ORGANOMETALLICS

Rhodium(I)-Catalyzed Pauson–Khand-type [3 + 2 + 1] Cycloaddition Reaction of Ene-Vinylidenecyclopropanes and CO: A Highly Regioand Stereoselective Synthetic Approach for the Preparation of Azaand Oxa-Bicyclic Compounds

Bei-Li Lu, Yin Wei, and Min Shi*

State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China

Supporting Information

ABSTRACT: In this paper, a novel Rh(I)-catalyzed Pauson– Khand-type [3 + 2 + 1] cycloaddition reaction of enevinylidenecyclopropanes (Ene-VDCPs) and carbon monoxide (CO) has been developed to furnish a series of aza- and oxabicyclic compounds in moderate to good yields in a highly regio- and diastereoselective manner, which provides an alternative and efficient synthetic approach for the access of bicyclic cyclohexanone frameworks. The substrate scope and limitations and a plausible mechanism are discussed.

■ INTRODUCTION

Since the first paper reported by Khand and Pauson and their co-workers in 1971, the Pauson-Khand reaction has become a powerful synthetic tool in organic chemistry and other related areas.¹ Recently, a metal-catalyzed Pauson-Khand reaction for the coupling of enynes with carbon monoxide (CO) has been developed as an efficient protocol to afford bicyclic frameworks, which are important structural motifs in many biologically active compounds.² Among the employed metal catalysts, rhodium complexes³ have achieved remarkable progress and have attained great popularity thus far, probably due to their mild conditions, low catalyst loadings, and good control of stereoselectivities. Moreover, dienes,⁴ allenes,⁵ heteroalkenes,⁶ and the recently reported cyclopropanes⁷ and cyclopropenes⁸ could be also used as alkene sources to produce Pauson-Khand-type reaction products in the presence of an alkyne. However, employing novel substrates and further optimizing the catalysts and reaction conditions for Pauson-Khand-type reactions are still highly desirable, enabling the discovery of unprecedented reaction modes.

Vinylidenecyclopropanes (VDCPs) bearing an allene moiety connected with a highly strained cyclopropane have been fascinating building blocks in organic synthesis and have attracted much interest from organic chemists. In the past few years, the chemistry of VDCPs has been extensively studied due to their unique structural and electronic properties.^{9,10} Recently, we reported a rhodium(I)-catalyzed intramolecular cycloaddition of yne- and ene-vinylidenecyclopropanes (Yneand Ene-VDCPs) to provide functionalized polycyclic compounds containing cyclobutene or azacyclooctene moieties in a highly regio- and diastereoselective manner.¹⁰¹ In view of the significant biological properties of the cyclic units, we attempted to develop a practical Pauson–Khand-type reaction using functionalized VDCPs as the substrates. It can be envisioned that the control of regio- and stereoselectivity in this reaction might be difficult because different potential reaction sites, including allene, alkene, and cyclopropane, existed in the starting materials. Herein, we wish to report a highly regio- and diastereoselective Rh(I)-catalyzed intramolecular Pauson–Khand-type [3 + 2 + 1] cycloaddition reaction of Ene-VDCPs and CO to give aza- or oxa-bicyclic cyclohexanone derivatives.

RESULTS AND DISCUSSION

Initially, the Ene-VDCP 1a was used as a model substrate to examine the Pauson-Khand-type [3 + 2 + 1] cycloaddition reaction with a rhodium(I) catalyst under a carbon monoxide atmosphere, and the results are summarized in Table 1. As a first try, no reaction happened by using $RhCl(CO)(PPh_3)_2$ as the catalyst (Table 1, entry 1). However, when 5 mol % of [Rh(CO)₂Cl]₂ was used as the catalyst, the Pauson-Khandtype [3 + 2 + 1] cycloaddition product **2a** was obtained in 56% yield with an 11.0:1.0 ratio of the diastereoselectivity (Table 1, entry 2). An X-ray diffraction study of the major diastereomer of 2a was carried out, and its configuration has been unambiguously determined as cis. The related CIF data are presented in the Supporting Information, and an ORTEP drawing is shown in Figure $1.^{11}$ Then we screened a variety of rhodium complexes in 1,2-dichloroethane (DCE) and found that the yield of 2a was quite sensitive to the rhodium complex employed. In the case of IPrRh(cod)Cl (IPr = 1,3-bis(2,6-

 Received:
 May 17, 2012

 Published:
 June 8, 2012

20^j

 $[Rh(cod)Cl]_2$

		N Ts CO (1.0 atm)	H H H	H N-Ts		
	″ 1	а	cis- 2a	trans- 2a		
entry ^a	cat.	additive (amt (mol %))	solvent	T (°C)	<i>t</i> (h)	yield (%) ^b (cis:trans)
1	$RhCl(CO)(PPh_3)_2$		DCE	80	24	С
2	$[Rh(CO)_2Cl]_2$		DCE	80	5	56 (11.1:1.0)
3	IPrRh(cod)Cl		DCE	80	5	45 (10.0:1.0)
4	$Rh(cod)_2SbF_6$		DCE	80	5	62 (11.1:1.0)
5	$[Rh(cod)Cl]_2$		DCE	80	5	76 (12.5:1.0)
6	[Rh(cod)Cl]2/dppp		DCE	80	5	68 (9.1:1.0)
7	[Rh(cod)Cl]2/dppf		DCE	80	5	71 (8.3:1.0)
8	[Rh(cod)Cl] ₂ /DPEPhos		DCE	80	24	d
9	[Rh(cod)Cl] ₂ /PPh ₃		DCE	80	24	е
10	$[Rh(cod)Cl]_2$		THF	70	24	trace
11	$[Rh(cod)Cl]_2$		dioxane	80	5	20 (4.7:1.0)
12	$[Rh(cod)Cl]_2$		DMF	80	24	complex
13	$[Rh(cod)Cl]_2$		CH_2CI_2	35	12	$31^{f}(11.8:1.0)$
14	$[Rh(cod)Cl]_2$		CHCI ₃	50	24	23 (6.3:1.0)
15	$[Rh(cod)Cl]_2$		DCE	60	12	59 (11.8:1.0)
16	$[Rh(cod)Cl]_2$	NMO (1.0)	DCE	80	5	75 (11.8:1.0)
17^g	$[Rh(cod)Cl]_2$		DCE	80	5	72 (4.4:1.0)
18^{h}	$[Rh(cod)Cl]_2$		DCE	80	5	76 (11.8:1.0)
19 ^{<i>i</i>}	$[Rh(cod)Cl]_2$		DCE	80	5	64 (11.1:1.0)

^{*a*}All reactions were carried out using 1a (0.1 mmol) in the presence of catalyst (5 mol %) in various solvents (1.0 mL), for entries 6–9, using 10 mol % ligands. Abbreviations: dppp = 1,3-bis(diphenylphosphino)propane, dppf = 1,1'-bis(diphenylphosphino)ferrocene, DPEPhos = bis[(2-diphenylphosphino)phenyl] ether, NMO = 4-methylmorpholine *N*-oxide. ^{*b*}Isolated yield. ^{*c*}84% of 1a was recovered. ^{*d*}54% azacyclooctene derivative was obtained, and 29% of 1a was recovered. ^{*e*}86% of 1a was recovered. ^{*f*}22% of 1a was recovered. ^{*g*}CO (5.0 atm). ^{*h*}Using 10 mol % catalyst. ^{*i*}The reaction was carried out in 2.0 mL of DCE. ^{*j*}The reaction was carried out in 0.5 mL of DCE.

DCE

80

5

Figure 1. ORTEP drawing of cis-2a.

diisopropylphenyl)imidazol-2-ylidene) and a cationic rhodium complex such as $Rh(cod)_2SbF_{6}$, adduct **2a** was afforded in 45% and 62% yields as cis and trans isomeric mixtures, respectively (Table 1, entries 3 and 4). However, when $[Rh(cod)Cl]_2$ was used as the catalyst, the reaction afforded **2a** in 76% yield exclusively with a higher diastereoselectivity (cis:trans = 12.5:1.0) in DCE at 80 °C (Table 1, entry 5), and no other

kinds of products such as the azacyclooctene derivatives reported by our group previously¹⁰¹ were observed. The reaction for the formation of azacyclooctene derivatives was carried out in toluene/acetonitrile (2/1) in the presence of $[RhCl(CO)_2]_2$ and CO, suggesting that the coordinative acetonitrile solvent can significantly affect the reaction outcome. Other catalyst systems, such as [Rh(cod)Cl]₂/ diphosphine ligand (dppp or dppf), produced 2a in reduced yields (Table 1, entries 6 and 7). [Rh(cod)Cl]₂/DPEPhos did not catalyze this Pauson-Khand-type [3 + 2 + 1] cycloaddition reaction, and the azacyclooctene derivative¹⁰¹ was formed in 54% yield and 29% of 1a was recovered (Table 1, entry 8). [Rh(cod)Cl]₂/PPh₃ was also not an efficient catalyst system (Table 1, entry 9). We next attempted to optimize the reaction conditions by using $[Rh(cod)Cl]_2$ as the catalyst in various solvents. Among the examined solvents, DCE was found to be the optimal solvent and other solvents such as tetrahydrofuran (THF), dioxane, DMF, CH₂Cl₂, and CHCl₃ were not suitable for this reaction, suggesting the strong solvent effect on this reaction (Table 1, entries 10-14). Reducing the reaction temperature to 60 $^{\circ}$ C diminished the yield of **2a** (Table 1, entry 15). 4-Methylmorpholine N-oxide (NMO), which can lead to dissociation of CO from the metal center and allow coordination of the olefin to accelerate the reaction rate,¹² has been also used as an additive in this Pauson–Khand-type [3] + 2 + 1] cycloaddition reaction, affording 2a in 75% yield with 11.8:1.0 diastereoselectivity (cis:trans) (Table 1, entry 16). Furthermore, carrying out the reaction under a higher pressure

59 (12.5:1.0)

of CO was less efficient for the production of **2a** (Table 1, entry 17). Increasing the employed amount of catalyst $[Rh(cod)Cl]_2$ to 10 mol % did not improve the yield of **2a** (Table 1, entry 18). We also examined the impact of the concentration of the reaction mixtures on the reaction outcomes and found that the yields of **2a** became lower either by increasing or decreasing the concentration of the substrates (Table 1, entries 19 and 20). Therefore, the best reaction conditions have been identified as to carry out the reaction in 1.0 mL of DCE at 80 °C using 0.1 mmol of substrate **1a** in the presence of 5 mol % $[Rh(cod)Cl]_2$ and under 1.0 atm CO atmosphere.

