

BIOORGANIC & MEDICINAL CHEMISTRY LETTERS

Bioorganic & Medicinal Chemistry Letters 13 (2003) 2843-2846

MMPs Inhibitors: New Succinylhydroxamates with Selective Inhibition of MMP-2 over MMP-3

Valérie Marcq,^a Catherine Mirand,^{a,*} Martine Decarme,^b Hervé Emonard^b and William Hornebeck^b

^aIFR 53, UMR/CNRS 6013, Faculté de Pharmacie, 51 rue Cognacq-Jay, 51096 Reims Cedex, France ^bIFR 53 FRE/CNRS 2534, Faculté de Médecine, 51 rue Cognacq-Jay, 51096 Reims Cedex, France

Received 11 December 2002; revised 30 April 2003; accepted 11 June 2003

Abstract—Some ilomastat analogues featuring an isobutylidene group or a 2-substituted indole nucleus were synthesized to evaluate their inhibitory activities against gelatinase A and stromelysin-1. Potent MMP-2 inhibition and good selectivity for that enzyme have been observed for compounds 1a, 2 and 22. © 2003 Elsevier Ltd. All rights reserved.

In humans, the MMP family comprises at least 22 members which can hydrolyze virtually any component of the extracellular matrix.¹ Their involvement in all stages of cancer progression is now well documented and intensive efforts have been made to design MMP inhibitors as cancer therapeutical agents. However, data from clinical trials have revealed undesirable side effects which can be partly attributed to the broad spectrum MMP inhibitory activity of those drugs.²

Gelatinase A (MMP-2) plays an active role in both tumor growth by favoring tumor angiogenesis and matrix invasion of cancer cells as melanoma cells. Its activation is catalyzed mainly by MT₁ and MT₂ MMP at the cell plasma membrane; on the contrary, other MMPs are processed through proteolytic cascades where stromelysin-1 (MMP-3) occupies a central position. In previous investigations,³ we observed that long chain unsaturated fatty acids, but not their saturated counterparts, displayed MMP inhibitory activity. Besides, those compounds were found to exhibit higher inhibitory activity towards MMP-2 as compared to MMP-3⁴ although both MMPs were described to contain deep S1' hydrophobic pockets. We thus anticipated that introduction of an unsaturation at that site could bring specificity to MMP inhibitors.

o exhibit higher s compared to escribed to conthus anticipated

isobutyraldehyde led to the expected half-ester with low yield, as frequently observed.⁵ So we turned to the Wittig reaction, utilizing the process developed by Mc Combie to prepare arylidenesuccinates.⁶ The phosphorane generated in situ by reaction between methyl maleate 4 and tri-*n*-butyl phosphine was reacted with isobutyraldehyde to yield the dimethyl alkylidene succinate 5 as a 9:1 E/Z mixture.⁷ We also applied the

0960-894X/03/\$ - see front matter \odot 2003 Elsevier Ltd. All rights reserved. doi:10.1016/S0960-894X(03)00590-0

We therefore prepared ilomastat (galardin®) analogues

featuring an isobutylidene group at S1' (1) and some

modifications at S2' and S3' subsites (2 and 3) in order

to increase their overall hydrophobicity.

Chemistry The access to the targeted molecules required the pre-

^{*}Corresponding author. Tel.: +33-326-913587; fax: +33-326-918029; e-mail: catherine.mirand@univ-reims.fr

Emmons–Wadsworth–Horner reaction,⁸ following a procedure described by Dhokte et al.⁹ The phosphonate **6** was condensed with isobutyraldehyde to yield the diethyl alkylidene succinate **7** as a 1:2 E/Z mixture. Both diesters **5** and **7** were then hydrolyzed and the resulting diacids were dehydrated, thus leading to the anhydrides **8a** (single *E*-isomer) and **8b** (*E*:*Z* mixture), respectively. Finally, refluxing **8a** in benzyl alcohol provided the monoester **9a** as the single *E*-isomer while **8b** treated by methanol or benzyl alcohol gave **9ba** and **9bb** as E/Z mixtures.

The dehydro analogues of ilomastat **1a** and **1b** were then prepared from succinates **9a** and **9ba** and (L)-tryptophan methylamide 10^{10} via a classical pathway¹¹ (Scheme 2). Coupling of **10** with monoester **9a** mediated by DCC gave the succinyltryptophanamide **12a**. After deprotection of the benzyl ester, the free acid **13a** was converted in two steps¹² into the pure *E*-hydroxamic acid **1a**.¹³

Alternatively, tryptophanamide 12b obtained from 10 and methyl monoester 9ba led to the E/Z 1:1 mixture 1b.

