellipsoids. Hydrogen atoms are omitted for clarity. Selective interatomic distances (Å) and

angles (deg): 4, Co(1)−N(1) = 2.151(11), Co(1)−N(2) = 1.986(6), Co(1)−[N(2), N(2), N(2)] = 0.32(2) (distance of Co from mean plane) Å,
N(2)−Co(1)−N(2) = 117.48(11), N(2)−Co(1)−N(1) = 80.8(2); 6, Co(1)−N(1) = 2.235(3), Co(1)−N(2) = 2.046(4), Co(1)−N(3) = 2.049(4),
Co(1)−N(4) = 2.053(4), Co(1)−N(5) = 2.063(4), Co(1)−[N(2), N(3), N(4)] = 0.48(2) (distance of Co frommean plane), N(2)−Co(1)−N(4) =
115.18(15), N(2)−Co(1)−N(3) = 117.17(15), N(3)−Co(1)−N(4) = 111.69(15), N(2)−Co(1)−N(1) = 76.70(14), N(4)−Co(1)−N(1) =
76.49(14), N(3)−Co(1)−N(1) = 76.15(14), N(3)−Co(1)−N(5) = 103.24(15), N(2)−Co(1)−N(5) = 104.55(14), N(4)−Co(1)−N(5) =
102.81(15), N(1)−Co(1)−N(5) = 178.75(14); 7, Co(1)−N(1) = 2.463(4), Co(1)−N(2) = 2.053(4), Co(1)−N(3) = 2.054(5), Co(1)−N(4) =
2.054(4), Co(1)−O(6) = 1.975(4), Co(1)−[N(2), N(3), N(4)] = 0.61(2) (distance of Co from mean plane), Co(2)−N(5) = 2.517(5), Co(2)−
N(6) = 2.081(5), Co(2)−N(7) = 2.033(5), Co(2)−N(8) = 2.069(5), Co(2)−O(3) = 1.984(4), Co(2)−[N(6), N(7), N(8)] = 0.67(2) (distance of
Co from mean plane), N(2)−Co(1)−N(4) = 109.51(18), N(2)−Co(1)−N(3) = 113.66(17), N(3)−Co(1)−N(4) = 111.52(18), N(2)−Co(1)−
N(1) = 73.14(16), N(4)−Co(1)−N(1) = 73.24(16), N(3)−Co(1)−N(1) = 71.83(16), N(3)−Co(1)−O(6) = 103.19(17), N(2)−Co(1)−O(6) =
106.85(17), N(4)−Co(1)−O(6) = 111.92(16), N(1)−Co(1)−O(6) = 174.16(15), N(6)−Co(2)−N(7) = 111.14(19), N(6)−Co(2)−N(8) =
112.01(19), N(7)−Co(2)−N(8) = 106.34(19), N(6)−Co(2)−N(5) = 70.48(19), N(7)−Co(2)−N(5) = 70.69(16), N(8)−Co(2)−N(5) =
71.42(17), N(6)−Co(2)−O(3) = 105.77(19), N(7)−Co(2)−O(3) = 105.15(18), N(8)−Co(2)−O(3) = 116.27(17), N(5)−Co(2)−O(3) =
172.25(16); 8c, Co(1)−N(1) = 2.1422(13), Co(1)−N(2) = 1.9941(14), Co(1)−N(3) = 1.9899(14), Co(1)−N(4) = 1.9872(13), Co(1)−[N(2),
N(3), N(4)] = 0.306(4) (distance of Co from mean plane), K(1)−O(1) = 2.7298(14), N(2)−Co(1)−N(4) = 114.79(6), N(2)−Co(1)−N(3) =
118.04(6), N(3)−Co(1)−N(4) = 120.18(6), N(2)−Co(1)−N(1) = 80.83(5), N(4)−Co(1)−N(1) = 81.54(5), N(3)−Co(1)−N(1) = 81.06(5); 14,
Co(1)−N(1) = 2.224(3), Co(1)−N(2) = 2.018(4), Co(1)−N(3) = 2.031(4), Co(1)−N(4) = 2.021(4), Co(1)−O(3) = 2.162(3), Co(1)−[N(2),
N(3), N(4)] = 0.42(1) (distance of Co from mean plane), N(2)−Co(1)−N(4) = 110.16(14), N(2)−Co(1)−N(3) = 121.11(15), N(3)−Co(1)−
N(4) = 115.82(15), N(2)−Co(1)−N(1) = 76.31(14), N(4)−Co(1)−N(1) = 78.82(13), N(3)−Co(1)−N(1) = 78.58(14), N(3)−Co(1)−O(3) =
106.07(14), N(2)−Co(1)−O(3) = 91.35(13), N(4)−Co(1)−O(3) = 108.68(13), N(1)−Co(1)−O(3) = 167.33(12); 15, Co(1)−N(1) =
2.337(17), Co(1)−N(2) = 2.041(17), Co(1)−N(3) = 2.048(18), Co(1)−N(4) = 2.033(17), Co(1)−O(4) = 2.405(13), Co(1)−O(6) = 2.302(14),
Co(1)−[N(2), N(3), N(4)] = 0.53(2) (distance of Co from mean plane), N(2)−Co(1)−N(4) = 103.6(7), N(2)−Co(1)−N(3) = 118.1(7), N(3)−
Co(1)−N(4) = 117.9(7), N(2)−Co(1)−N(1) = 74.3(6), N(4)−Co(1)−N(1) = 76.4(7), N(3)−Co(1)−N(1) = 73.5(6), N(3)−Co(1)−O(6) =
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ligand field of seven CoII compounds (4, 5, 8a, 8c, 9, 10, 12).
Additional elements of metal coordination, essentially located
trans to the axial Namine residue, are observed with all other
compounds, and include solvent moieties, especially for
compounds crystallized from MeCN (3, 6, 13) and THF
(16), as well as carbonyl units (−C(R)O−CoII) deriving
from acyl residues belonging to the ligand (7, 14, 17). In a single
case (15), a six-coordinate CoII site arises from the presence of
two ligand-derived ether residues in the metal coordination
sphere, in addition to the usual [N3N] framework. Importantly,
most structures are polymeric, largely due to an intricate
network of intermolecular interactions generated by K+ ions.
Mononuclear (1, 2, 5, 12, 13) or oligonuclear (8c, 11, 17)
compounds (molecular or ionic) are only encountered in a
handful of cases. A more detailed description of the structural
features of the new CoII compounds is provided below.
CoII Compounds with Acyl-Armed Ligands. The seven

new compounds (4, 6, 7, 8c, 14, 15, 17; Figure 3) that belong in
this category are polymeric, with the exception of [K-
(DMA)3(L

8)CoII]2 (8c) and [K2(THF)2K2(L
17)4Co

II
4] (17)

that feature a dimeric and tetrameric molecular unit,
respectively. The catalytically important {[K(L4)CoII]·Diethyl
Ether}n (4) exhibits higher symmetry than all other compounds,
consisting of a rigorous 3-fold axis along the Co−Namine
direction as well as through K+ ions relating three different
molecules in the crystal lattice. This compound is characterized
by an exclusive four-coordinate [N3N] ligand field and an open
metalated cavity fortified by the three −COtBu arms. The
carbonyl residues are positioned exo with respect to the cavity
and are further engaged in contacts with K+ ions, inasmuch as
each potassium is coordinated by three oxygen (carbonyl) atoms
belonging to different molecules, and is also involved in K+−
arene π contacts. These structural features are largely retained in
the structure of [K(NCMe)(L6)CoII−NCMe]·2MeCN (6), but
important deviations also apply, mostly because of the presence
of a coordinated MeCN molecule in a trans position versus the
Namine (Namine−Co−NMeCN = 178.75(14)°) and the lack of a
strict 3-fold crystallographic symmetry. Otherwise, each K+ ion
is still coordinated by three carbonyl residues belonging to
different molecules in addition to a single MeCN, in lieu of any
K+−arene contacts.
The structure of [K2(DMA)4][K(L