Having these optimal reaction conditions in hand, we next examined the generality of this highly regio- and diastereoselective intramolecular reaction of Ene-VDCPs 1, and the results are summarized in Table 2. In the cases of Ene-VDCPs 1b-e

Table 2. Rh(I)-Catalyzed Pauson-Khand-Type [3 + 2 + 1] Cycloaddition Reaction of Ene-VDCPs 1 under the Optimal Conditions

R^1 R^1 R^3 R^2	X [Rh(coor DCE, 80	l)Cl] ₂ (5 mc CO (1.0 at °C, 5 h	^{0 %)} → R [°] m)		$ + R^{1} \xrightarrow{R^{1}}_{0} \xrightarrow{H}_{\tilde{R}^{3}} $
1				cis- 2	trans- 2
entry ^a	1; R ¹ , R ¹	\mathbb{R}^2	R ³	х	product, yield (%) ^b (cis:trans)
1	1 b ; −(CH ₂) ₅ −	Н	Н	NTs	2b , 73 (16.7:1.0)
2	1c; -(CH ₂) ₄ -	Н	Н	NTs	2c , 46 (16.7:1.0)
3	1d; -(CH ₂) ₆ -	Н	Н	NTs	2d , 50 (9.5:1.0)
4	$\begin{array}{c} \mathbf{1e;} C_4 H_9 \\ C_4 H_9 \end{array}$	Н	Н	NTs	2e , 55 (11.8:1.0)
5	1f; CH ₃ /CH ₃	Н	Н	NBs	2f, 64 (15.4:1.0)
6	1g; CH _{3/} CH ₃	Н	Н	NNs	2g, 54 (6.9:1.0)
7	1 h ; −(CH ₂) ₅ −	Н	Н	NBs	2h , 69 (>20.0:1.0)
8	1i; -(CH ₂) ₅ -	Н	Н	NNs	2i , 48 (12.5:1.0)
9	1j, CH ₃ /CH ₃	Н	CH_3	NTs	2j, 63 (>20.0:1.0)
10	1k; -(CH ₂) ₅ -	Н	CH ₃	NBs	2k, 57 (>20.0:1.0)
11	1l; CH ₃ /CH ₃	Н	Н	0	2l , 45 (>20.0:1.0)
12	1m; CH ₃ / CH ₃	C ₆ H ₅	Н	NTs	complex
13	1n; CH ₃ / CH ₂	Н	C_6H_5	NTs	complex

^{*a*}All reactions were carried out using 1 (0.2 mmol) in the presence of $[Rh(cod)CI]_2$ (5 mol %) in DCE (2.0 mL) under a CO atmosphere (1.0 atm) at 80 °C for 5 h. Abbreviations: Ts = 4-toluenesulfonyl, Bs = 4-bromobenzenesulfonyl, Ns = 4-nitrobenzenesulfonyl. ^{*b*}Isolated yield.

(R² = H, R³ = H, X = NTs), regardless of whether R¹ is a cyclic substituent $(-(CH_2)_5 - \text{ecyclohexyl}, -(CH_2)_4 - \text{ecyclopentyl}, -(CH_2)_6 - \text{ecycloheptyl})$ or a noncyclic substituent (C₄H₉ = butyl), these Rh(I)-catalyzed reactions proceeded smoothly to give the desired products **2b**-**e** in moderate to good yields (46–73%) with high diastereoselectivities ((9.5–16.7):1.0) (Table 2, entries 1–4). Changing the substituent at the nitrogen atom from Ts to Bs and Ns (Bs = 4bromobenzenesulfonyl, Ns = 4-nitrobenzenesulfonyl) produced the corresponding bicyclic cyclohexanone derivatives **2f**-**i** in 48–69% yields with (6.9–20.0):1.0 diastereoselectivities (Table 2, entries 5–8). As for substrates **1**j,k bearing a methyl group at the internal position of the alkene moiety, this Rh(I)catalyzed Pauson–Khand-type [3 + 2 + 1] cycloaddition reaction could also proceed smoothly to give the desired products **2j**,**k** in moderate yields and excellent cis diastereoselectivities (Table 2, entries 9 and 10). The structure of **2k** was unambiguously determined by an X-ray diffraction study. Its CIF data are presented in the Supporting Information, and an ORTEP drawing is shown in Figure 2.¹³ Furthermore, the

Figure 2. ORTEP drawing of cis-2k.

oxygen-tethered Ene-VDCP **11** could be also successfully applied in this reaction under the optimal reaction conditions, furnishing the corresponding oxa-bicyclic adduct **21** in 45% yield and excellent diastereoselectivity (Table 2, entry 11). However, this reaction was not suitable for substrates **1m**,**n** ($\mathbb{R}^2 = C_6H_5$ or $\mathbb{R}^3 = C_6H_5$). The large phenyl group may affect the coordination of the metal catalyst with the alkene moiety and further affect the cyclometalation process, giving complex product mixtures. Meanwhile, the electronic effect of the phenyl group may also have some influence on this process (Table 2, entries 12 and 13).

Moreover, when a methyl group was introduced at the terminal position of the alkene substituent, this Pauson-Khand-type [3 + 2 + 1] cycloaddition reaction for substrate 10 proceeded efficiently to give the desired product 20 in 52% yield with high diastereoselectivity (Scheme 1, eq 1). The structure of the major diastereomer 20 was also characterized by an X-ray diffraction study. Its CIF data are presented in the Supporting Information, and an ORTEP drawing is shown in Figure 3.¹⁴ Extending the length of the tethered alkene moiety, we found that the expected 6,6-fused azabicyclic derivative 2p could be produced in 46% yield with a 16.7:1.0 diastereoselectivity (Scheme 1, eq 2). On the basis of the X-ray diffraction study, the major diastereomer of 2p was identified as having a trans onfiguration (Figure 4), 15 which is different from the case for the 5,6-fused azabicyclic derivatives (the major diastereomer is cis).

Further transformations of product 2a are shown in Scheme 2. As can be seen from Scheme 2, the corresponding epoxy product 3a could be obtained in 72% yield with 15.4:1.0 diastereoselectivity upon subjecting 2a to a conventional O₃ oxidation procedure (Scheme 2, eq 1).¹⁶ Moreover, the

Figure 3. ORTEP drawing of the major diastereomer 20.

C22

Figure 4. ORTEP drawing of trans-2p.

carbonyl group in product 2a could be easily reduced by treatment with Red-Al reagent in toluene, thus giving the

Scheme 2. Transformations of Products 2a,h

corresponding alcohol derivative **4a** in high yield and stereoselectivity (Scheme 2, eq 2). When the Bs substituent was introduced at the nitrogen atom, in addition to the reduction of the carbonyl group, the bromine atom also underwent hydrogenolysis to the to give the corresponding product **4h** smoothly (Scheme 2, eq 3).¹⁷ The structures of the major diastereomers **3a** and **4h** were confirmed by X-ray diffraction studies, and their CIF data are presented in the Supporting Information.^{18,19}

On the basis of the above results, a plausible mechanism for the formation of azabicyclic cyclohexanone derivatives **2** is outlined in Scheme 3. The selective coordination of the internal double bonds of the allene and alkene moieties in substrate **1a** to the rhodium(I) complex gives intermediate **A**. Insertion of the rhodium(I) center into the distal C–C bond of cyclopropane produces the $(\pi$ -allyl) $(\sigma$ -alkyl)Rh^{III} intermediate **B**.^{7a,e,8} Subsequent isomerization of intermediate **B** affords the rhodacyclobutane intermediate **C**,²⁰ which undergoes insertion of CO and the intramolecular C=C bond to give intermediate **D** or **D**'. Then product **2a** could be obtained from intermediate **D** or **D**' via reductive elimination along with the regeneration of the rhodium(I) catalyst (Scheme 3).

In summary, we have developed an efficient Rh(I)-catalyzed Pauson–Khand-type [3 + 2 + 1] cycloaddition reaction of Ene-VDCPs 1 under a CO atmosphere to produce the corresponding 5,6-fused or 6,6-fused bicyclic cyclohexanone derivatives in moderate to good yields with high diastereose-lectivities. Our findings in this paper offer an easy one-pot process to construct complex bicyclic structures, which are important building blocks in organic synthesis. The scope and limitations of this reaction have been carefully examined, and the possible reaction mechanism has been discussed. Further applications of this practical rhodium-catalyzed Pauson–Khand-type [3 + 2 + 1] cycloaddition reaction and more detailed mechanistic investigations are under way in our laboratory.

EXPERIMENTAL SECTION

General Methods. Melting points were obtained with a Yanagimoto micro melting point apparatus and are uncorrected. 1 H and 13 C NMR spectra were recorded for solutions in CDCl₃ with

Scheme 3. Plausible Mechanism for the Formation of 2a

D'

tetramethylsilane (TMS) as internal standard; *J* values are in Hz. Mass and HRMS spectra were recorded by the EI, ESI, or MALDI method. Organic solvents used were dried by standard methods when necessary. Commercially obtained reagents were used without further purification. All reactions were monitored by TLC with Huanghai GF_{254} silica gel coated plates. Flash column chromatography was carried out using 300–400 mesh silica gel at increased pressure. All reactions were performed under 1.0 atm of carbon monoxide using standard Schlenk techniques. The substrates 1a-d,f-j,o are all known compounds, and the detailed spectroscopic data are included in the previous literature.¹⁰¹

Typical Procedure for the Preparation of the Ene-Vinylidenecyclopropanes 1e,k,m,n. N-Allyl-N-((3-(2-butylhex-1-enylidene)-2,2-dimethylcyclopropyl)methyl)-4-tolylsulfonamide (1e). Under an argon atmosphere, triphenylphosphine (165 mg, 0.63 mmol) and N-allyl-4-methylbenzenesulfonamide (139 mg, 0.66 mmol) were added into a Schlenk tube. Then, 5.0 mL of tetrahydrofuran (THF) was added and the reaction mixture was cooled to 0 °C. (3-(2-Butylhex-1-enylidene)-2,2-dimethylcyclopropyl)methanol (142 mg, 0.6 mmol),²¹ which was dissolved in THF (1.0 mL), was added into the above Schlenk tube. Then diisopropyl azodicarboxylate (DIAD; 0.12 mL, 0.63 mmol) was added dropwise at 0 °C and the mixture warmed to room temperature naturally. On completion of the reaction, the solvent was removed under reduced pressure and the residue was purified by flash column chromatography. Yield: 147 mg, 57% of a yellow oil. ¹H NMR (CDCl₃, 400 MHz, TMS): δ 0.85–0.89 (m, 6H, 3CH₃), 1.18 (s, 3H, CH₃), 1.20 (s, 3H, CH₃), 1.27–1.40 (m, 8H, 4CH₂), 1.63 (t, J = 6.8 Hz, 1H, CH), 1.93-2.01 (m, 4H, 2CH₂), 2.41 (s, 3H, CH₃), 3.16 (dd, J_1 = 6.8 Hz, J_2 = 14.4 Hz, 1H, CH), 3.52 (dd, *J*₁ = 6.8 Hz, *J*₂ = 14.4 Hz, 1H, CH), 3.87 (d, *J* = 6.0 Hz, 2H, CH₂), 5.11 (dd, $J_1 = 1.6$ Hz, $J_2 = 10.4$ Hz, 1H, CH), 5.18 (dd, $J_1 = 1.6$ Hz, J_2 = 17.2 Hz, 1H, CH), 5.61-5.71 (m, 1H, CH), 7.28 (d, J = 8.8 Hz, 2H, Ar), 7.71 (d, J = 8.8 Hz, 2H, Ar). ¹³C NMR (CDCl₃, 100 MHz, TMS): δ 13.9, 19.2, 21.4, 22.3, 23.9, 25.8, 29.5, 29.7, 29.9, 32.8, 32.9, 46.8, 49.6, 92.1, 108.3, 117.8, 127.1, 129.5, 133.3, 137.3, 143.0, 184.2. IR (CH₂Cl₂): ν 2957, 2924, 2871, 2858, 2005, 1599, 1455, 1345, 1260, 1159, 1091, 1017, 927, 799, 758, 660 cm⁻¹. MS (ESI): m/z 430 (M⁺ + 1). HRMS (ESI): calcd for C₂₆H₄₀NO₂S 430.277 43, found 430.276 42.