A similar sequence of reactions gave access to the *E*-ethyl carboxylate **2** from ethyl tryptophanate **11** and **9bb** via **14**.

With the compounds 1a, 1b, 2 in hand we were able to evaluate the influence of three parameters: (i) the presence of a double bond at P1', (ii) the effect of its

geometry and (iii) the importance of an amide function at the C-terminal part of the molecule.

Substituted indole dehydro derivatives such as 3 were our next target. To this end we applied a method reported in a preceding paper.¹⁴ the pseudopeptide backbone was generated through the reaction of a succinyl aminomalonate with a quaternarized gramine¹⁵ and the hydroxamate was introduced at the beginning of the reaction sequence (Scheme 3).¹⁶ Thus, the 2-(succinylamino)malonate 16 was prepared by reaction of 9bb with diethyl aminomalonate. Unfortunately, hydrogenolysis of the benzylic ester was accompanied by hydrogenation of the double bond and led to the racemic carboxylic acid 17. However, the synthesis was continued, at aim to obtain substituted indole derivatives of ilomastat. Thus the benzyl hydroxamate 18 derived from 17 was condensed with $N_{\rm b}$ -methyl-tetrahydro- β -carboline methyliodide **19**, affording the indole derivative 20. Hydrolysis-decarboxylation of 20 followed by amidation gave the methyl amide 21 which was converted into the hydroxamic acid 22.17 This compound, even as a mixture of four diastereomers was biologically assayed.

Biological Evaluation

Compounds 1a, 1b, 2 and 22 were tested in vitro for inhibition of MMP-2 and MMP-3 and compared to ilomastat.¹⁸ The results are shown in Table 1.

Scheme 1. Reagents and conditions: (a) isobutyraldehyde, $(n-Bu)_3P$, THF, 25 °C, 96 h, 56%; (b) isobutyraldehyde, NaH, Et₂O, 25 °C, 3 h, 100%; (c) NaOH, H₂O, 25 °C, 72 h, 75%; (d) AcCl, reflux, 3 h, 100%; (e) ROH, reflux, 55–61%.

Scheme 2. Reagents and conditions: (a) DCC, CH₂Cl₂, 25 °C, 16 h, 49–61%; (b) H₂, Pd/C, EtOH, 25 °C, 3–4 h, 100%; (c) LiOH·H₂O, THF/H₂O (3:1), 25 °C, 3 h, 96%; (d) NH₂OBn·HCl, Et₃N, DCC, HOBt, CH₂Cl₂, 25 °C, 16 h, 77–100%; (e) H₂, Pd/C, EtOH, 25 °C, 5.5 h, 90–100%.

Scheme 3. Reagents and conditions: (a) diethyl aminomalonate, DCC, CH_2Cl_2 , $25 \,^{\circ}C$, 2 h, 57%; (b) H_2 , Pd/C, EtOH, $25 \,^{\circ}C$, 4.5 h, 79%; (c) NH₂OBn·HCl, Et₃N, DCC, HOBt, CH_2Cl_2 , $25 \,^{\circ}C$, 20 h, 84%; (d) NaH, THF, reflux, 16 h, 83%; (e) LiOH·H₂O, THF/H₂O (3:1), $25 \,^{\circ}C$, 72 h, then HCl \rightarrow pH 4, reflux, 16 h, 69%; (f) MeNH₂·H₂O, EtOH, $25 \,^{\circ}C$, 24 h, 59%; (g) H₂, Pd/C, EtOH, $25 \,^{\circ}C$, 4.5 h, 98%.

Table 1. Inhibition data

Compd	MMP-2 ^a	MMP-3 ^b	Selectivity ^c
Ilomastat ^b	0.104	0.191	2
1a	1.3	179	138
1b	19.6	910	46
2	5.97	2340	392
12b	NI ^d	NI ^d	_
22	5.73	665	116

^aIC₅₀ (nm): values are means of three experiments.

^bData generated in our laboratories.

^cSelectivity: MMP-3; IC₅₀; MMP-2 IC₅₀.

^dNI: no inhibition.

The dehydroderivative **1a** was less potent as compared to ilomastat against MMP-2 (10-fold higher IC₅₀) and MMP-3 (1000-fold higher IC₅₀). A similar important decrease of potency was reported for the 'dehydroilomastat' **23** (\sim 300-fold higher MMP-1 K_i).¹⁹

However, introduction of an insaturation at S1' subsite provided about a 100-fold greater selectivity for MMP-2 inhibition over MMP-3, that is a 70-fold increase as compared to ilomastat.

Potency and selectivity depend on the geometry of the double bond: the equimolar E/Z mixture **1b** displayed substancially lower inhibitory potency than the pure *E*-isomer.