7)2Co
II
2]2·2DMA (7) is

organized in a much more complex manner, featuring a “one-
dimensional” array of a repeating unit, [Co(1)/Co(2)−K(1)−
Co(3)/Co(4)−K(2)]n, connected to identical arrays via lateral
links provided by a DMA solvated K(3)/K(4) dimer
(K2(DMA)4). Within the repeating unit, the Co(II) sites are
arranged in two similar dimers linked via K+ contacts. The
dimeric unit is composed of two slightly different Co(II) centers,
each featuring the usual [N3N] ligand coordination, but with a

long axial Co−Namine interaction (av. 2.49 Å). In addition, each
Co(II) is coordinated by an oxygen atom (carbonyl) positioned
trans with respect to the axial Co−Namine direction (av. Namine−
Co−OCO = 173.2°, Co−OCO = 1.98 Å). Importantly, the
oxygen atom (carbonyl) coordinated to eachCoII center belongs
to the ligand surrounding the partner CoII site, hence giving rise
to a dimer. The K+ ions interconnecting the dimers in a pseudo
1-D array are coordinated by two carbonyl and, more weakly,
two Namido residues all belonging to one dimer, and by only a
single carbonyl moiety (O(10)) belonging to the adjacent
dimer. A much more simplified version of this structure is
adopted by [K(DMA)3(L

8)CoII]2 (8c), exhibiting a dimeric
structure comprised of two inversion symmetry related
[N3N]Co

II units connected via carbonyl O atoms of acyl
residues to a central K2(μ-DMA)2(DMA)4 core.
Compound [K(DMA)(L14)CoII]·DMA (14) retains the

usual [N3N] trigonal-pyramidal coordination but exhibits an
additional unique feature, inasmuch as one of the chiral arms
generates a seven-member loop by positioning the ester
carbonyl in the coordination sphere of CoII, trans to the axial
Namine residue (Namine−Co−OCO = 167.33(12)°, Co−OCO =
2.162(3) Å). The polymeric nature of the compound arises
again due to identical K+ ions, coordinated by one DMA,
forming contacts with oxygen residues (amidato carbonyls,
MeC(O)O−) belonging to three different CoII sites in the
crystal lattice. Compound [K(THF)3(L

15)CoII]·THF (15) is
the only six-coordinate species observed, inasmuch as two acyl
arms generate five-membered loops that place two ether
residues (ROMe) in the coordination sphere of the
[N3N]Co

II site (Co−O = 2.302(14), 2.405(13) Å; Namine−
Co−O = 146.4(6), 129.3(6)°). Identical K+ ions are
coordinated by three THF molecules and two acyl residues,
each located in neighboring molecules, thus giving rise to
pseudo 1-D polymeric structures.
Finally, the structure of [K2(THF)2][K(L

17)2Co
II
2]2 (17) is

very similar to that observed for 7 with respect to the formation
of two interconnecting dimers, but the K+ ions are organized
differently, to afford a molecular (tetranuclear) rather than a
polymeric complex. First, two K+ ions link the two dimers in 17,
by employing the same contact pattern noted for the single K+

ion connecting the two dimers in 7. Second, the remaining two
K+ ions in 17 are terminated by THFmolecules, and thus do not
provide connections that could generate an 1-D array of
repeating tetranuclear units as in 7. Otherwise, the coordination
and arrangement of the CoII sites in 17 and 7 is very similar, with
somewhat more pronounced contact for the Namine residue (av.
Co−Namine = 2.40 Å), and concomitant weaker attachment of
the oxygen (carbonyl) moiety (av. Co−OCO = 2.00 Å), along
the axial coordination of CoII sites in 17 versus that of 7.

Figure 3. continued

107.6(6), N(2)−Co(1)−O(6) = 127.7(6), N(4)−Co(1)−O(6) = 73.7(6), N(1)−Co(1)−O(6) = 146.4(6), N(3)−Co(1)−O(4) = 72.9(6), N(2)−
Co(1)−O(4) = 89.5(6), N(4)−Co(1)−O(4) = 154.0(6), N(1)−Co(1)−O(4) = 129.3(6), O(4)−Co(1)−O(6) = 80.5(5); 17, Co(1)−N(1) =
2.428(5), Co(1)−N(2) = 2.055(5), Co(1)−N(3) = 2.038(5), Co(1)−N(4) = 2.047(5), Co(1)−O(6) = 1.990(4), Co(1)−[N(2), N(3), N(4)] =
0.58(1) (distance of Co from mean plane), Co(2)−N(5) = 2.375(5), Co(2)−N(6) = 2.049(5), Co(2)−N(7) = 2.026(5), Co(2)−N(8) = 2.100(5),
Co(2)−O(3) = 2.027(4), Co(2)−[N(6), N(7), N(8)] = 0.56(1) (distance of Co frommean plane), N(2)−Co(1)−N(4) = 110.2(2), N(2)−Co(1)−
N(3) = 118.9(2), N(3)−Co(1)−N(4) = 107.2(2), N(2)−Co(1)−N(1) = 73.94(18), N(4)−Co(1)−N(1) = 74.25(18), N(3)−Co(1)−N(1) =
72.09(18), N(3)−Co(1)−O(6) = 109.47(18), N(2)−Co(1)−O(6) = 99.64(18), N(4)−Co(1)−O(6) = 110.20(18), N(1)−Co(1)−O(6) =
172.96(17), N(6)−Co(2)−N(7) = 112.3(2), N(6)−Co(2)−N(8) = 113.4(2), N(7)−Co(2)−N(8) = 112.71(19), N(6)−Co(2)−N(5) = 74.71(18),
N(7)−Co(2)−N(5) = 74.52(19), N(8)−Co(2)−N(5) = 73.18(17), N(6)−Co(2)−O(3) = 97.07(18), N(7)−Co(2)−O(3) = 112.18(19), N(8)−
Co(2)−O(3) = 108.06(17), N(5)−Co(2)−O(3) = 171.18(17).
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CoII Compounds with Alkyl-Armed Ligands. The new
methyl-substituted compound 16 and the previously reported
isopropyl congener (9)48 are the only members of the alkyl-
armed category of Co(II) compounds explored in this study.
Compound 16 (Figure 4) demonstrates the familiar [N3N]

coordination, but unlike the more bulky isopropyl analogue, it
exhibits a five-coordinate CoII site due to the presence of a
coordinated THF molecule trans to the Namine residue (Namine−
Co−OTHF = 175.75(13)°). The electron-rich alkyl substitution
dictates a stronger equatorial ligand field (av. Co−Namido = 2.000
Å) by comparison to all other five-coordinate CoII sites
investigated in this study. The polymeric nature of the
compound arises by means of a repeating −[Co(1)−K(1)]−
sequence, which features K(1) ions engaging in K−Namido and
K+−arene contacts with both ligands of adjacent Co(1) sites.
CoII Compounds with Aryl-Armed Ligands. Among the

seven aryl-supported Co(II) reagents shown in Figure 2 (1, 2,
11, 12 are new; 3, 5, 13 have been previously reported48), only
those crystallized fromMeCN solutions (3, 13) feature a solvent
molecule coordinated to the Co(II) center. All others,
crystallized from THF solutions, exhibit four-coordinate
[N3N]Co(II) sites devoid of any axial THF residues, in sharp
contrast to analogous five-coordinate Mn and Fe reagents
previously reported.
Among the four new Co(II) complexes (Figure 5), (L1)Co

(1) provides nice green crystals from concentrated THF
solutions, but single-crystal specimens (albeit of low quality)
were only obtained in the presence of the exceptional K+ binder
2.2.2-cryptand. The resulting ionic complex [K(2.2.2-
cryptand)][(L1)CoII]·3THF (1) exhibits a distorted [N3N]
coordination with an equatorial ligand field (av. Co−N = 1.927
Å) that is equal or stronger than that demonstrated by similar
four-coordinate Co(II) sites supported by aryl substituents (2,
5, 12), presumably due to the electron-rich character of the
4-tBu-substituted phenyl arm. Similarly, the 3,5-tBu2 disub-
stituted compound (L2)Co (2) proved to be isolable only in the

presence of 2.2.2-cryptand, in the form of green crystals of
[K(2.2.2-cryptand)][(L2)CoII]·1.5Pentane (2) of marginal
quality. Its structure is almost identical with that of 1, with a
similarly strong equatorial field (av. Co−N = 1.927 Å). The
corresponding 3,5-Me2 disubstituted compound [K-
(THF)3(L

12)CoII]·THF (12) is monomeric and geometrically
analogous to 2, with a weaker equatorial field (av. Co−N= 1.956
Å), but, as opposed to 1 and 2, can be isolated without the
assistance of 2.2.2-cryptand. The K+ ion in 12 is supported by
three THF molecules and a host of contacts with aromatic
moieties and N atom residues.
Although both the 3,5-Me2 and 2,6-Me2 disubstituted

compounds 12 and 13, respectively, can be isolated and
characterized, the corresponding 2,4,6-Me3 trisubstituted
species (L11)CoII has proven to be difficult to synthesize,
apparently due to extreme sensitivity to even traces of water. In
contrast, the analogous [K(THF)3(L

11)MnII−THF] can be
readily prepared.44 Indeed, after initial formation of a deep green
species in the reaction of deprotonated L11H3 and CoCl2 in
THF, the color soon fades and ligand can be recovered intact
along with separation of blue Co(OH)2. In one instance, under
scrupulous water exclusion, a few green crystals of [K(THF)-
(L11H)CoII−OH)]2 (11) have been isolated, amounting to a
species that can be viewed as the formal product of water
addition to (L11)CoII. Indeed, 11 features protonation and
dissociation of one nitrogen residue from the equatorial field,
with concomitant formation of a CoII−OH moiety. The
hydroxide is further coordinated by two K(THF)+ ions in an
overall dimeric structure that connects two inversion-related
(L11H)CoII−OH monomers by means of a K2(OH)2 rhomb.