4-Bromo-N-((3-(cyclohexylidenemethylene)-2, 2dimethylcyclopropyl)methyl)-N-(2-methylallyl)benzenesulfonamide (**1***k*). Yield: 139 mg, 50% of a yellow oil. ¹H NMR (CDCl₃, 300 MHz, TMS): δ 1.14 (s, 3H, CH₃), 1.17 (s, 3H, CH₃), 1.53–1.59 (m, 7H, 7CH), 1.69 (s, 3H, CH₃), 2.10–2.14 (m, 4H, 4CH), 3.09 (dd, J_1 = 7.2 Hz, J_2 = 14.4 Hz, 1H, CH), 3.61 (dd, J_1 = 6.0 Hz, J_2 = 14.4 Hz, 1H, CH), 3.78 (s, 2H, 2CH), 4.88 (d, J = 9.3 Hz, 2H, 2CH), 7.63 (d, J = 8.7 Hz, 2H, Ar), 7.71 (d, J = 8.7 Hz, 2H, Ar). ¹³C NMR (CDCl₃, 100 MHz, TMS): δ 19.2, 19.9, 24.0, 25.9, 26.0, 27.3, 27.4, 29.2, 32.0, 32.3, 47.0, 53.1, 89.6, 106.1, 113.5, 127.1, 128.6, 132.1, 139.5, 140.3, 182.2. IR (CH₂Cl₂): ν 2925, 2854, 2007, 1716, 1575, 1471, 1447, 1388, 1343, 1260, 1161, 1098, 1068, 1010, 917, 798, 776, 735 cm⁻¹. MS (ESI): m/z 464 (M⁺ + 1). HRMS (ESI): calcd for C₂₃H₃₀BrNO₂S 463.1181, found 463.1178.

N-*Cinnamyl*-*N*-((2,2-*dimethyl*-3-(2-*methylprop*-1-*enylidene*)*cyclopropyl*)*methyl*)-4-tolylsulfonamide (1**m**). Yield: 136 mg, 54% of a yellow oil. ¹H NMR (CDCl₃, 400 MHz, TMS): δ 1.19 (s, 3H, CH₃), 1.20 (s, 3H, CH₃), 1.68 (t, *J* = 6.8 Hz, 1H, CH), 1.73 (s, 6H, 2CH₃), 2.39 (s, 3H, CH₃), 3.15 (dd, *J*₁ = 6.8 Hz, *J*₂ = 14.4 Hz, 1H, CH), 3.65 (dd, *J*₁ = 6.8 Hz, *J*₂ = 14.4 Hz, 1H, CH), 3.98–4.10 (m, 2H, CH₂), 5.93–6.01 (m, 1H, CH), 6.45 (d, *J* = 15.6 Hz, 1H, CH), 7.21–7.29 (m, 7H, Ar), 7.73 (d, *J* = 8.4 Hz, 2H, Ar). ¹³C NMR (CDCl₃, 100 MHz, TMS): δ 19.3, 21.2, 21.3, 21.5, 23.9, 25.9, 29.5, 46.7, 49.0, 89.7, 98.6, 124.4, 126.2, 127.1, 127.6, 128.4, 129.5, 133.0, 136.3, 137.4, 143.0, 185.3. IR (CH₂Cl₂): ν 2963, 2924, 2855, 2010, 1729, 1598, 1495, 1448, 1341, 1261, 1159, 1093, 1019, 969, 923, 800, 742, 695, 657 cm⁻¹. MS (ESI): *m*/*z* 422 (M⁺ + 1). HRMS (ESI): calcd for C₂₆H₃₁NNaO₂S 444.196 77, found 444.197 74.

N-*(*(*2*,*2*-*Dimethyl*-*3*-(*2*-*methylprop*-1-*enylidene*)*cyclopropyl*)-*methyl*)-*4*-*methyl*-*N*-(*2*-*phenylallyl*)*benzenesulfonamide* (1n). Yield: 134 mg, 53% of a yellow oil. ¹H NMR (CDCl₃, 400 MHz, TMS): δ 1.09 (s, 3H, CH₃), 1.12 (s, 3H, CH₃), 1.56 (t, *J* = 6.8 Hz, 1H, CH), 1.60 (s, 3H, CH₃), 1.68 (s, 3H, CH₃), 2.42 (s, 3H, CH₃), 3.12 (dd, *J*₁ = 6.8 Hz, *J*₂ = 14.8 Hz, 1H, CH), 3.60 (dd, *J*₁ = 6.8 Hz, *J*₂ = 14.8 Hz, 1H, CH), 4.27 (s, 2H, CH₂), 5.29 (s, 1H, CH), 5.46 (s, 1H, CH), 7.28–7.33 (m, 5H, Ar), 7.37–7.39 (m, 2H, Ar), 7.68 (d, *J* = 8.4 Hz, 2H, Ar). ¹³C NMR (CDCl₃, 75 MHz, TMS): δ 19.1, 21.16, 21.24, 21.4, 23.8, 25.7, 29.0, 47.2, 50.5, 89.6, 98.5, 114.5, 126.0, 127.1, 127.7, 128.2, 129.5, 137.0, 138.7, 142.5, 143.0, 185.2. IR (CH₂Cl₂): ν 2962, 2923, 2860, 2009, 1598, 1495, 1446, 1342, 1306, 1261, 1159, 1119, 1094, 1018, 931, 912, 803, 749, 707, 659 cm⁻¹. MS (ESI): *m/z* 422 (M⁺ + 1). HRMS (ESI): calcd for C₂₆H₃₁NNaO₂S 444.19677, found 444.198 08.

Synthesis of the Vinylidenecyclopropane Derivative 2-(Allyloxymethyl)-1,1-dimethyl-3-(2-methylprop-1-enylidene)cyclopropane (11). Under an argon atmosphere, sodium hydride (36 mg, 0.9 mmol) and (2,2-dimethyl-3-(2-methylprop-1-enylidene)cyclopropyl)methanol (91 mg, 0.6 mmol)²¹ in THF (2.0 mL) were added into a Schlenk tube. After 20 min, allyl bromide (104 μ L, 1.2 mmol) was added into the above Schlenk tube and the reaction mixture was warmed to 50 °C. On completion of the reaction the mixture was quenched by addition of water. The reaction solution was diluted with ether (10.0 mL × 3), and the organic layers were dried over anhydrous Na₂SO₄. The solvent was removed under reduced pressure and the residue was purified by a flash column chromatography. Yield: 70 mg, 61% of a yellow oil. ¹H NMR (CDCl₃, 400 MHz, TMS): δ 1.24 (s, 3H, CH₃), 1.28 (s, 3H, CH₃), 1.73 (s, 3H, CH₃), 1.75 (s, 3H, CH₃), 1.82 (dd, J_1 = 5.2 Hz, J_2 = 8.8 Hz, 1H, CH), 3.42 (dd, J_1 = 8.8 Hz, J_2 = 10.4 Hz, 1H, CH), 3.67 (dd, J_1 = 5.2 Hz, J_2 = 10.4 Hz, 1H, CH), 5.25–5.30 (m, 1H, CH), 5.87–5.96 (m, 1H, CH). ¹³C NMR (CDCl₃, 100 MHz, TMS): δ 19.1, 21.2, 21.6, 24.4, 26.1, 30.7, 69.3, 71.3, 89.2, 97.9, 116.7, 135.0, 185.4. IR (CH₂Cl₂): ν 2956, 2922, 2853, 1739, 1460, 1377, 1260, 1162, 1090, 1016, 863, 796, 700, 663 cm⁻¹. MS (%) (EI): m/z 192 (M⁺, 32), 77 (100), 91 (74), 135 (71), 105 (47), 115 (46), 41 (43), 43 (35), 119 (33); HRMS (EI): calcd for C₁₃H₂₀O 192.1514, found 192.1529.

Synthesis of the Vinylidenecyclopropane Derivative N-(But-3-enyl)-N-((3-(cyclohexylidenemethylene)-2,2dimethylcyclopropyl)methyl)-4-tolylsulfonamide (1p). Under an argon atmosphere, triphenylphosphine (165 mg, 0.63 mmol) and N-(but-3-en-1-yl)-4-methylbenzenesulfonamide (149 mg, 0.66 mmol) were added into a Schlenk tube. Then, 5.0 mL of THF was added and the reaction mixture was cooled to 0 °C. (3-(Cyclohexylidenemethylene)-2,2-dimethylcyclopropyl)methanol (115 mg, 0.6 mmol),²¹ which was dissolved in THF (1.0 mL), was added into the above Schlenk tube. Then DIAD (0.12 mL, 0.63 mmol) was added dropwise at 0 °C and the mixture was warmed to room temperature naturally. On reaction completion, the solvent was removed under reduced pressure and the residue was purified by flash column chromatography. Yield: 113 mg, 47% of a yellow oil. ¹H NMR (CDCl₃, 300 MHz, TMS): δ 1.17 (s, 3H, CH₃), 1.21 (s, 3H, CH₃), 1.53–1.60 (m, 7H, 7CH), 2.10-2.16 (m, 4H, 2CH₂), 2.27-2.36 (m, 2H, CH₂), 2.42 (s, 3H, CH₃), 2.99 (dd, $J_1 = 7.8$ Hz, $J_2 = 14.4$ Hz, 1H, CH), 3.19–3.31 (m, 2H, CH₂), 3.69 (dd, $J_1 = 5.7$ Hz, $J_2 = 14.4$ Hz, 1H, CH), 4.99– 5.07 (m, 2H, CH₂), 5.64-5.78 (m, 1H, CH), 7.29 (d, J = 7.8 Hz, 2H, Ar), 7.71 (d, J = 7.8 Hz, 2H, Ar). ¹³C NMR (CDCl₃, 75 MHz, TMS): δ 19.3, 21.4, 23.7, 26.00, 26.03, 27.2, 27.4, 29.5, 32.0, 32.3, 33.2, 46.6, 47.6, 89.8, 106.1, 116.7, 127.0, 129.6, 134.9, 137.2, 142.9, 182.1. IR (CH₂Cl₂): v 2956, 2924, 2854, 2008, 1728, 1448, 1343, 1260, 1159, 1091, 1018, 918, 800, 746, 658 cm⁻¹. MS (ESI): m/z 400 (M⁺ + 1). HRMS (ESI): calcd for C₂₄H₃₃NNaO₂S 422.212 42, found 422.214 35.