Compounds **1a**,**b** can be considered as conformationaly constrained analogues of ilomastat. The double bond confers to the *E*-isomer **1a** a conformation close to that of the biological active conformation of ilomastat while the *Z*-isobutylidene group cannot be easily accommodated in the S1' pocket. This observation is consistent with the work of Martin and colleagues²⁰ on other constrained inhibitors such as the cyclopropane derivatives 24a and 24b.

Replacement of the methylamide residue at P3' by an ethoxycarbonyl group in compound 3 caused about a 5-fold decrease in potency against MMP-2 but a significant enhancement of selectivity.

Similarly, Castelhano and coworkers²¹ have reported that replacement of the P2'-P3' amide bond of ilomastat by imidazole maintained potency against MMPs and induced selectivity for MMP-1 and MMP-8 over MMP-3.

On the other hand, a selectivity for MMP-3 over MMP-2 may be obtained by replacement of the methyl group of methylamide by a benzhydryl²² or α -methylbenzyl²³ group.

The substituted indole derivative **22** showed lower inhibitory activities, but a selectivity for MMP-2 was also observed. This result suggests that selectivity against MMP-2 over MMP-3 can also be modulated by modification of the P2' group. Work is in progress to prepare the single isomer with the 'right' configuration at the two stereogenic centers.

To exclude the possibility that binding of compounds to exosites distinct from the MMP active site might be responsible for the observed effect, compound **12b** bearing a methoxy group in the hydroxamate moiety was evaluated for its MMP inhibitory capacity.⁴ It proved to be uneffective on both MMP-2 and MMP-3.

Although 1a, 2 and 22 are not as effective as ilomastat, their selectivity for MMP-2 makes these derivatives interesting for more detailed SAR studies.

Acknowledgements

We thank the 'Ministère de l'Education Nationale, de la Recherche et de la Technologie' for financial support, the 'ville de Reims' for a PhD fellowship (V.M.), P. Sigaut (MS), and C. Petermann (NMR) for spectroscopic recordings. Fruitful discussions with Professor J. Lévy have been appreciated.

References and Notes

1. Nagase, H.; Woessner, J. F. J. Biol. Chem. 1999, 274, 21491.

2. Recent reviews: (a) Beckett, R. P.; Davidson, A. H.; Drummond, A. H; Huxley, P.; Whittaker, M *Drug Discov. Today* **1996**, *1*, 16. (b) Babine, R. E.; Bender, S. L. *Chem. Rev.* **1997**, *97*, 1359. (c) Levy, D. E.; Lapierre, F.; Liang, W.; Ye, W.; Lange, C. W.; Li, X.; Grobelny, D.; Casabonne, M.; Tyrrel, D.; Holme, K.; Nadzan, A.; Galardy, R. E. *J. Med. Chem.* **1998**, *41*, 199. (d) Whittaker, M.; Floyd, C. D.; Brown, P.; Gearing, A. J. H. *Chem. Rev.* **1999**, *99*, 2735. (e) Leung, D.; Abbenante, G.; Fairlie, D. P. *J. Med. Chem.* **2000**, *43*, 305.

3. (a) Emonard, H.; Hornebeck, W. In *Biomedical and Health Research*, Hopsu-Havu, V. K., Jarvinen, M., Kirschke, H., Eds.; IOS Press: Amsterdam, 1997; pp 174–178 (b) Emonard, H.; Marcq, V.; Mirand, C.; Hornebeck, W. *Ann. N.Y. Acad. Sci.* **1999**, 878, 647.

4. Berton, A.; Rigot, V.; Huet, E.; Decarme, M.; Eeckhout, Y.; Patthy, L.; Godeau, G.; Hornebeck, W.; Bellon, G.; Emonard, H. J. Biol. Chem. 2001, 276, 20458.

5. Johnson, W. S.; Daub, G. H. Org. React. 1951, 6, 1.

6. McCombie, S. W.; Luchaco, C. A. *Tetrahedron Lett.* **1997**, 38, 5775.

7. Structures of alkylidene succinates and ratios of E and Z isomers were determined by NMR spectroscopy, referring to the spectral data of similar compounds: Trost, B. M.; Melvin, L. S. J. Am. Chem. Soc. **1976**, *98*, 1204.