Structures Featuring Ligand Rearrangement. In two
instances, we have isolated a few compounds that exhibit a
characteristic oxidative ligand rearrangement in the presence of
traces of dioxygen or one-electron oxidants. Similarly
reorganized compounds, featuring electron-donor substituents,
have been previously studied in our lab and attributed to the
formation of an incipient aminyl radical.45b,49 Indeed, the
electron-rich (L2)CoII (2) is highly sensitive to oxidative
rearrangement, and provided two crystallographically charac-
terized species, [K(THF)3(L

2
re)Co

II−THF] (2b) and [(L2
re,ox)-

CoII−THF]·0.5 Pentane (2c) (Scheme 1 and Figure S2; bonds
broken in 2 and formed in 2b and 2c are shown in red), formed
in comparable amounts. Compound 2c is not only ligand-
rearranged, but also one-electron oxidized, as noted by relevant
metrical parameters associated with the phenylene ring between
atoms N1 and N2 (Figure S2). A possible overall stoichiometry
for this reaction can be written as 2[(L2)CoII]− → [(L2

re)Co
II]−

+ [(L2
re,ox)Co

II] + e−.
Compound (L16)CoII (16) is also highly sensitive to the same

type of ligand rearrangement in the presence of traces of
dioxygen, affording the isolable dimer [K(THF)2(L

16
re)Co

II]2
(16b, Figure S3), which is equivalent to 2b in terms of ligand
reorganization. In this case, we were not able to isolate any other
compound that might provide evidence for the location of the
oxidizing equivalent(s).

Electrochemistry. Ten Co(II) compounds possessing aryl
(L3Co, L5Co, L13Co), alkyl (L9Co), and acyl arms (L4Co, L6Co,
L7Co, L8Co, L10Co, L17Co) were selected as representative
examples for examination by cyclic voltammetry. Electro-
chemical data for a handful of these examples have been
previously reported.48 Figure 6 provides a collective presenta-
tion of the corresponding waves (first oxidation event), and
Table S2 summarizes relevant electrochemical data (potentials

Figure 4. ORTEP diagram of [K(L16)CoII−THF]·0.5Pentane (16)
drawn with 40% thermal ellipsoids. Hydrogen atoms are omitted for
clarity. Selective interatomic distances (Å) and angles (deg): Co(1)−
N(1) = 2.226(3), Co(1)−N(2) = 2.007(4), Co(1)−N(3) = 1.990(4),
Co(1)−N(4) = 2.004(4), Co(1)−O(1) = 2.207(3), Co(1)−[N(2),
N(3), N(4)] = 0.37(2) (distance of Co from mean plane), N(2)−
Co(1)−N(4) = 112.70(15), N(2)−Co(1)−N(3) = 114.04(15),
N(3)−Co(1)−N(4) = 122.94(15), N(2)−Co(1)−N(1) =
79.40(13), N(4)−Co(1)−N(1) = 78.61(14), N(3)−Co(1)−N(1) =
79.64(14), N(3)−Co(1)−O(1) = 100.45(14), N(2)−Co(1)−O(1) =
104.32(13), N(4)−Co(1)−O(1) = 97.91(14), N(1)−Co(1)−O(1) =
175.75(13).
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are reported versus the ferrocenium/ferrocene (Fc
+/Fc) couple).

All aryl- and alkyl-armed Co(II) compounds examined by cyclic
voltammetry feature semireversible waves at negative potentials,
ranging from −0.665 (L13Co) to −0.090 V (L3Co), in
accordance with the electron-rich nature of the corresponding
substituents. Specifically for the alkyl-armed L9Co, the two
closely spaced, semireversible waves observed (−0.654, −0.500
V), may represent the two slightly different Co(II) sites in the
crystal structure. Given the almost identical wave currents for all
these aryl- and alkyl-armed Co(II) compounds (3.0 M), and
their anodic shifts with respect to the analogous Mn(II)/
Mn(III) and Fe(II)/Fe(III) couples44,46a by approximately 0.65

and 0.25 V, respectively, we assign the corresponding semi-
reversible waves to essentially metal-centered Co(II)/Co(III)
cycles.
In sharp contrast, the acyl-armed Co(II) compounds

examined demonstrate irreversible anodic ways with variable
ip,a values (mostly large versus the aryl/alkyl-substituted
congeners), suggesting significant ligand-centered contribu-
tions. In addition, the first anodic wave shown in Figure 6
overlaps with a subsequent oxidation wave (not shown),
rendering any attempts to garner further information from
exhaustive electrolysis futile. Nevertheless, all initial anodic
waves for the acyl-armed Co(II) sites are shifted to positive

Figure 5. ORTEP diagrams (from left to right) of [K(2.2.2-cryptand)][(L1)CoII]·3THF (1), [K(2.2.2-cryptand)][(L2)CoII]·1.5Pentane (2),
[K(THF)(L11H)CoII−OH]2 (11), and [K(THF)3(L12)CoII]·THF (12) drawn with 40% thermal ellipsoids. Hydrogen atoms are omitted for clarity.
Selective interatomic distances (Å) and angles (deg): 1, Co(1)−N(1) = 2.102(18), Co(1)−N(2) = 1.946(18), Co(1)−N(3) = 1.92(2), Co(1)−N(4)
= 1.915(19), Co(1)−[N(2), N(3), N(4)] = 0.17(2) (distance of Co from mean plane), N(2)−Co(1)−N(4) = 122.7(8), N(2)−Co(1)−N(3) =
118.0(8), N(3)−Co(1)−N(4) = 117.0(8), N(2)−Co(1)−N(1) = 84.0(8), N(4)−Co(1)−N(1) = 85.1(8), N(3)−Co(1)−N(1) = 85.6(8); 2,
Co(1)−N(1) = 2.085(8), Co(1)−N(2) = 1.921(7), Co(1)−N(3) = 1.933(8), Co(1)−N(4) = 1.926(7), Co(1)−[N(2), N(3), N(4)] = 0.14(1)
(distance of Co from mean plane), N(2)−Co(1)−N(4) = 120.4(3), N(2)−Co(1)−N(3) = 118.2(3), N(3)−Co(1)−N(4) = 119.8(3), N(2)−
Co(1)−N(1) = 85.9(3), N(4)−Co(1)−N(1) = 86.0(3), N(3)−Co(1)−N(1) = 85.5(3); 11, Co(1)−N(1) = 2.260(5), Co(1)−N(2) = 1.956(5),
Co(1)−N(3) = 1.939(5), Co(1)−O(1) = 1.947(4), K(1)−O(1) = 2.675(5), K(1)−O(2) = 2.677(5), Co(1)−[N(2), N(3), N(4)] = 0.62(2)
(distance of Co from mean plane), N(2)−Co(1)−N(3) = 118.7(2), N(2)−Co(1)−N(1) = 81.6(2), N(3)−Co(1)−N(1) = 80.1(2), N(1)−Co(1)−
O(1) = 139.41(18), N(2)−Co(1)−O(1) = 108.5(2), N(3)−Co(1)−O(1) = 122.9(2), Co(1)−O(1)−K(1) = 113.83(18), O(1)−K(1)−O(2) =
116.95(15); 12, Co(1)−N(1) = 2.121(7), Co(1)−N(2) = 1.950(8), Co(1)−N(3) = 1.964(8), Co(1)−N(4) = 1.955(7), Co(1)−[N(2), N(3),
N(4)] = 0.20(1) (distance of Co from mean plane), N(2)−Co(1)−N(4) = 119.2(3), N(2)−Co(1)−N(3) = 121.5(3), N(3)−Co(1)−N(4) =
116.2(3), N(2)−Co(1)−N(1) = 84.3(3), N(4)−Co(1)−N(1) = 84.0(2), N(3)−Co(1)−N(1) = 84.0(3).