Typical Procedure for the Preparation of 6,7-Bis(propan-2ylidene)-2-tosylhexahydro-1H-isoindol-5(6H)-one (2a). Under an argon atmosphere, [Rh(cod)Cl]₂ (5.0 mg, 0.01 mmol) was added into a Schlenk tube. Then the atmosphere was pumped off and a balloon filled with CO was connected to the reaction flask. A solution of substrate 1a (69 mg, 0.2 mmol) in 1,2-dichloroethane (DCE; 2.0 mL) was added into the Schlenk tube. The reaction mixture was stirred at 80 °C for 5 h. Then, the solvent was removed under reduced pressure and the residue was purified by flash column chromatography. Yield: 57 mg, 76% of a white solid. Mp: 138-140 °C. (cis-2a) ¹H NMR (CDCl₂, 300 MHz, TMS): δ 1.40 (s, 3H, CH₂), 1.44 (s, 3H, CH₃), 1.73 (s, 3H, CH₃), 1.77 (s, 3H, CH₃), 2.17-2.27 (m, 2H, 2CH), 2.33-2.41 (m, 2H, 2CH), 2.45 (s, 3H, CH₃), 2.71-2.82 (m, 1H, CH), 3.53 (t, J = 8.4 Hz, 1H, CH), 3.64–3.75 (m, 2H, 2CH), 7.32 (d, J = 7.8 Hz, 2H, Ar), 7.62 (d, J = 7.8 Hz, 2H, Ar) (7.74 (d, J = 7.8 Hz, 2H, Ar))Hz, 2H, Ar, trans-2a)). (cis-2a) ¹³C NMR (CDCl₃, 100 MHz, TMS): δ 19.7, 21.3, 21.4, 21.7, 23.7, 34.5, 39.7, 40.5, 52.0, 53.3, 127.9, 128.1, 129.4, 131.2, 131.8, 131.9, 143.6, 148.5, 201.4. IR (CH₂Cl₂): ν 2982, 2923, 2854, 1684, 1598, 1439, 1368, 1344, 1254, 1185, 1162, 1094, 1032, 982, 832, 817, 735, 709, 682, 662, 611 cm⁻¹. MS (ESI): m/z 374 $(M^{+} + 1)$. HRMS (MALDI): calcd for C₂₁H₂₈NO₃S 374.1797, found 374.1784.

6-Cyclohexylidene-7-(propan-2-ylidene)-2-tosylhexahydro-1Hisoindol-5(6H)-one (**2b**). Yield: 60 mg, 73% of a white solid. Mp: 134–135 °C. (*cis*-**2b**) ¹H NMR (CDCl₃, 300 MHz, TMS): δ 0.89– 0.99 (m, 1H, CH), 1.07–1.17 (m, 1H, CH), 1.36–1.45 (m, 5H, CH₃ + 2CH), 1.50–1.59 (m, 2H, 2CH), 1.73 (s, 3H, CH₃), 1.77–1.80 (m, 2H, 2CH), 2.18–2.34 (m, 2H, 2CH), 2.38–2.48 (m, 6H, CH₃ + 3CH), 2.64–2.79 (m, 2H, 2CH), 3.58 (t, *J* = 8.1 Hz, 1H, CH), 3.65– 3.76 (m, 2H, 2CH), 7.31 (d, *J* = 8.1 Hz, 2H, Ar), 7.65 (d, *J* = 8.1 Hz, 2H, Ar) (7.74 (d, *J* = 8.1 Hz, 2H, Ar, *trans*-**2b**). (*cis*-**2b**) ¹³C NMR $\begin{array}{l} ({\rm CDCl}_3, 75 \ {\rm MHz}, {\rm TMS}): \delta \ 19.7, 21.4, 21.8, 26.1, 27.0, 27.5, 29.9, 31.9, \\ 34.6, \ 39.6, \ 40.5, \ 51.9, \ 53.3, \ 127.2, \ 127.9, \ 129.6, \ 129.8, \ 131.8, \ 132.1, \\ 143.6, \ 154.4, \ 202.0. \ {\rm IR} \ ({\rm CH}_2{\rm Cl}_2): \ \nu \ 2926, \ 2855, \ 1682, \ 1597, \ 1473, \\ 1448, \ 1347, \ 1165, \ 1096, \ 1039, \ 982, \ 840, \ 817, \ 739, \ 708, \ 665 \ {\rm cm}^{-1}. \ {\rm MS} \\ ({\rm ESI}): \ m/z \ 414 \ ({\rm M}^+ \ + \ 1). \ {\rm HRMS} \ ({\rm ESI}): \ {\rm calcd} \ {\rm for} \ {\rm C}_{24}{\rm H}_{31}{\rm NNaO}_3{\rm S} \\ 436.191 \ 69, \ {\rm found} \ 436.190 \ 60. \end{array}$

6-Cyclopentylidene-7-(propan-2-ylidene)-2-tosylhexahydro-1Hisoindol-5(6H)-one (**2c**). Yield: 37 mg, 46% of a white solid. Mp: 117–118 °C. (*cis*-**2c**) ¹H NMR (CDCl₃, 400 MHz, TMS): δ 1.50 (s, 3H, CH₃), 1.58–1.65 (m, 4H, 4CH), 1.74 (s, 3H, CH₃), 1.79–1.85 (m, 1H, CH), 1.97–2.06 (m, 1H, CH), 2.11–2.21 (m, 4H, 4CH), 2.42 (s, 3H, CH₃), 2.44–2.48 (m, 1H, CH), 2.76–2.83 (m, 2H, 2CH), 3.54 (t, *J* = 8.8 Hz, 1H, CH), 3.61–3.74 (m, 2H, 2CH), 7.29 (d, *J* = 8.4 Hz, 2H, Ar) (7.33 (d, *J* = 8.4 Hz, 2H, Ar, *trans*-**2c**)). 7.59 (d, *J* = 8.4 Hz, 2H, Ar) (7.74 (d, *J* = 8.4 Hz, 2H, Ar, *trans*-**2c**)). (*cis*-**2c**) ¹³C NMR (CDCl₃, 100 MHz, TMS): δ 19.8, 21.4, 22.3, 24.8, 26.0, 33.3, 34.4, 35.0, 39.5, 40.6, 52.4, 53.2, 127.96, 128.02, 128.8, 129.4, 131.2, 131.5, 143.6, 163.7, 200.3. IR (CH₂Cl₂): ν 2955, 2925, 2856, 1684, 1600, 1473, 1452, 1347, 1184, 1164, 1095, 1035, 983, 817, 735, 710, 666 cm⁻¹. MS (ESI): *m/z* 400 (M⁺ + 1). HRMS (MALDI): calcd for C₂₃H₃₀NO₃S 400.1932, found 400.1941.

6-Cycloheptylidene-7-(propan-2-ylidene)-2-tosylhexahydro-1*H*isoindol-5(6*H*)-one (2*d*). Yield: 43 mg, 50% of a white solid. Mp: 128–130 °C. (*cis*-2d) ¹H NMR (CDCl₃, 300 MHz, TMS): δ 1.29– 1.47 (m, 7H, 7CH), 1.51 (s, 3H, CH₃), 1.54–1.58 (m, 1H, CH), 1.74 (s, 3H, CH₃), 1.77–1.82 (m, 1H, CH), 2.10–2.19 (m, 2H, 2CH), 2.31 (t, *J* = 9.9 Hz, 1H, CH), 2.38–2.46 (m, 6H, 6CH), 2.53–2.62 (m, 1H, CH), 2.68–2.78 (m, 1H, CH), 3.57 (t, *J* = 8.1 Hz, 1H, CH), 3.62– 3.76 (m, 2H, 2CH), 7.30 (d, *J* = 8.1 Hz, 2H, Ar), 7.63 (d, *J* = 8.1 Hz, 2H, Ar) (7.73 (d, *J* = 8.1 Hz, 2H, Ar, *trans*-2d)). (*cis*-2d) ¹³C NMR (CDCl₃, 100 MHz, TMS): δ 19.8, 21.5, 22.3, 26.0, 27.3, 28.9, 30.5, 32.6, 33.9, 34.9, 40.0, 41.1, 51.7, 53.3, 128.0, 128.1, 129.6, 131.3, 131.8, 132.0, 143.6, 158.6, 201.4. IR (CH₂Cl₂): ν 2960, 2924, 2854, 1725, 1680, 1596, 1531, 1452, 1347, 1260, 1164, 1094, 1017, 982, 859, 799, 708, 663 cm⁻¹. MS (ESI): *m*/*z* 428 (M⁺ + 1). HRMS (ESI): calcd for C₂₅H₁₄NO₃S 428.225 39, found 428.224 48.

6-(Nonan-5-ylidene)-7-(propan-2-ylidene)-2-tosylhexahydro-1Hisoindol-5(6H)-one (**2e**). Yield: 50 mg, 55% of a white solid. Mp: 114–116 °C. (*cis*-**2e**) ¹H NMR (CDCl₃, 300 MHz, TMS): δ 0.89– 0.95 (m, 6H, 6CH), 1.06–1.21 (m, 2H, 2CH), 1.25–1.40 (m, 6H, 6CH), 1.48 (s, 3H, CH₃), 1.68–1.89 (m, 6H, CH₃+3CH), 2.08–2.17 (m, 2H, 2CH), 2.30–2.38 (m, 2H, 2CH), 2.43 (s, 3H, CH₃), 2.48– 2.56 (m, 1H, CH), 2.62–2.70 (m, 1H, CH), 3.54 (t, *J* = 8.4 Hz, 1H, CH), 3.59–3.71 (m, 2H, 2CH), 7.30 (d, *J* = 7.8 Hz, 2H, Ar) (7.34 (d, *J* = 7.8 Hz, 2H, Ar, *trans*-**2e**)), 7.64 (d, *J* = 7.8 Hz, 2H, Ar) (7.73 (d, *J* = 7.8 Hz, 2H, Ar, *trans*-**2e**)). (*cis*-**2e**) ¹³C NMR (CDCl₃, 100 MHz, TMS): δ 13.75, 13.84, 19.8, 21.5, 22.0, 23.2, 23.5, 28.5, 31.2, 31.4, 33.9, 35.0, 40.0, 41.2, 51.7, 53.3, 127.80, 127.84, 129.6, 131.3, 132.2, 132.3, 143.5, 156.4, 201.1. IR (CH₂Cl₂): ν 2956, 2928, 2858, 1683, 1585, 1458, 1347, 1163, 1095, 1038, 981, 816, 735, 709, 664 cm⁻¹. MS (ESI): *m*/*z* 458 (M⁺ + 1). HRMS (MALDI): calcd for C₂₇H₄₀NO₃S 458.2734, found 458.2723.