8. Boutagy, J.; Thomas, R. Chem. Rev. 1974, 74, 87.

9. Dhokte, U. P.; Rao, A. S. Ind. J. Chem. 1990, 29B, 1089.

- 10. Prepared from ethyl tryptophanate: Ma, D.; Tian, H. J. Chem. Soc., Perkin Trans. 1 1997, 3493.
- 11. (a) Galardy, R. E. Drugs Future 1993, 18, 1109. (b) Levy,
- D. E.; Grobelny, D.; Tang, P.; Holme, K. R.; Galardy, R. E.; Schultz, G. S.; Nematalla, A.; Musser, J. H. World Pat. Appl.
- WO 95/19,965, 1995. Chem. Abstr. 1996, 124, 1046.

12. Bihovsky, R.; Levinson, B. L.; Loewi, R. C.; Erhardt, P. W.; Polokoff, M. A. J. Med. Chem. **1995**, *38*, 2119.

- 13. **1a**: ¹H NMR (DMSO- d_6) δ 10.82 (s, 1H), 10.57 (brs, 1H), 8.87 (s, 1H), 8.14 (d, 1H, J=8 Hz), 7.92 (m, 1H), 7.62 (d, 1H, J=7.7 Hz), 7.34 (d, 1H, J=7.7 Hz), 7.15 (s, 1H), 7.07 (t, 1H,
- J = 7.7 Hz), 6.99 (t, 1H, J = 7.7 Hz), 6.04 (d, 1H, J = 9.8 Hz),

4.55–4.40 (m, 1H), 3.30–2.92 (m, 4H), 2.70–2.50 (m, 1H), 2.61 (d, 3H, J=4.4 Hz), 0.98 (d, 3H, J=6.5 Hz), 0.93 (d, 3H, J=6.5 Hz).

14. Marcq, V.; Mirand, C.; Emonard, H.; Hornebeck, W. *Heterocycles* **1999**, *51*, 1079.

15. Sapi, J.; Grébille, Y.; Laronze, J. Y.; Lévy, J. Synthesis 1992, 383.

16. Attempts at condensation of the succinylamino-malonate **16** with **19** were fruitless.

17. **22**: $R^*R^*: R^*S^*$ 1:1 mixture; ¹H NMR (DMSO-*d*₆) δ 10.65 (s, 2H), 10.48 (s, 1H), 10.48 (s, 1H), 10.38 (brs, 1H), 8.12 (d, 1H, J=8.1 Hz), 7.92 (d, 1H, J=8.1 Hz), 7.80 (m, 1H), 7.68 (m, 1H), 7.51 (d, 1H, J=7.7 Hz), 7.47 (d, 1H, J=7.7 Hz), 7.20 (d, 2H, J=7.8 Hz), 6.98 (t, 2H, J=7.1 Hz), 6.90 (t, 2H, J=7.1 Hz), 4.52 (m, 1H), 4.40 (m, 1H), 2.60 (s, 3H), 2.50 (s, 3H), 2.24 (s, 12H), 0.80 (d, 3H, J=6.1 Hz), 0.75 (d, 3H, J=6.1 Hz), 0.45 (d, 6H, J=4.7 Hz).

18. Assays of inhibition activity were conducted using the fluorogenic substrate Mca-Pro-Leu-Gly-Leu-Dpa-Ala-Arg-NH₂ (Bachem), as previously described.⁴ For those studies, APMA-activated recombinant proenzyme MMP-2 (Calbiochem PF 03710) was used; since either APMA or enzyme treatment of rec pro MMP-3 (Calbiochem) led to irreproducible extent of the enzyme activation, assays were performed with truncated rec MMP-3 lacking PEX and Pro domains instead (Calbiochem 444217). Nevertheless, the extent of inhibition was similar using either deleted PEX or total length.

(a) Galardy, R. E.; Grobelny, D. US Patent 5,189,178.
Chem. Abstr. 1992, 117, 251774. (b) Ghose, A. K.; Logan, M. E.; Treasurywala, A. M.; Wang, H.; Wahl, R. C.; Tomczuk, B. E.; Gowravaram, M. R.; Jaeger, E. P.; Wendoloski, J. J. J. Am. Chem. Soc. 1995, 117, 4671.

20. Martin, S. F.; Oalmann, C. J.; Liras, S. *Tetrahedron* 1993, 49, 3521.

21. Chen, J. J.; Zhang, Y.; Hammond, S.; Dewdney, N.; Ho,

T.; Lin, X.; Browner, M. F.; Castelhano, A. L. *Bioorg. Med. Chem. Lett.* **1996**, *6*, 1601.

22. Beckett, R. P.; Miller, A.; Spavold, Z. M.; Whittaker, M. World Pat. Appl. WO 96/33,161, 1997. *Chem. Abstr.* 1997, *126*, 18654.

23. Fray, M. J.; Dickinson, R. P. Bioorg. Med. Chem. Lett. 2001, 11, 571.