Scheme 1
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potentials (0.032 (L17Co) to 0.719 V (L8Co)), reflecting the
effect of the electron-withdrawing acyl arm on the Co(II) center,
albeit in an order not always consistent with the electronic
nature of each individual acyl group. The most significant
deviation is observed for L10Co (Ep,a = 0.559 V), whose anodic
shift versus that of L10 Mn (Ep,a =−0.108 V; tentatively assigned
to Mn(II)/Mn(III))44 betrays very little, if any, metal-centered
contributions to the anodic wave. The intervention of ligand-

centered oxidation events does not permit any secure
identification of the solution structure of species such as L7Co
and L10Co, which exhibit single anodic waves even in the
presence of dinuclear units in their polymeric solid-state
structures. On the other hand, the dual anodic-wave feature
for L17Co (solid-state tetramer)may signify a dinuclear structure
in solution. Finally, the catalytically important L8Co (−COCF3
arm) possesses the indisputably most electrochemically stable
Co(II) site encountered in this series of Co(II) compounds, in
agreement with previous findings for the L8 Mn and L8Fe
analogues.44,46a

EPR Spectroscopy. EPR spectra of selected Co(II)
compounds were recorded from frozen DMF solutions of 3, 4,
5, 6, 7, 8a, 9, 10, 13, 14, 15, and 17. In all cases, the samples give
rise to signals that are consistent with isolated CoII (S = 3/2)
species.50 Spectra recorded at 10 K are shown in Figure 7. The
spectra can be interpreted within the framework of the spin
Hamiltonian:51
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In eq 1,D and E are the zero field splitting (zfs) parameters. A
is the hyperfine tensor relevant to the hyperfine interactions of
the electronic (S = 3/2) and nuclear (I = 7/2 for 59Co) spins,
and g0 is the intrinsic g-tensor of the Co(II) ion. For simplicity
we assume that the principle axes of the tensors are parallel to
each other. Often, due to large spin orbit coupling effects for CoII

(S = 3/2), the zfs parameter |D| is quite large, whereas A and g0
are characterized by significant anisotropy. Under the influence
of zfs, the 4-fold degeneracy is partially lifted in zero magnetic
field, yielding two Kramers’ doublets, |±1/2⟩ and |±3/2⟩
separated by 2|D|. The |±1/2⟩ (or |±3/2⟩) doublet is the ground

Figure 6. Cyclic voltammograms of compounds [K(L3)CoII−NCMe]
(3) and [K(NCMe)3(L

13)CoII−NCMe] (13) in MeCN/(nBu4N)PF6,
[K(L4)CoII]·Et2O (4), [K(THF)6][(L

5)CoII]·1.5THF (5), [K-
(MeCN)(L6)CoII−NCMe] ·2MeCN (6), [K2(DMA)4][K-
(L7)2Co

II
2]2·2DMA (7), [K(THF)2(L

8)CoII] (8a), [K2(L
9)2Co

II
2]

(9), and [K(THF)K(L17)2Co
II
2]2·3Pentane (17) in DMF/(nBu4N)-

PF6, and [K2(DMA)3(L
10)2Co

II
2]·0.5Et2O (10) in DMA/(nBu4N)PF6,

with a Au disk electrode (1.6 mm in diameter); scan rate 0.1 V/s.

Figure 7. Experimental (black line) and theoretical (red-dashed line) EPR spectra from frozen DMF solutions of complexes 3, 4, 5, 6, 7, 8a, 9, 10, 13,
14, 15, and 17. For 3, 4, 6, 7, 8a, 10, and 17, the subspectra from sites 1 (green), and 2 (blue) are also shown, as described in the text. A spike signal at ca.
3400 G in the spectra of 5, 9, and 10 is due to an impurity in the cavity. EPR conditions: Temperature, 10 K; modulated amplitude 10 Gpp; microwave
power, 2.0 mW; microwave frequency, 9.4 GHz.
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state for positive (or negative) D. For |D|≫ hν (≈ 0.31 cm−1 at
X-band), each Kramers’ doublet can be described by an effective
Seff = 1/2, giving rise to an EPR spectrum characterized by an
anisotropic geff tensor.
The EPR signals shown in Figure 7 are consistent with the |

±1/2⟩ doublet. No detailed temperature dependence of the
spectra was pursued in the present work. However, spectra
recorded at 4.2 and/or 20 K (not shown) indicate that the
intensity of the signals (scaled as Intensity × Temperature)
decreases as temperature increases. This suggests that the |±1/
2⟩ doublet is the ground state, implying a positive value for D.
For |D| ≫ hν, the spectra observed do not depend on D but
rather on the rhombic zfs parameter E/D, the values of the
intrinsic g0-tensor,

52 and the hyperfine term. With the exception
of the spectrum for complex 15, the g0-tensor was assumed axial
(g0x = g0y = g0⊥ ≠ g0z = g∥). In several cases (3, 4, 6, 7, 8a, 10,
17), the spectra indicated the presence of two Co(II) species,
characterized by a different value for the parameter E/D.
Assuming a common value for |D|, the simulations determine the
relative abundance of each Co(II) site. The specific line shape of
the spectra results from a combination of factors, including
distributions on the parameter E/D (E/D strain), unresolved
hyperfine interactions, and residual line-broadening mecha-
nisms.53 The EPR parameters for all samples, as well as the
relative ratios of the two species when applicable, are presented
in Table S3. Because an unequivocal deconvolution of the line
broadening mechanisms is not feasible, the quoted values for the
relevant parameters are indicative.
With the exception of the six-coordinate 15, all other

complexes (four- or five-coordinate) exhibit rhombic parame-
ters (E/D) that lie in the interval [0, 0.19], indicating different
degrees of rhombicity. All complexes (except 15) demonstrate a
valley-shaped signal at g ∼ 2.0, which corresponds to the g∥
component of the geff-tensor. This signal is broadened due to
hyperfine interactions, and in some cases (7, 9, 17) the hyperfine
lines are well resolved. The simulations indicate that A∥ values in
all cases are in the range of 200−300MHz and that the hyperfine
term has to be taken into account in order to reproduce the low
field region of the spectra, corresponding to the perpendicular
components of the tensors in eq 1. Due to restrictions in the
determination of the line-broadening mechanisms, it is not
possible to unambiguously evaluate the magnitudes of the Ax
and Ay. Therefore, an average value, A⊥ = (Ax + Ay)/2, is quoted
in Table S3. This value ranges in the 30−90 MHz range.
Complex 15 exhibits a relatively sharp peak at g = 6.24 and an
extremely broad derivative feature with an apparent zero
crossing at ca. g = 2.07. This behavior indicates a rhombic
system with E/D = 0.33. From this point of view, complex 15
exhibits unique EPR properties in this series, most likely due to
its special, six-coordinate ligand field, featuring twoO residues in
addition to the familiar [N3N] coordination. The origin of dual
EPR-active species in DMF solutions of some compounds
cannot be ascertained at the present time, especially since
structural data from crystals derived fromDMF solutions are not
available. Possible sources are small deviations in the
coordination of Co(II) sites in polymeric species (as noted for
7, crystallized from DMA solutions), and also potential
differentiation arising from partial DMF coordination to Co(II)
and even K+ sites.
In summary, the EPR studies from frozen DMF solutions of

the complexes indicate that all complexes feature a Co(II) (S =
3/2) ion with a large and positive zfs term,D, and variable degree
of rhombicity. The existence of more than one species in some

cases suggest that the coordination environment of the Co ion
can be quite flexible in solution.

Catalytic Aziridinations of Olefins. Styrene. The 17 CoII

compounds shown in Figure 2 were first explored as catalysts (5
mol %) for the aziridination of styrene (8.0 equiv) by PhINTs
(1.0 equiv) in chlorobenzene at room temperature (Table 1).