2-(4-Bromophenylsulfonyl)-6,7-bis(propan-2-ylidene)hexahydro-1H-isoindol-5(6H)-one (**2f**). Yield: 56 mg, 64% of a white solid. Mp: 173–174 °C. (*cis*-**2f**) ¹H NMR (CDCl₃, 300 MHz, TMS): δ 1.44 (s, 3H, CH₃), 1.45 (s, 3H, CH₃), 1.74 (s, 3H, CH₃), 1.86 (s, 3H, CH₃) (1.90 (s, 3H, CH₃, *trans*-**2f**)), 2.19–2.31 (m, 2H, 2CH), 2.37–2.49 (m, 2H, 2CH), 2.73–2.83 (m, 1H, CH), 3.53 (t, *J* = 8.1 Hz, 1H, CH), 3.64–3.76 (m, 2H, 2CH), 7.60 (d, *J* = 8.4 Hz, 2H, Ar), 7.68 (d, *J* = 8.4 Hz, 2H, Ar). (*cis*-**2f**) ¹³C NMR (CDCl₃, 100 MHz, TMS): δ 19.7, 21.4, 21.8, 23.8, 34.5, 39.8, 40.5, 52.2, 53.3, 127.8, 128.0, 129.4, 131.7, 132.1, 132.2, 133.3, 148.7, 201.1. IR (CH₂Cl₂): ν 2983, 2923, 2852, 1684, 1600, 1574, 1471, 1439, 1348, 1255, 1167, 1093, 1068, 1034, 1009, 982, 822, 737, 706, 619 cm⁻¹. MS (ESI): *m*/*z* 438 (M⁺ + 1). HRMS (MALDI): calcd for C₂₀H₂₅NO₃SBr 438.0739, found 438.0733.

2-(4-Nitrophenylsulfonyl)-6,7-bis(propan-2-ylidene)hexahydro-1H-isoindol-5(6H)-one (**2g**). Yield: 44 mg, 54% of a yellow solid. Mp: 158–159 °C. (*cis*-**2g**) ¹H NMR (CDCl₃, 300 MHz, TMS): δ 1.47 (s, 3H, CH₃), 1.48 (s, 3H, CH₃), 1.75 (s, 3H, CH₃), 1.85 (s, 3H, CH₃) (1.89 (s, 3H, CH₃, *trans*-2g)), 2.24 (dd, $J_1 = 3.0$ Hz, $J_2 = 16.8$ Hz, 1H, CH), 2.43–2.50 (m, 2H, 2CH), 2.58–2.66 (m, 1H, CH), 2.73–2.85 (m, 1H, CH) (2.91–2.97 (m, 1H, CH, *trans*-2g)), 3.54 (t, J = 9.3 Hz, 1H, CH), 3.64–3.74 (m, 2H, 2CH), 7.95 (d, J = 8.7 Hz, 2H, Ar) (8.04 (d, J = 8.7 Hz, 2H, Ar, *trans*-2g)), 8.38 (d, J = 8.7 Hz, 2H, Ar) (8.04 (d, J = 8.7 Hz, 2H, Ar, *trans*-2g)), 8.38 (d, J = 8.7 Hz, 2H, Ar) (8.04 (d, J = 8.7 Hz, 2H, Ar, *trans*-2g)), 8.38 (d, J = 8.7 Hz, 2H, Ar) (8.04 (d, J = 8.7 Hz, 2H, Ar, *trans*-2g)), 8.38 (d, J = 8.7 Hz, 2H, Ar). (*cis*-2g) ¹³C NMR (CDCl₃, 100 MHz, TMS): δ 19.8, 21.4, 21.8, 23.8, 34.7, 40.0, 40.6, 52.4, 53.1, 124.0, 127.5, 128.9, 131.9, 132.6, 140.8, 148.3, 150.1, 200.8. IR (CH₂Cl₂): ν 2025, 2855, 1685, 1603, 1530, 1472, 1441, 1349, 1309, 1255, 1168, 1095, 1037, 1013, 982, 857, 822, 736, 688, 664, 621 cm⁻¹. MS (ESI): m/z 405 (M⁺ + 1). HRMS (MALDI): calcd for C₂₀H₂₅N₂O₅S 405.1475, found 405.1479.

2-(4-Bromophenylsulfonyl)-6-cyclohexylidene-7-(propan-2ylidene)hexahydro-1H-isoind-ol-5(6H)-one (**2h**). Yield: 66 mg, 69% of a white solid. Mp: 155–156 °C. (*cis*-**2h**) ¹H NMR (CDCl₃, 300 MHz, TMS): δ 0.88–1.12 (m, 2H, 2CH), 1.46 (s, 3H, CH₃), 1.50– 1.60 (m, 4H, 4CH), 1.74 (s, 3H, CH₃), 1.79–1.86 (m, 2H, 2CH), 2.21–2.37 (m, 2H, 2CH), 2.40–2.49 (m, 3H, 3CH), 2.69–2.80 (m, 2H, 2CH), 3.58 (t, *J* = 8.4 Hz, 1H, CH), 3.66–3.78 (m, 2H, 2CH), 7.63 (d, *J* = 8.7 Hz, 2H, Ar), 7.67 (d, *J* = 8.7 Hz, 2H, Ar). (*cis*-**2h**) ¹³C NMR (CDCl₃, 100 MHz, TMS): δ 19.8, 21.9, 26.0, 27.2, 27.8, 30.0, 32.0, 34.6, 39.6, 40.4, 52.0, 53.3, 127.1, 128.0, 129.4, 129.7, 132.3, 132.4, 133.9, 154.7, 201.8. IR (CH₂Cl₂): ν 2927, 2854, 1682, 1595, 1574, 1471, 1448, 1388, 1351, 1266, 1248, 1169, 1095, 1068, 1041, 1009, 982, 820, 738, 706, 613 cm⁻¹. MS (ESI): *m/z* 478 (M⁺ + 1). HRMS (ESI): calcd for C₂₃H₂₈BrNNaO₃S 500.086 55, found 500.086 89

6-Cyclohexylidene-2-(4-nitrophenylsulfonyl)-7-(propan-2ylidene)hexahydro-1H-isoindol-5(6H)-one (2i). Yield: 43 mg, 48% of a yellow solid. Mp: 138-140 °C. (cis-2i) ¹H NMR (CDCl₃, 300 MHz, TMS): δ 0.83–0.96 (m, 1H, CH), 1.00–1.10 (m, 1H, CH), 1.35–1.45 (m, 1H, CH), 1.47 (s, 3H, CH₃), 1.53-1.65 (m, 3H, 3CH), 1.74 (s, 3H, CH₃), 1.82–1.87 (m, 2H, 2CH), 2.23–2.32 (m, 2H, 2CH), 2.43– 2.51 (m, 1H, CH), 2.56-2.65 (m, 2H, 2CH), 2.73-2.85 (m, 2H, 2CH), 3.60 (t, J = 9.0 Hz, 1H, CH), 3.68-3.77 (m, 2H, 2CH), 7.98 (d, J = 8.7 Hz, 2H, Ar) (8.05 (d, J = 8.7 Hz, 2H, Ar, trans-2i)), 8.38 (d, J)I = 8.7 Hz, 2H, Ar). (*cis*-2i) ¹³C NMR (CDCl₃, 100 MHz, TMS): δ 19.8, 21.9, 26.0, 27.3, 27.7, 30.1, 32.0, 34.8, 39.9, 40.5, 52.2, 53.2, 124.3, 127.0, 128.9, 129.9, 132.8, 141.4, 150.1, 154.3, 201.5. IR (CH₂Cl₂): v 2927, 2855, 1681, 1601, 1530, 1474, 1447, 1401, 1350, 1312, 1265, 1168, 1095, 1043, 1012, 982, 857, 819, 735, 688, 614 cm⁻¹. MS (ESI): m/z 445 (M⁺ + 1). HRMS (ESI): calcd for C23H28N2NaO5S 467.161 11, found 467.162 07.

3*a*-Methyl-*6*,7-*bis*(*propan*-2-*ylidene*)-2-*tosylhexahydro*-1*H*-*isoin*-*dol*-5(6*H*)-*one* (**2***j*). Yield: 49 mg, 63% of a white solid. Mp: 138–139 °C. (*cis*-**2***j*) ¹H NMR (CDCl₃, 400 MHz, TMS): δ 1.18 (s, 3H, CH₃), 1.42 (s, 3H, CH₃), 1.45 (s, 3H, CH₃), 1.72 (s, 3H, CH₃), 1.77 (s, 3H, CH₃), 2.17 (d, *J* = 16.0 Hz, 1H, CH), 2.25 (d, *J* = 16.0 Hz, 1H, CH), 2.44 (s, 3H, CH₃), 2.46–2.50 (m, 2H, CH₂), 3.08 (d, *J* = 9.2 Hz, 1H, CH), 3.21 (t, *J* = 8.4 Hz, 1H, CH), 3.67 (t, *J* = 9.2 Hz, 1H, CH), 7.32 (d, *J* = 8.0 Hz, 2H, Ar), 7.62 (d, *J* = 8.0 Hz, 2H, Ar). (*cis*-**2***j*) ¹³C NMR (CDCl₃, 100 MHz, TMS): δ 19.8, 21.2, 21.4, 21.9, 23.6, 28.0, 41.7, 47.6, 49.0, 51.6, 59.1, 127.8, 127.9, 129.4, 131.3, 131.4, 132.0, 143.6, 147.6, 201.1. IR (CH₂Cl₂): ν 2956, 2926, 2855, 1686, 1599, 1454, 1349, 1166, 1093, 1032, 845, 817, 738, 664 cm⁻¹. MS (ESI): *m*/*z* 388 (M⁺ + 1). HRMS (MALDI): calcd for C₂₂H₃₀NO₃S 388.1938, found 388.1941.