The high-yielding L4CoII was first investigated as catalyst in
several solvents (MeCN, 50%; 2,2,2-Trifluoroethanol, 62%;
PhCF3, 61%; CH2Cl2, 61%; Benzene, 53%; PhCl, 70%) and
found to afford superior levels of aziridine in chlorobenzene
(similar solvent-screening results were previously obtained with
MnII reagents44). The yield drops significantly (25%) if
equimolar amounts of styrene and PhINTs are employed in
PhCl, whereas a 2-fold excess of styrene over PhINTs improves
the yield to 46%. Increasing the amount of the L4Co catalyst to
10 mol % suppresses the yield to 53%. The styrene aziridination
yields obtained with various CoII catalysts (Table 1) vary
significantly (18−70%) as a function of the ligand employed. As
opposed to the corresponding LxMnII reagents (x = 1−15)44
that reveal a dominant relationship between increasing styrene
aziridination yields with anodically shifting MnII/MnIII redox
potentials (and, by extension, with increasing electrophilicity of
the putative MnIII−•NR), the CoII catalysts provide yields that
indicate a more complex pattern of electronic and steric
contributions. For example, although the comparatively
electron-deficient, acyl-armed reagents remain, on average,
more productive than aryl- or alkyl-armed congeners, a
comparison between the −COCMe3 (L

4) and −COCF3 (L8)
supported CoII reagents furnishes essentially the same
aziridination yields, in spite of the fact that the Co(II)/Co(III)
couple for L8Co is anodically shifted by ∼500 mV versus L4Co.
In addition, L8Co is potentially less congested than L4Co. In

Table 1. Yields of Styrene Aziridination Mediated by CoII

Reagents 1−17a

compound yield (%)

[K(2.2.2-cryptand)][(L1)CoII]·3THF (1) 18
[K(2.2.2-cryptand)][(L2)CoII]·1.5Pentane (2) 18
[K(L3)CoII−NCMe] (3) 36
[K(L4)CoII]·Diethyl Ether (4) 70
[K(THF)6](L

5)CoII]·1.5THF (5) 32
[K(NCMe)(L6)CoII−NCMe]·MeCN·0.5H2O (6) 50
[K2(DMA)4][K(L

7)2Co
II
2]2·2DMA (7) 59

[K(NCMe)(L8)CoII−NCMe] (8b) 69
[K(DMA)3(L

8)CoII]2 (8c) 68
[K2(L

9)2Co
II
2]n (9) 38

[K2(DMA)3(L
10)2Co

II
2]·0.5Et2O (10) 49

[K(THF)(L11H)CoII−OH)]2 (11) −
[K(THF)3(L

12)CoII]·THF (12) 25
[K(NCMe)3(L

13)CoII−NCMe] (13) 38
[K(DMA)(L14)CoII]·DMA (14) 36
[K(THF)3(L

15)CoII]·THF (15) 45
[K(L16)CoII−THF] (16) 25
[K(THF)K(L17)2Co

II
2]2 (17) 35

aConditions: Catalyst, 0.0125 mmol (5 mol %); PhINTs, 0.25 mmol;
styrene, 2.0 mmol; MS 5 Å, 20 mg; PhCl, 0.200 g; 30 °C; 12 h.
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contrast, the MnII and FeII congeners are associated with
significantly diverging yields in favor of the more electron-
deficient L8M reagents (L4Mn, 12%; L8Mn, 75%; L4Fe, 45%;
L8Fe, 73%), correlating with an anodic potential shift of
approximately 600 mV for both the L8Mn and L8Fe catalysts
with respect to their L4M analogues. More importantly, as
indicated below, L4Co (4) is faster than L8Co (8b, 8c) in
mediating styrene aziridination. The closely related L7Co
(−COiPr arm) is in principle slightly less electron rich and
sterically congested than the L4Co congener, but affords lower
yields than L4Co in a slower reaction (the opposite is true for the
corresponding Mn(II) catalysts).44 Two other acyl-substituted
CoII catalysts (L14Co, L17Co), exhibiting significantly lower
yields, are indicative of how the metal-nitrene electron-affinity

bias may be overridden by other electronic or steric factors in the
fairly restricted reaction cavity of Co reagents. The correspond-
ing L14 Mn catalyst, by contrast, is among the most productive
MnII aziridination reagents examined (yield: 67%).44 As
expected, the aryl-substituted ligands generate CoII reagents
that are poor mediators of styrene aziridination. These sites are
oxidatively and even hydrolytically sensitive and tend to
generate thermodynamic sinks. Nevertheless, the muted role
of the electron-affinity criterion can still be discerned in the
series of the electron-rich, aryl-armed reagents (1, 2, 3, 5, 12,
13), inasmuch as the highest-yielding L13Co (13) is the most
electron rich member of the group. Finally, the alkyl-substituted
L9Co and L16Co reagents are only modestly productive, as
anticipated for electron-rich CoII sites, but again the more

Table 2. Yields of Aziridination/Amination of Olefins by [K(L4)CoII]·Et2O (4)a

aConditions: 4, 0.0125 mmol (5 mol %); PhINTs, 0.25 mmol; olefin, 2.0 mmol; MS 5 Å, 20 mg; solvent (MeCN/CH2Cl2/PhCl) 0.200 g; 30 °C;
12 h. bIn MeCN.
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electron rich, isopropyl-substituted L9Co provides higher yields
than the methyl-substituted congener L16Co. However, the
latter undergoes facile oxidative ligand rearrangement that may
compromise its structural integrity.
Alkene Aziridinations by [K(L4)CoII]·Diethyl Ether (4). The

highest yielding L4Co (4) catalyst was subsequently investigated
as a nitrene-transfer (NTs) mediator with a panel of aromatic,
cyclo (Table 2), and aliphatic alkenes (Table S4). Styrenes
substituted at the para position with both electron-donor and
electron-acceptor groups were examined first (entries 1−9)
under the conditions noted in the previous section. Both
methylene chloride and chlorobenzene were employed (as well
as acetonitrile in a few instances), invariably resulting in better
aziridination yields in chlorobenzene. In the majority of cases,
yields above 70% were recorded irrespective of the electron-rich
or poor character of the substituent, with the exception of two
moderately yielding cases involving strong electron-withdrawing
groups (p-CF3, p-NO2). Moreover, the product of 4-MeO-
styrene aziridination is known to be unstable,54 and is thus
associated with modest yields. Overall, the aziridination yields
for these para-substituted styrenes, save for the parent styrene,
are comparable to those previously reported for L8Co. Ortho-
substitution (entry 10) affects aziridination yields, presumably
interfering with nitrene-transfer both sterically and electroni-
cally (due to the orthogonal orientation of the aromatic versus
the olefinic plane of the substrate55). Similar steric inhibition is
also observed for α-substituted styrenes (methyl, phenyl; entries
11 and 12), especially for the bulkier α-phenyl-styrene. An allylic
amination product is also obtained in both cases, ascribed to
aziridine-ring opening,56 which is more pronounced for the α-
phenyl-substituted product.54 Steric hindrance is also evident in
the aziridination of β-substituted styrenes (entries 13−16),
especially for the bulky cis- and trans-stilbene (entries 15, 16). In
agreement with previous observations in the application of
L8Co,44 the cis congeners are more productive (entries 14, 15),
with significant loss of stereochemical integrity. For all these
encumbered substrates, L8Co is on average more productive
than L4Co, presumably reflecting the somewhat more
voluminous reaction cavity of L8Co. Allylic or benzylic
aminations compete successfully with aziridinations (entries
17−22), unless cis (entry 18) and/or electron-rich (entry 21)
olefins are involved. Beyond cycloalkenes, other terminal or
internal aliphatic olefins exhibit low aziridination yields (Table
S4), in accordance with previous results pertaining to the
application of L8Co in aziridinations of aromatic and aliphatic
olefins.44 A competitive styrene versus 1-hexene (1.0 mmol
each) aziridination by PhINTs (0.25 mmol) catalyzed by L4Co
(5 mol %) in chlorobenzene provided a ratio of 25:1 in favor of
the styrene aziridination product (combined aziridine yield:
72%), not unlike the L8Co catalyst (28:1, yield 73%).44

Mechanistic Studies. Comparative Reaction Profile. The
formation of the product of styrene aziridination was monitored
as a function of time (Figure 8) for catalysts L4Co (4), L7Co (7),
and L8Co (8c) (all crystallized from DMA/ether), under the
conditions noted above (Table 1), with the exception of the
amount of PhCl used (500 mg). Yields were determined after
quenching the reaction at various time intervals. Surprisingly,
the more electron rich and sterically congested L4Co (4)
exhibits faster product generation than L8Co (8c) during the
first hour, whereas L7Co (7) is kinetically comparable to 8c. At
the 1.0 h mark, the reaction is complete by 88% for L4Co (4),
65% for L8Co (8c), and 76% for L7Co (7). Interestingly, the
MeCN-crystallized version of L8Co, [K(NCMe)(L8)CoII−

NCMe] (8b), has been previously shown44 to be significantly
slower; only 14% of the reaction is complete after 1.0 h in d5-
PhCl, indicating potential interference by the strongly
coordinating acetonitrile. However, 8b is still much faster than
the corresponding [K(NCMe)(L8)MII−NCMe] (M = Mn, Fe)
reagents, presumably reflecting the superior electrophilicity of
CoIII−•NR as discerned from Ep,a values associated with theM

II/
MIII couple of the divalent catalysts (Fe: 0.228 V, Mn: 0.518 V,
Co: 0.837 V).44

Hammett Analysis. Several para-substituted styrenes (para
substituent: Me, tBu, F, Cl, CF3, NO2; 1.0 mmol each) were
subjected to competitive aziridination (PhINTs, 0.25 mmol)
versus styrene (1.0 mmol), mediated by L4Co (5 mol %) in
chlorobenzene (0.200 g), in the presence of 5 Åmolecular sieves
(25 mg). Hammett plots of log(kX/kH) (determined by 1H
NMR from the ratio of the corresponding aziridines) as a
function of the substituent polar parameter σP or even the
resonance-responsive parameter σ+ did not provide any reliable
linear free-energy correlations (Figure S4, Table S5). In
contrast, Jiang’s dual-parameter correlation that incorporates
both polar (σmb) and spin-responsive (σJJ*) parameters (log(kX/
kH) = ρmbσmb + ρJJ*σJJ* + C)57 provides a reasonable linear
correlation (R2 = 0.98; Figure 9). The negative ρmb value is

Figure 8. Yield of aziridine (%) as a function of time (min) in the
reaction of styrene (2.0 mmol) by PhI = NTs (0.25 mmol) mediated by
L4Co (4), L8Co (8c), and L7Co (7) (0.0125 mmol with respect to Co)
in chlorobenzene (0.500 g) at 30 °C.

Figure 9. Linear free energy correlation of log(kX/kH) vs σmb, σJJ* for
the aziridination of para-substituted styrenes (X = Me, tBu, F, Cl, CF3,
NO2) mediated by L4Co (4).
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consistent with a small positive charge developing at the benzylic
carbon, whereas the always positive ρJJ* value denotes an
incipient radical character for the same site. The ratio |ρmb/ρJJ*|
= 1.12 is similar to the one previously observed for L8Co
catalyzed aziridinations (|ρmb/ρJJ*| = 1.0),44 and indicates
competitive contributions of polar and spin-delocalization
effects. Polar effects are dominant in many Rh,24d Cu,24d,58

and Fe18g,59,60 catalyzed aziridinations, for whichHammett plots
can be fit with the assistance of polar parameters alone (σp, σ

+),
but the need for incorporating spin-delocalization parameters
(σ*, σJJ*)

57,61 with a wide range of |ρmb/ρJJ*| values (0.04−2.02)
is also evident in many other metal-catalyzed aziridination-
s.18e,22d,g,23f,g More recently, larger |ρ+/ρJJ*| values have been
reported for the aziridination of styrene by PhINNsmediated by
[CoIII(TAMLred)]− (5.71) and [CoIII(TAMLsq)] (8.64), in
accordance with a novel mechanism that involves a partial
single-electron transfer from the styrene to themetal-nitrene as a
component of the turnover-determining step.41 A similar
mechanistic scenario has also been advanced for Fe-mediated
aziridinations, but in this case Hammett correlations can be
successfully accommodated with polar parameters alone (σ+).42

Kinetic Isotope Effect and Stereochemical Integrity.
Evaluation of the secondary kinetic isotope effect was
accomplished by 1H and 2H NMR with the assistance of
deuterated styrenes (α-d-styrene, cis- and trans-β-d-styrene; 1.0
mmol each) in competitive aziridinations (PhINTs, 0.25 mmol)
with styrene (1.0 mmol) catalyzed by L4Co (4) or L8Co (8c) (5
mol %) in chlorobenzene (Table 3). KIE values close to 1.0 were

obtained with α-d-styrene for both catalysts, indicating that the
α-styrenyl is unlikely to be involved in the initial nitrene attack to
styrene. In contrast, the β-styrenes are associated with inverse
KIE values for L4Co (cis: 0.90 (±0.02), trans: 0.92 (±0.02))
that can be attributed to a limited sp2 → sp3 rehybridization of
styrene’s Cβ site upon development of the initial N−Cβ bond
(Scheme 2). More modest inverse KIE values are also noted in
cis- and trans-β-d-styrene aziridinations mediated by L8Co (8b44

or 8c) (cis: 0.96 (±0.02), trans: 0.98 (±0.02)), suggesting only
minimal N−Cβ bond formation in the transition state.
The kinetics of the aziridine ring closure (formation of the

second N−Cα bond) was further evaluated by 2H NMR in the
aziridinations of cis- and trans-β-d-styrene (Table 4), by
examining the degree of stereochemical scrambling in the

resulting aziridines (cis/trans partitioning due to Cα−Cβ bond
rotation; Scheme 2) in competition with N−Cα bond formation.
The ratio of cis/trans aziridine (94:6) and trans/cis aziridine
(92:8) resulting from the L4Co-mediated aziridination of cis-β-
d-styrene and trans-β-d-styrene, respectively, signifies the
interference of very small energy barriers in aziridine-ring
closure. A slightly larger barrier is indicated for the aziridination
of the more sensitive cis-β-d-styrene by L8Co (cis/trans
aziridine: 89/11). On the other hand, the stereochemical
scrambling observed in the aziridination of cis-β-methyl-styrene
is more pronounced with L4Co than L8Co.

Computational Studies. The structure and electronic
description of the presumptive [L4Co]NTs intermediate were
explored by DFT calculations at the B3LYP/6-31+G(d) level of
theory. Free energy calculations suggest that the intermediate-
spin quartet ground state (S = 3/2) lies only 0.1 kcal mol−1 lower
than the high-spin sextet state (S = 5/2), and 2.8 kcal mol−1

below the doublet state (S = 1/2). As mentioned above, the
calculated free energies for [L8Co]NTs indicate that the high-
spin sextet is the ground state, in agreement with the weaker
ligand field provided by the L8 versus L4 ligand.
Calculated structures for the three spin-states of [L4Co]NTs

along with key metrical parameters are presented in Figure 10.
The most conspicuous feature of these structures is the
dissociation of one arm from the equatorial coordination sphere
of the metal (Co−N = 3.93 (quartet), 3.67 (sextet), 4.08
(doublet) Å). The axial Co−Namine bond is also elongated (Co−
N = 2.43 (quartet), 2.63 (sextet), 2.99 (doublet) Å), if not
dissociated, by comparison to that of L4Co (2.151(11) Å).
These features have been previously noted in the DFT structure
of [L8Co]NTs, although the latter exhibits an additional Co−F
equatorial contact (Co−F = 2.37 Å).44

Most importantly, the calculated spin densities for all three
spin states of [L4Co]NTs place a full oxidizing equivalent over
the dissociated arm, hence generating a widely delocalized N-
aryl amidyl radical (Figure 11). For the ground-state quartet, the
computed spin density consists of ∼3.2 unpaired e− on Co, 0.79
e− on the nitrene N atom and −1.0 unpaired e− on the
noncoordinating arm. Similar spin densities are calculated for
the sextet (Co: 2.9 e−, N: 0.9 e−, ligand arm: 1.0 e−) and the
doublet state (Co: 2.8 e−, N: −0.66 e−, ligand arm: −1.0 e−).
This spin density distribution is accommodated by an electronic
structure such as [(•L4)Co(II)−•NTs]−, featuring a high-spin
Co(II) center (S = 3/2) and two oxidizing equivalents on the
noncoordinating ligand arm and the N atom of the nitrene
residue, respectively. In sharp contrast, the spin density of the
ground-state sextet of [L8Co]NTs (Figure 11) is largely
distributed on Co (3.3 e−) and the N atom of the nitrene (1.1
e−). In this case, the noncoordinating arm is redox innocent, and
the residual spin density is centered over ligating N atoms in a
typical spin polarization fashion. Hence, the sextet state of
[L8Co]NTs is better accommodated with an [(L8)Co-
(III)−•NTs]− electronic description (SCo = 2).