2-(4-Bromophenylsulfonyl)-6-cyclohexylidene-3a-methyl-7-(propan-2-ylidene)hexahydro-1H-isoindol-5(6H)-one (**2k**). Yield: 56 mg, 57% of a white solid. Mp: 150–151 °C. (*cis*-**2k**) ¹H NMR (CDCl₃, 300 MHz, TMS): δ 0.96–1.13 (m, 2H, 2CH), 1.17 (s, 3H, CH₃), 1.48 (s, 3H, CH₃), 1.54–1.66 (m, 4H, 4CH), 1.73 (s, 3H, CH₃), 1.80–1.84 (m, 2H, 2CH), 2.24 (d, 2H, *J* = 4.2 Hz, 2CH), 2.27– 2.33 (m, 1H, CH), 2.59 (t, *J* = 8.1 Hz, 1H, CH), 2.66–2.75 (m, 2H, 2CH), 3.14 (d, *J* = 9.6 Hz, 1H, CH), 3.23 (t, *J* = 8.1 Hz, 1H, CH), 3.69 (t, *J* = 9.6 Hz, 1H, CH), 7.64 (d, *J* = 8.4 Hz, 2H, Ar), 7.68 (d, *J* = 8.4 Hz, 2H, Ar). (*cis*-**2k**) ¹³C NMR (CDCl₃, 100 MHz, TMS): δ 19.8, 21.9, 26.0, 27.2, 27.8, 30.0, 32.0, 34.6, 39.6, 40.4, 52.0, 53.3, 127.1, 128.0, 129.4, 129.7, 132.3, 132.4, 133.9, 154.7, 201.8. IR (CH₂Cl₂): ν 2955, 2924, 2853, 1683, 1595, 1574, 1471, 1449, 1388, 1351, 1260, 1168, 1090, 1067, 1036, 1009, 823, 805, 738 cm⁻¹. MS (ESI): *m*/z 493 $(M^+ + 1)$. HRMS (ESI): calcd for $C_{24}H_{30}BrNO_3S$ 491.1130, found 491.1147.

6,7-Bis(propan-2-ylidene)hexahydroisobenzofuran-5(1H)-one (2l). Yield: 20 mg, 45% of a yellow oil. (*cis*-2l) ¹H NMR (CDCl₃, 400 MHz, TMS): δ 1.53 (s, 3H, CH₃), 1.72 (s, 3H, CH₃), 1.80 (s, 3H, CH₃), 2.19 (s, 3H, CH₃), 2.29 (dd, $J_1 = 2.0$ Hz, $J_2 = 16.4$ Hz, 1H, CH), 2.55 (dd, $J_1 = 6.0$ Hz, $J_2 = 16.4$ Hz, 1H, CH), 2.64–2.73 (m, 1H, CH), 3.16 (t, J = 9.2 Hz, 1H, CH), 3.29 (dd, $J_1 = 6.8$ Hz, $J_2 = 9.2$ Hz, 1H, CH), 3.65–3.72 (m, 1H, CH), 3.96 (t, J = 8.0 Hz, 1H, CH), 4.08 (t, J = 8.0 Hz, 1H, CH). (*cis*-2l) ¹³C NMR (CDCl₃, 100 MHz, TMS): δ 19.8, 21.99, 22.02, 24.3, 35.8, 40.3, 41.2, 72.2, 73.2, 128.6, 131.1, 132.3, 148.9, 202.0. IR (CH₂Cl₂): ν 2963, 2924, 2855, 1683, 1599, 1437, 1415, 1369, 1327, 1252, 1198, 1190, 1162, 1096, 1062, 1048, 1019, 981, 932, 830, 745, 693, 672 cm⁻¹. MS (%) (EI): *m/z* 220 (M⁺, 21), 175 (100), 133 (50), 91 (47), 105 (37), 147 (36), 77 (36), 134 (30), 119 (30); HRMS (EI): calcd for C₁₄H₂₀O, 220.1463, found 220.1466.

4-Methyl-6,7-bis(propan-2-ylidene)-2-tosylhexahydro-1H-isoindol-5(6H)-one (**2o**). Yield: 40 mg, 52% of a white solid. Mp: 135–137 °C. (major diastereomer **2o**) ¹H NMR (CDCl₃, 300 MHz, TMS): δ 1.05 (d, *J* = 7.2 Hz, 3H, CH₃), 1.42 (s, 3H, CH₃), 1.46 (s, 3H, CH₃), 1.71 (s, 3H, CH₃), 1.75 (s, 3H, CH₃), 2.09–2.18 (m, 1H, CH), 2.33– 2.41 (m, 1H, CH), 2.44 (s, 3H, CH₃), 2.62–2.72 (m, 2H, 2CH), 3.45 (dd, *J*₁ = 7.2 Hz, *J*₂ = 9.6 Hz, 1H, CH), 3.50–3.64 (m, 2H, 2CH), 7.32 (d, *J* = 8.1 Hz, 2H, Ar), 7.66 (d, *J* = 8.1 Hz, 2H, Ar). (major diastereomer **2o**) ¹³C NMR (CDCl₃, 100 MHz, TMS): δ 16.9, 19.7, 21.0, 21.4, 21.7, 22.7, 39.2, 43.1, 45.3, 51.4, 53.3, 127.1, 127.8, 129.5, 131.7, 132.1, 132.6, 143.6, 144.3, 204.8. IR (CH₂Cl₂): ν 2975, 2926, 2872, 2855, 1682, 1599, 1473, 1448, 1371, 1344, 1163, 1093, 1030, 982, 966, 836, 816, 735, 708, 662, 609 cm⁻¹. MS (ESI): *m/z* 388 (M⁺ + 1). HRMS (MALDI): calcd for C₂₂H₃₀NO₃S 388.1948, found 388.1941.

7-Cyclohexylidene-8-(propan-2-ylidene)-2-tosyloctahydroisoquinolin-6(7H)-one (**2p**). Yield: 39 mg, 46% of a white solid. Mp: 176– 177 °C. (*trans*-**2p**) ¹H NMR (CDCl₃, 300 MHz, TMS): δ 1.15–1.39 (m, 3H, 3CH), 1.42–1.59 (m, 6H, 3CH + CH₃), 1.64–1.75 (m, 3H, 3CH), 1.82 (s, 3H, CH₃), 1.88–1.92 (m, 1H, CH), 2.00–2.10 (m, 3H, 3CH), 2.18–2.36 (m, 2H, 2CH), 2.39–2.49 (m, 5H, CH₃ + 2CH), 2.70–2.77 (m, 1H, CH), 3.91–4.02 (m, 2H, 2CH), 7.31 (d, *J* = 7.8 Hz, 2H, Ar), 7.66 (d, *J* = 7.8 Hz, 2H, Ar) (7.74 (d, *J* = 8.4 Hz, 2H, Ar, *cis*-**2p**)). (*trans*-**2p**) ¹³C NMR (CDCl₃, 100 MHz, TMS): δ 20.2, 21.5, 22.2, 26.2, 27.6, 28.3, 29.9, 30.0, 31.8, 36.8, 44.6, 44.9, 46.2, 49.8, 124.9, 127.4, 129.6, 131.8, 134.0, 135.3, 143.4, 148.8, 203.8. IR (CH₂Cl₂): ν 2922, 2851, 1689, 1611, 1448, 1344, 1307, 1186, 1162, 1104, 1091, 1025, 990, 950, 841, 729 cm⁻¹. MS (ESI): *m/z* 428 (M⁺ + 1). HRMS (ESI): calcd for C₂₅H₃₃NNaO₃S 450.207 34, found 450.207 46.

Typical Procedure for the Synthesis of 3,3-Dimethyl-5-(propan-2-ylidene)-2-tosylhexahydrospiro[isoindole-4,2-oxiran]-6(5H)-one (3a). The compound 2a (0.1 mmol, 37 mg, 1.0 equiv) was dissolved in dichloromethane and methanol (v/v, 5.0 mL/1.0 mL). The solution was cooled to -78 °C, and O₃ was directed into the solution until it turned deep blue. The resulting solution was then bubbled with argon to remove the excess O₃. Dimethyl sulfide (0.5 mmol, 5.0 equiv) was added, and the solution was warmed to room temperature and stirred for 3 h. The residue was washed successively with water and brine. The combined organic layers were dried over anhydrous Na₂SO₄ and filtered. Then, the solvent was removed under reduced pressure and the residue was purified by flash column chromatography. Yield: 28 mg, 72% of a white solid. Mp: 159-161 °C. (major diastereomer 3a) ¹H NMR (CDCl₃, 400 MHz, TMS): δ 1.21 (s, 3H, CH₃), 1.41 (s, 3H, CH₃), 1.54 (s, 3H, CH₃), 1.69 (s, 3H, CH₃), 2.23 (t, J = 9.6 Hz, 1H, CH), 2.33 (d, J = 15.6 Hz, 1H, CH), 2.46 (s, 3H, CH₃), 2.67-2.70 (m, 2H, 2CH), 2.83-2.90 (m, 2H, 2CH), 3.50 (t, J = 9.6 Hz, 1H, CH), 3.62 (t, J = 11.6 Hz, 1H, CH), 7.36 (d, J = 8.4 Hz, 2H, Ar), 7.65 (d, J = 8.4 Hz, 2H, Ar). (major diastereomer 3a) $^{13}\mathrm{C}$ NMR (CDCl_3, 100 MHz, TMS): δ 20.1, 20.8, 21.5, 22.9, 24.6, 34.8, 40.4, 43.8, 49.2, 53.0, 64.3, 67.6, 128.1, 129.2, 129.6, 131.1, 144.0, 147.2, 201.1. IR (CH₂Cl₂): v 3001, 2964, 2927, 2877, 2851, 1693, 1626, 1598, 1444, 1377, 1345, 1165, 1093, 1039,

983, 832, 818, 736, 711, 665, 611 cm⁻¹. MS (ESI): m/z 390 (M⁺ + 1). HRMS (ESI): calcd for C₂₁H₂₇NNaO₄S 412.155 30, found 412.156 50.