Table 3. Secondary KIE Values in Aziridination of
Deuterated Styrenes vs Styrene

Scheme 2
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A global electrophilicy index (GEI) was also computed for
[L4Co]NTs and [L8Co]NTs by employing Stephan’s improved
methodology.62 For the quartet spin state, GEI is calculated to
be 5.0 eV for [L4Co]NTs and 5.7 eV for [L8Co]NTs. The
corresponding values for the sextet spin state are 4.7 and 6.1 eV
for [L4Co]NTs and [L8Co]NTs, respectively. Thus,
[L8Co]NTs is more electrophilic than [L4Co]NTs on the
basis of the GEI criterion.
Unfortunately, all efforts to map the aziridination reaction

coordinate starting from [L4Co]NTs and styrene have not been
successful in locating an acceptable transition state for the initial
N−Cb bond formation. All three spin states (quartet, sextet,
doublet) of [L4Co]NTs generated large activation barriers for
this initial step (∼50 kcal/mol). However, when dispersion-
corrected DFT was applied,63 as appropriate for polarizable
bulky groups such as the tert-Bu, the corresponding barriers were
reduced by approximately 20 kcal/mol. These barriers are still
significant by comparison to those we have previously identified
for the reaction of [L8Co]NTs (sextet) and styrene (23.4 kcal/
mol for the turnover-limiting N−Cb bond formation).44 Further
experimentation and attendant DFT calculations will be
required to unravel reliable trends and contributing factors
with the assistance of catalysts that feature substituents spanning
the CF3 to CMe3 range.

■ FURTHER DISCUSSION AND CONCLUSIONS

In a rigorous recent account, Latour and co-workers42 highlight
the importance of the electron affinity (EA) of iron-nitrene/
imido species as a guiding principle for predicting their reactivity
in a wide range of iron-mediated aziridinations. In these catalytic
reactions, the iconic substrate styrene undergoes aziridinations
by various iron-nitrene compounds (Fe = NR), under a general
mechanistic scheme that designates the formation of the initial
N−Cb bond as the rate-determining step, usually encountered in
aziridinations with a two-step mechanism ([M]NR radical
addition to styrene, ring-closure radical rebound). More
importantly, this first step is front-loaded by significant charge
transfer from styrene to the iron-nitrene and, thus, is crucially
influenced by the EA of the active oxidant. The applicability of
the EA as a general predictor of reactivity seems to be wide, but
at the present time is largely confined within the realm of
catalysts that provide Hammett correlations for the aziridination
of para-substituted styrenes that can be accommodated with
polar parameters alone (σP, σ

+), or by a combination of polar and
spin-delocalization parameters (σ*, σJJ*) with dominant polar
contribution.
In an almost concurrent publication, de Bruin and co-

workers41 advance a similar argument with the assistance of
electrophilic Co(III)-nitrene radical aziridination reagents,
generated from the reaction of anionic [CoIII(TAMLred)]− or
the one-electron oxidized and neutral [CoIII(TAMLsq)] with
PhINNs. Hammett plots for para-substituted styrene aziridina-
tions are fitted with both polar (σ+) and spin-delocalization
parameters (σJJ*) with large |ρ+/ρJJ*| values (5.71 for
[CoIII(TAMLred)]− and 8.64 for [CoIII(TAMLsq)]), hence
these systems can also be considered as good candidates for
testing the EA criterion. Indeed, the larger |ρ+/ρJJ*| value for
[CoIII(TAMLsq)] and DFT calculations indicate that the energy
barrier for the initial, rate-limiting reaction of the incipient
[CoIII]NNs and styrene to generate the N−Cb bond is lower for
[CoIII(TAMLsq)] versus [CoIII(TAMLred)]−, in agreement with
an anticipated higher EA value for the nitrene species generated
from [CoIII(TAMLsq)]. Surprisingly, the experimental rate for

Table 4. Exploration of Stereochemical Integrity in the Aziridination of cis- and trans-β-d-Styrene

Figure 10. DFT structures (minimal metal coordination) for [L4Co]NTs active species in different spin states (from left to right: quartet, sextet,
doublet) optimized at the B3LYP/6-31+G(d) level of theory. Hydrogen atoms were omitted from the figure for clarity.

Figure 11. Spin density on the calculated lowest-energy spin state of the
putative cobalt nitrenoid intermediates: quartet [L4Co]NTs (left) and
sextet [L8Co]NTs (right).
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the aziridination of styrene by these two catalysts favors
[CoIII(TAMLred)]− versus [CoIII(TAMLsq)], but this has been
attributed largely to the instability of the latter reagent. A
distinctive feature of the Co(III) systems is associated with the
redox noninnocent character of the tetraanionic ligand
(TAMLred)4−, which can be successively oxidized in one-
electron steps to (TAMLsq)3− and (TAMLq)2−. The authors
argue convincingly that the emerging radical nitrene species
[CoIII(TAMLsq)(•NNs)]−/CoIII(TAMLq)(•NNs)2]

− and
[CoIII(TAMLq)(•NNs)], resulting from [CoIII(TAMLred)]−

and [CoIII(TAMLsq)], respectively, interact with styrene in the
rate-limiting step by means of an asynchronous transition state,
encompassing significant single-electron transfer from styrene to
the oxidized TAML ligand and a nucleophilic attack by the
nitrene lone pair (in lieu of the •NNs p radical) at the incipient
styrenyl radical cation. The attendant single-electron relocation
(TAML→ Co(III)→ •NNs) reestablishes the N lone pair and
retains the Co(III) oxidation state. Similar participation of
charge transfer in the rate-limiting transition state between high-
valent metal nitrenes/imidos and sulfides has been recently
showcased for many other nitrene-transfer catalysts64 and is now
established as a common mechanistic feature.
In a previous comprehensive study from our lab,44 we have

shown that a library of Mn(II) catalysts, supported by the vast
majority of the ligands used in the present work (L1−15H3),
mediates alkene aziridinations with reactivity that increases in
parallel with increasing electrophilicity of the putative
[MnIII]−•NTs active oxidant. Moreover, the electrophilicity
criterion holds across the base metals, inasmuch as the reactivity
of the best performingMn(II) reagent L8Mn is inferior to that of
the more acidic L8Co. Although the electron affinity of the
metal-nitrene reigns supreme for all these reagents, the
molecular interaction between [MIII]−•NR and styrene in the
rate-limiting formation of the initial N−Cb bond, is quite distinct
with respect to the reagents explored by Latour and de Bruin.
Indeed, Hammett correlations for the aziridination of styrenes
mediated by our L8M reagents (M = Mn, Fe, Co) reveal rather
modest positive charge buildup on the α-styrenyl carbon
(increasing with metal acidity in the expected order: Fe < Mn
< Co), and require the inclusion of competitive spin-
delocalization contributions (|ρmb/ρJJ*| = 0.75 (Mn), 1.17
(Fe), 1.00 (Co); the correlation for Fe was rather weak). The
fact that these reagents demonstrate more modest charge-
transfer characteristics is consistent with the operation of
presumptive metal nitrenes ([MIII]−•NR) resting at a lower
oxidizing level than the high-valent iron and cobalt nitrenes of
Latour and de Bruin, respectively. Overall, these Mn(II)
reagents and congeners can also be accommodated under the
general EA criterion advanced by Latour (after all, they are
catalysts engaged in typical electrophilic radical reactions),
although they are not characterized by a dominant charge-
transfer component. Incidentally, a strongly enhanced radical
contribution, as in the case of Betley’s iron dipyrrinato
complexes (|ρmb/ρJJ*| = 0.04 for NAd),18e has been
interpreted42 as the result of a competitive energy barrier for
the second, ring-closing step (radical rebound).
The library of the Co(II) reagents (S = 3/2) reported in this

work showcases some surprising deviations from the EA
criterion. Although the importance of the electrophilicity of
the metal-nitrene can still be detected in the relative enhanced
yields provided by the Co(II) compounds possessing acyl-
versus aryl- or alkyl-substituted ligands, the trend is certainly not
as smooth and predictable as that previously encountered with

the Mn(II) reagents.44 Indeed, a closer inspection of the acyl-
substituted subset of the Co(II) library of reagents reveals a wide
range of yields in the aziridination of styrene that cannot be
correlated with the anticipated electrophilicities of the
corresponding cobalt-nitrene moieties. To further pinpoint the
provenance of these disparities, we selected the high-yielding
L8Co (−COCF3 arm) and L4Co (−COCMe3 arm) for further
investigation. The L8Cowas previously studied44 in tandemwith
the L8Mn and L8Fe congeners and found to bemore reactive and
selective than the other two base metal analogues. Mechanistic
and computational studies showed that all three L8 M reagents
follow a two-step styrene aziridination path (turnover-limiting
addition of [L8MIII]−•NTs to the β-styrenyl carbon followed by
product-determining ring-closure via radical rebound), with
activation barriers in the order Fe >Mn >Co for both steps. The
trend is consistent with the anticipated metal-nitrene electro-
philicities (first step) and ease of reduction from M(III) to
M(II) (second step), hence highlighting the dominant role of
EA in both steps of styrene aziridination (aliphatic olefins do not
follow the same trend for the second step).
The representative case of L4Co, however, presents a

conundrum, inasmuch as its reactivity in terms of styrene
aziridination yields is comparable to that provided by L8Co.
More importantly, the rate of product buildup in the first hour of
the reaction mediated by L4Co is superior to that of L8Co
(Figure 8). These results are difficult to reconcile for a reagent
such as L4Co, whose Co(II/III) couple is cathodically shifted by
500 mV versus that of L8Co, and its nitrene derivative
[L4Co]NTs is computed to have a lower global electrophilicity
index (GEI) than that of [L8Co]NTs, in agreement with the
electronic nature of the CMe3 and CF3 substituents. In addition,
the enhanced reactivity of L4Co deviates from that of the
corresponding L4Mn and L4Fe reagents, which exhibit
significantly lower yields (and rates) in styrene aziridinations
by comparison to the L8Mn and L8Fe analogues, in line with
their electrophilic characteristics.
Mechanistic analysis of the operation of L4Co in styrene

aziridination indicate that both polar (σmb) and spin-
delocalization (σJJ*) parameters are needed to fit Hammett
plots, suggesting that both modest positive charge buildup and
radical stabilization participate in the turnover-limiting step. The
unexpected preponderance of the polar effect for L4Co by
comparison to L8Co can be traced both in the slightly higher
values of absolute ρmb (−0.58) and relative |ρmb/ρJJ*| (1.17)
than those observed for L8Co (ρmb = −0.56, |ρmb/ρJJ*| = 1.0).
The secondary KIE values obtained from the competition
between styrene and selectively deuterated styrene in aziridina-
tions confirm that both catalysts operate via an initial, turnover-
limiting N−Cb bond formation step, but also indicate that the
L4Co mediated pathway incorporates more significant rehy-
bridization of the β-styrenyl carbon in the transition state, hence
placing this TS energetically closer to the resulting radical
intermediate [L4Co]N(Ts)−CH2−•CH2Ph. Moreover, the
ring-closing step (radical rebound) seems to operate via a
miniscule energy barrier for both L4Co and L8Co styrene
aziridinations, but the one for L4Co is even more suppressed
than that for L8Co, as judged by the superior retention of
stereochemistry in the aziridination of the sensitive substrate cis-
β-styrene. This runs counter to what is usually the main driving
force for the aziridine-ring closure of styrene, namely the ease of
reduction from Co(III) to Co(II).22g,44,65 All these mechanistic
observations would have been perfectly in line, had the
supporting L4 ligand been more electron-withdrawing than L8.
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DFT calculations on the electronic and geometric disposition
of the presumptive [L4Co]NTs vis-a-̀vis the previously explored
[L8Co]NTs highlight how a small ligand modification can result
in a major electronic rearrangement. First, the ground state of
[L4Co]NTs is computed to be the quartet (S = 3/2), positioned
slightly underneath the sextet (S = 5/2). The sextet is the clear
ground state of [L8Co]NTs, presumably due to the weaker
ligand field provided by the L8 ligand. Geometrically, both cobalt
nitrenes are quite similar, their most outstanding feature being
the elongation of one of the equatorial N residues to a
noncoordinating position. However, spin-density calculations
reveal that the noncoordinating arm of [L4Co]NTs is one-
electron oxidized, whereas the corresponding arm of
[L8Co]NTs is redox innocent. The single-electron distribution
of the resulting N-aryl amidyl radical in [L4Co]NTs is spread
throughout the noncoordinating arm, with almost half of the
spin density being localized on the N atom. Apparently, the
electron withdrawing CF3 residue protects the noncoordinating
arm of [L8Co]NTs from a similar one-electron oxidation. The
overall electronic picture for the ground state of the two cobalt
nitrenes is schematically summarized in Figure 12. As noted
above, the [L4Co]NTs sextet (α-spin on the N-aryl amidyl
radical) is calculated to be only 0.1 kcal/mol higher in free
energy relative to the quartet.

Whereas a definitive justification for the higher reactivity of
L4Co, in spite of lower electrophilicity, versus L8Co cannot be
provided at the present time, the following observations should
be taken into account:

(i) Although it cannot be excluded, it is deemed rather
unlikely that the ease of formation of the cobalt-nitrene
itself (presumably favoring [L4Co]NTs) will be a
contributing factor, since our previous calculations for
the reaction of [L8MII] (M = Mn, Fe, Co) and PhINTs
indicate almost instantaneous generation of [L8M]NTs.
Rate-limiting metal-nitrene formation is more common
with organic azides (RN3).

66

(ii) The fact that L4M (M=Mn, Fe), as well as a wide range of
other Mn(II) reagents, exhibit reactivities consistent with
the EA criterion, whereas L4Co and other Co(II) reagents
demonstrate deviations, suggest that ligand-centered
contributions to the overall oxidizing ability of the reagent
may enable more favorable reactivity channels. Indeed,
[LCoIII]NTs is more likely to store oxidizing equivalents
on ligand residues, as inferred by the cyclic voltammo-
grams of the LCoII reagents, and anticipated due to the
superior oxidizing power of Co(III) versus Mn(III) or
Fe(III). Among other possibilities, N-aryl amidyl radicals
are known to add to alkenes, at least intramolecularly,67

and more electrophilic N-aryl sulfonamidyl radicals can
even add intermolecularly.68 Although they are not

expected to outcompete the metal-bound nitrene radical,
they might offer stabilizing interactions not yet realized.
On the other hand, the similarity of the Hammett
parameters for L4Co and L8Co suggests that the electronic
differences in the ground states of [L4Co]NTs and
[L8Co]NTs may have only a small effect on their
reactivities, but this point requires further elaboration
once more information is available for the corresponding
transition states.

(iii) Multiple spin-state reactivity channels,65c,69 such as those
offered by the almost isoenergetic quartet and sextet states
of [L4Co]NTs, may afford enhanced reactivity profiles in
aziridinations70 by comparison to a potentially single
spin-state operation by the [L8Co]NTs sextet.

(iv) London dispersion (LD) interactions applying intra-
molecularly between highly polarizable alkyl substituents
(also known as σ−σ interactions) are nowwell established
stabilizing forces of sterically congested molecules in
solution, by means of favorable enthalpic contributions.71

The tert-Bu group and other conformationally rigid alkyl
groups (flexible alkyl groups have an unfavorable entropic
impact)72 have been credited as “dispersion energy
donors”,73 and deemed responsible for stabilizing many
highly congested organic and inorganic compounds.71−74

More importantly, LD forces have started receiving
recognition as contributors to observed chemical
reactivity and catalytic outcomes.75 In the more tight
reaction cavity of cobalt reagents, the stabilization offered
by tert-Bu groups via LD interactions can play a significant
role, as already noted in our initial dispersion-corrected
DFT calculations. Interestingly, the L7Co reagent, which
carries the less polarizable i-Pr substituent, demonstrates
lower aziridination rates, not unlike those of L8Co.

Future experimental and computational research will seek to
disentangle and quantify the factors contributing to the
enhancement of catalytic reactivity above and beyond the
underlying electrophilic character of the active oxidant, and
further explore whether reagents with other rigid alkyl
substituents can be superior mediators of nitrene-transfer
chemistry.
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