Typical Procedure for the Synthesis of 6,7-Bis(propan-2ylidene)-2-tosyloctahydro-1H-isoindol-5-ol (4a). Under an argon atmosphere, a solution of compound 2a (0.1 mmol, 37 mg, 1.0 equiv) in toluene (2.0 mL) was added into the Schlenk tube. Then Red-Al (39 μ L, 0.2 mmol, 2.0 equiv) was added into the above Schlenk tube and the reaction mixture was stirred for 2 h at room temperature. On reaction completion the reaction was quenched by addition of water. The reaction solution was diluted with ether (10.0 mL \times 3), and the organic layers were dried over anhydrous Na2SO4. The solvent was removed under reduced pressure, and the residue was purified by flash column chromatography. Yield: 34 mg, 91% of a white solid. Mp: 167-169 °C. (major diastereomer 4a) ¹H NMR (CDCl₃, 300 MHz, TMS): δ 1.41–1.47 (m, 4H, CH + CH₃), 1.50 (s, 3H, CH₃), 1.61– 1.69 (m, 4H, CH + CH₃), 1.86 (s, 3H, CH₃), 2.09 (d, J = 6.9 Hz, 1H, OH), 2.41–2.53 (m, 4H, CH₃ + CH), 2.90 (t, J = 8.4 Hz, 1H, CH), 3.15 (t, J = 8.4 Hz, 2H, 2CH), 3.35-3.45 (m, 2H, 2CH), 4.37-4.41 (m, 1H, CH), 7.33 (d, J = 8.1 Hz, 2H, Ar), 7.69 (d, J = 8.1 Hz, 2H, Ar). (major diastereomer 4a) ¹³C NMR (CDCl₃, 100 MHz, TMS): δ 19.6, 20.0, 21.5, 22.1, 23.1, 35.9, 37.4, 40.2, 50.8, 54.1, 70.7, 128.0, 128.5, 129.4, 130.3, 132.1, 132.30, 132.32, 143.6. IR (CH₂Cl₂): ν 3521, 2955, 2922, 2854, 1598, 1448, 1369, 1341, 1305, 1261, 1159, 1089, 1042, 1007, 949, 804, 734, 708 cm⁻¹. MS (ESI): m/z 398 (M⁺ + Na). HRMS (ESI): calcd for C₂₁H₂₉NO₃S 375.1868, found 375.1871.

6-Cyclohexylidene-2-(phenylsulfonyl)-7-(propan-2-ylidene)octahydro-1H-isoindol-5-ol (4h). Yield: 36 mg, 89% of a white solid. Mp: 129–131 °C. (major diastereomer 4h) ^TH NMR (CDCl₃, 400 MHz, TMS): δ 1.17–1.34 (m, 2H, 2CH), 1.40–1.52 (m, 5H, CH₃ + 2CH), 1.58-1.60 (m, 1H, CH), 1.62-1.75 (m, 7H, CH₃ + 4CH), 1.92-2.04 (m, 2H, 2CH), 2.18 (d, J = 6.8 Hz, 1H, OH), 2.53-2.60(m, 1H, CH), 2.78–2.82 (m, 1H, CH), 2.89 (dd, $J_1 = 6.8$ Hz, $J_2 = 9.2$ Hz, 1H, CH), 3.15–3.24 (m, 2H, 2CH), 3.43 (dd, J₁ = 2.8 Hz, J₂ = 9.6 Hz, 1H, CH), 3.51 (dd, J₁ = 9.2 Hz, J₂ = 16.4 Hz, 1H, CH), 4.45-4.49 (m, 1H, CH), 7.52–7.56 (m, 2H, Ar), 7.60–7.64 (m, 1H, Ar), 7.82 (d, J = 8.0 Hz, 2H, Ar). (major diastereomer 4h) ¹³C NMR (CDCl₃, 100 MHz, TMS): δ 19.6, 22.1, 26.7, 27.9, 28.5, 30.4, 32.7, 35.0, 36.9, 39.7, 51.8, 54.2, 69.6, 128.0, 128.4, 128.7, 129.8, 132.7, 134.7, 141.2. IR (CH₂Cl₂): v 3518, 2955, 2924, 2853, 1998, 1602, 1507, 1459, 1260, 1223, 1157, 1093, 1013, 911, 836, 800, 750, 721 cm⁻¹. MS (ESI): m/z424 (M⁺ + Na). HRMS (ESI): calcd for C₂₃H₃₁NO₃S 401.2025, found 401.2021.

ASSOCIATED CONTENT

Supporting Information

Figures giving compound characterization data and figures giving ORTEP drawings and CIF files giving X-ray crystal data of *cis*-2a (CCDC 865612), *cis*-2k (CCDC 868900), major diastereomer 2o (CCDC 826605), *trans*-2p (CCDC 867084), major diastereomer 3a (CCDC 858045), and major diastereomer 4h (CCDC 874178). This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*E-mail: Mshi@mail.sioc.ac.cn. Fax: 86-21-64166128.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We thank the Shanghai Municipal Committee of Science and Technology (11JC1402600), National Basic Research Program of China ((973)-2009CB825300), and the National Natural Science Foundation of China (21072206, 20472096, 20872162, 20672127, 21121062 and 20732008) for financial support.

REFERENCES

(1) Selected references are as follows; see the parts on Pauson-Khand reactions: (a) Khand, I. U.; Knox, G. R.; Pauson, P. L.; Watts, W. E. J. Chem. Soc. D 1971, 36. (b) Khand, I. U.; Knox, G. R.; Pauson, P. L.; Watts, W. E.; Foreman, M. I. J. Chem. Soc., Perkin Trans. 1 1973, 977-981. (c) Evans, P. A. Modern Rhodium-Catalyzed Organic Reactions; VCH: Weinheim, Germany, 2005. (d) Hartwig, J. F. Organotransition Metal Chemistry: From Bonding to Catalysis; University Science Books: Sausalito, CA, 2010. For recent reviews on Pauson-Khand reactions, please see: (e) Inagaki, F.; Kitagaki, S.; Mukai, C. Synlett 2011, 594-614. (f) Lee, H.-W.; Kwong, F.-Y. Eur. J. Org. Chem. 2010, 789-811. (g) Croatt, M. P.; Wender, P. A. Eur. J. Org. Chem. 2010, 19-32. (h) Moulton, B. E. J. Organomet. Chem. 2010, 36, 93-120. (i) Park, J. H.; Chang, K.-M.; Chung, Y. K. Coord. Chem. Rev. 2009, 253, 2461-2480. (j) Chatani, N. Chem. Rev. 2008, 8, 201-212. (k) Shibata, T. Adv. Synth. Catal. 2006, 348, 2328-2336. (1) Li, C.-J. Chem. Rev. 2005, 105, 3095-3165. (m) Rivero, M. R.; Adrio, J.; Carretero, J. C. Synlett 2005, 26-41. (n) Laschat, S.; Becheanu, A.; Bell, T.; Baro, A. Synlett 2005, 2547-2570. (o) Gibson, S. E.; Mainolfi, N. Angew. Chem., Int. Ed. 2005, 44, 3022-3037. (p) Park, K. H.; Chung, Y. K. Synlett 2005, 545-559.

(2) For selected reviews on the construction of complex molecules or natural compounds by Pauson-Khand reactions, please see: (a) Habermann, J. Curr. Org. Chem. 2010, 14, 1139-1152. (b) Alcaide, B.; Almendros, P. Eur. J. Org. Chem. 2004, 3377-3383. (c) Blanco-Urgoiti, J.; Añorbe, L.; Pérez-Serrano, L.; Domínguez, G.; Pérez-Castells, J. Chem. Soc. Rev. 2004, 33, 32-42. For selected recent reports on the construction of natural compounds using Pauson-Khand reactions as a crucial step, please see: (d) Nakayama, A.; Kogure, N.; Kitajima, M.; Takayama, H. Angew. Chem., Int. Ed. 2011, 50, 8025-8028. (e) Farwick, A.; Engelhart, J. U.; Tverskoy, O.; Welter, C.; Umlauf (née Stang), Q. A.; Rominger, F.; Kerr, W. J.; Helmchen, G. Adv. Synth. Catal. 2011, 353, 349-370. (f) Turlington, M.; Du, Y.; Ostrum, S. G.; Santosh, V.; Wren, K.; Lin, T.; Sabat, M.; Pu, L. J. Am. Chem. Soc. 2011, 133, 11780-11794.

(3) For a review of rhodium-catalyzed Pauson-Khand reactions, please see: (a) Jeong, N.; Sung, B. K.; Kim, J. S.; Park, S. B.; Seo, S. D.; Shin, J. Y.; In, K. Y.; Choi, Y. K. *Pure Appl. Chem.* **2002**, *74*, 85–91. For selected recent reports on rhodium-catalyzed Pauson-Khand reactions, please see: (b) Baik, M.-H.; Mazumder, S.; Ricci, P.; Sawyer, J. R.; Song, Y.-G.; Wang, H.; Evans, P. A. *J. Am. Chem. Soc.* **2011**, *133*, 7621–7623. (c) Kim, D.-E.; Park, S.-H.; Choi, Y.-H.; Lee, S.-G.; Moon, D.-H.; Seo, J.-J.; Jeong, N.-C. Chem. Asian J. **2011**, *6*, 2009–2014. (d) Turlington, M.; Pu, L. Org. Lett. **2011**, *13*, 4332–4335. (e) Kim, D. E.; Ratovelomanana-Vidal, V.; Jeong, N. Adv. Synth. Catal. **2010**, 352, 2032–2040.

(4) For selected recent reports on the Pauson-Khand-type reactions of dienes, please see: (a) Iwasawa, N.; Ooi, I.; Inaba, K.; Takaya, J. Angew. Chem., Int. Ed. 2010, 49, 7534-7537. (b) Croatt, M. P.; Wender, P. A. Eur. J. Org. Chem. 2010, 19-32. (c) Wender, P. A.; Croatt, M. P.; Deschamps, N. M. Angew. Chem., Int. Ed. 2006, 45, 2459-2462. (d) Wender, P. A.; Croatt, M. P.; Deschamps, N. M. J. Am. Chem. Soc. 2004, 126, 5948-5949. (e) Wender, P. A.; Deschamps, N. M.; Williams, T. J. Angew. Chem., Int. Ed. 2004, 43, 3076-3079.

(5) For selected recent reports on the Pauson-Khand-type reactions of allenes, please see: (a) Grillet, F.; Huang, C.; Brummond, K. M. Org. Lett. **2011**, *13*, 6304–6307. (b) Inagaki, F.; Itoh, N.; Hayashi, Y.; Matsui, Y.; Mukai, C. Beilstein J. Org. Chem. **2011**, *7*, 404–409. (c) Antras, F.; Laurent, S.; Ahmar, M.; Chermette, H.; Cazes, B. Eur. J. Org. Chem. **2010**, 3312–3336. (d) Kawamura, T.; Inagaki, F.; Narita, S.; Takahashi, Y.; Hirata, S.; Kitagaki, S.; Mukai, C. Chem. Eur. J. **2010**, *16*, 5173–5183. (e) Inagaki, F.; Mukai, C. Org. Lett. **2006**, *8*, 1217–1220. (f) Alcaide, B.; Almendros, P. Eur. J. Org. Chem. **2004**, 3377–3383. (g) Mukai, C.; Nomura, I.; Yamanishi, K.; Hanaoka, M. Org. Lett. **2002**, *4*, 1755–1758. (h) Brummond, K. M.; Chen, H.; Fisher, K. D.; Kerekes, A. D.; Rickards, B.; Sill, P. C.; Geib, S. J. Org. Lett. **2002**, *4*, 1931–1934.

(6) For selected recent reports on the Pauson-Khand-type reactions of heteroalkenes, please see: (a) Saito, T.; Furukawa, N.; Otani, T. Org.

Biomol. Chem. 2010, 8, 1126–1132. (b) Mukai, C.; Yoshida, T.; Sorimachi, M.; Odani, A. Org. Lett. 2006, 8, 83–86.

(7) For selected recent reports on the Pauson-Khand-type reactions of cyclopropanes, please see: (a) Jiao, L.; Lin, M.; Zhuo, L.-G.; Yu, Z.-X. Org. Lett. **2010**, *12*, 2528–2531. (b) Fan, X.; Tang, M.-X.; Zhuo, L.-G.; Tu, Y. Q.; Yu, Z.-X. Tetrahedron Lett. **2009**, *50*, 155–157. (c) Fan, X.; Zhuo, L.-G.; Tu, Y.-Q.; Yu, Z.-X. Tetrahedron **2009**, *65*, 4709–4713. (d) Jiao, L.; Yuan, C.; Yu, Z.-X. J. Am. Chem. Soc. **2008**, *130*, 4421–4430. (e) Kim, S. Y.; Lee, S. I.; Choi, S. Y.; Chung, Y. K. Angew. Chem., Int. Ed. **2008**, *47*, 4914–4917. (f) Wang, Y.; Wang, J.; Su, J.; Huang, F.; Jiao, L.; Liang, Y.; Yang, D.; Zhang, S.; Wender, P. A.; Yu, Z.-X. J. Am. Chem. Soc. **2005**, *127*, 2836–2837. (h) Wegner, H. A.; de Meijere, A.; Wender, P. A. J. Am. Chem. Soc. **2005**, *127*, 6530–6531.

(8) Li, C.; Zhang, H.; Feng, J.; Zhang, Y.; Wang, J. Org. Lett. 2010, 12, 3082-3085.

(9) For the synthesis of VDCPs, see: (a) Isagawa, K.; Mizuno, K.; Sugita, H.; Otsuji, Y. J. Chem. Soc., Perkin Trans. 1 1991, 2283–2285 and references therein. (b) Al Dulayymi, J. R.; Baird, M. S. J. Chem. Soc., Perkin Trans. 1 1994, 1547–1548.

(10) (a) Poutsma, M. L.; Ibarbia, P. A. J. Am. Chem. Soc. 1971, 93, 440–450. (b) Smadja, W. Chem. Rev. 1983, 83, 263–320. (c) Sugita, H.; Mizuno, K.; Saito, T.; Isagawa, K.; Otsuji, Y. Tetrahedron Lett. 1992, 33, 2539–2542. (d) Mizuno, K.; Sugita, H.; Kamada, T.; Otsuji, Y. Chem. Lett. 1994, 449–452 and references therein. (e) Sydnes, L. K. Chem. Rev. 2003, 103, 1133–1150. (f) Mizuno, K.; Maeda, H.; Sugita, H.; Nishioka, S.; Hirai, T.; Sugimoto, A. Org. Lett. 2001, 3, 581–584. (g) Shi, M.; Shao, L.-X.; Lu, J.-M.; Wei, Y.; Mizuno, K.; Maeda, H. Chem. Rev. 2010, 110, 5883–5913. (h) Xu, G.-C.; Liu, L.-P.; Lu, J.-M.; Shi, M. J. Am. Chem. Soc. 2005, 127, 14552–14553. (i) Li, W.; Yuan, W.; Pindi, S.; Shi, M.; Li, G.-G. Org. Lett. 2010, 12, 64–67. (j) Lu, B.-L.; Shi, M. Eur. J. Org. Chem. 2011, 243–248. (l) Lu, B.-L.; Shi, M. Angew. Chem., Int. Ed. 2011, 50, 12027–12031.

(11) The crystal data of *cis*-**2a** have been deposited with the CCDC as file 865612: empirical formula $C_{21}H_{27}NO_3S$, formula weight 373.50, crystal color colorless, crystal dimensions $0.30 \times 0.25 \times 0.20$ mm, crystal system triclinic; lattice parameters a = 8.5624(12) Å, b = 8.6068(12) Å, c = 13.3479(19) Å, $\alpha = 91.113(2)^\circ$, $\beta = 98.047(2)^\circ$, and $\gamma = 95.389(2)^\circ$, V = 969.2(2) Å³, space group $P\overline{1}$, Z = 2; $D_{calcd} = 1.280$ g/cm³, $F_{000} = 400$, final *R* indices ($I > 2\sigma(I)$) R1 = 0.0428 and wR2 = 0.1305.

(12) (a) Brown, C. K.; Wilkinson, G. J. Chem. Soc. A **1970**, 2753–2764. (b) Shambayati, S.; Crowe, W. E.; Schreiber, S. L. Tetrahedron Lett. **1990**, 31, 5289–5292. (c) Jeong, N.; Chung, Y. K.; Lee, B. Y.; Lee, S. H.; Yoo, S.-E. Synlett **1991**, 204–206. (d) VanRooy, A.; deBruijin, J. N. H. K.; Roobeek, F.; Kamer, P. C. J.; van Leeuwen, P. J. Organomet. Chem. **1996**, 507, 69–73.

(13) The crystal data of *cis*-**2k** have been deposited with the CCDC as file 868900: empirical formula $C_{24}H_{30}BrNO_3S$, formula weight 492.46, crystal color colorless, crystal dimensions $0.248 \times 0.156 \times 0.123$ mm, crystal system triclinic, lattice parameters a = 12.2812(12) Å, b = 13.3467(14) Å, c = 15.9608(17) Å, $\alpha = 77.980(2)^\circ$, $\beta = 74.061(2)^\circ$, and $\gamma = 89.870(3)^\circ$, V = 2456.3(4) Å³, space group PI, Z = 4, $D_{calcd} = 1.332$ g/cm³, $F_{000} = 1024$, final *R* indices ($I > 2\sigma(I)$) R1 = 0.0674 and wR2 = 0.1832.

(14) The crystal data of major diastereomer **20** have been deposited with the CCDC as file 826605: empirical formula $C_{22}H_{29}NO_3S$, formula weight 387.52, crystal color colorless, crystal dimensions 0.353 × 0.268 × 0.043 mm, crystal system orthorhombic, lattice type primitive, lattice parameters a = 9.1187(7) Å, b = 20.3918(15) Å, c = 23.2981(18) Å, $\alpha = 90^{\circ}$, $\beta = 90^{\circ}$, and $\gamma = 90^{\circ}$, V = 4330.5(6) Å³, space group *Pbca*; Z = 8, $D_{calcd} = 1.189$ g/cm, $F_{000} = 1664$, final *R* indices ($I > 2\sigma(I)$) R1 = 0.0567 and wR2 = 0.1290.

(15) The crystal data of *trans*-**2p** have been deposited with the CCDC as file 867084: empirical formula $C_{25}H_{33}NO_3S$, formula seight 427.58, crystal color colorless, crystal dimensions $0.321 \times 0.165 \times 0.112$ mm, crystal system orthorhombic, lattice parameters a =

Article

8.1706(5) Å, b = 12.2862(7) Å, c = 23.6896(12) Å, $\alpha = 90^{\circ}$, $\beta = 90^{\circ}$, and $\gamma = 90^{\circ}$, V = 2378.1(2) Å³, space group $P2_{1}2_{1}2_{1}$, Z = 4; $D_{calcd} = 1.194$ g/cm³, $F_{000} = 920$, final *R* indices ($I > 2\sigma(I)$) R1 = 0.0489 and wR2 = 0.1220.

(16) (a) Gillies, C. W. J. Am. Chem. Soc. 1975, 97, 1276–1278.
(b) Bailey, P. S.; Lane, A. G. J. Am. Chem. Soc. 1967, 89, 4473–4479.
(c) Bailey, P. S.; Hwang, H. H.; Chiang, C.-Y. J. Org. Chem. 1985, 50, 231–234.

(17) (a) Čapka, M.; Chvalovský, V. Collect. Czech. Chem. Commun. 1969, 34, 2782–2791. (b) Barton, T. J.; Kippenhan, R. C., Jr. J. Org. Chem. 1972, 37, 4194–4195. (c) Kraus, M. Collect. Czech. Chem. Commun. 1972, 37, 3052–3053.

(18) The crystal data of major diastereomer **3a** have been deposited with the CCDC as file 858045: empirical formula $C_{21}H_{27}NO_4S$, formula weight 389.50, crystal color colorless, crystal dimensions 0.258 × 0.137 × 0.069 mm, crystal system monoclinic, lattice parameters a = 19.2333(13) Å, b = 8.4368(6) Å, c = 12.4042(8) Å, $\alpha = 90^{\circ}$, $\beta = 96.411(2)^{\circ}$, and $\gamma = 90^{\circ}$, V = 2000.2(2) Å³, space group $P2_1/c$, Z = 4, $D_{calcd} = 1.293$ g/cm³, $F_{000} = 832$, final *R* indices $(I > 2\sigma(I))$ R1 = 0.0541 and wR2 = 0.1354.

(19) The crystal data of major diastereomer **4h** have been deposited with the CCDC as file 874178: empirical formula $C_{23}H_{31}NO_3S$, formula weight 401.55, crystal color colorless, crystal dimensions 0.231 × 0.207 × 0.115 mm, crystal system orthorhombic, lattice parameters a = 14.689(3) Å, b = 9.005(2) Å, c = 32.942(8) Å, $\alpha = 90^\circ$, $\beta = 90^\circ$, and $\gamma = 90^\circ$, V = 4357.3(17) Å³, space group *Pbca*; Z = 8, $D_{calcd} = 1.224$ g/cm³, $F_{000} = 1728$, final *R* indices ($I > 2\sigma(I)$) R1 = 0.0493 and wR2 = 0.1180.

(20) (a) Alcock, N. W.; Brown, J. M.; Conneely, J. A.; Stofko, J. J. J. Chem. Soc., Chem. Commun. 1975, 234–235. (b) Matsuda, T.; Tsuboi, T.; Murakami, M. J. Am. Chem. Soc. 2007, 129, 12596–12597.
(c) Walczak, M. A. A.; Wipf, P. J. Am. Chem. Soc. 2008, 130, 6924–6925. (d) Evans, P. A.; Inglesby, P. A. J. Am. Chem. Soc. 2008, 130, 12838–12839. (e) Zhang, Y.; Chen, Z.; Xiao, Y.; Zhang, J. Chem. Eur. J. 2009, 15, 5208–5211. (f) Wang, T.; Wang, C.-H.; Zhang, J. Chem. Commun. 2011, 47, 5578–5580.

(21) (a) Mills, W.; Murray, H.; Raphael, A. J. Chem. Soc., Perkin Trans. 1 1973, 133–137. (b) Sheu, J.-H.; Yen, C.-F.; Chan, Y.-L.; Chung, J.-F. J. Org. Chem. 1990, 55, 5232–5233.