

Available online at www.sciencedirect.com

PHYTOCHEMISTRY

Phytochemistry 69 (2008) 1208-1214

www.elsevier.com/locate/phytochem

Phenolic and iridoid glycosides from Strychnos axillaris

Atsuko Itoh^a, Yasuhiro Tanaka^a, Naotaka Nagakura^a, Toru Akita^b, Toyoyuki Nishi^b, Takao Tanahashi^{a,*}

^a Kobe Pharmaceutical University, Higashinada-ku, Kobe 658-8558, Japan ^b The Nippon Shinyaku Institute for Botanical Research, Yamashina-ku, Kyoto 607-8182, Japan

> Received 30 August 2007; received in revised form 13 November 2007 Available online 4 February 2008

Abstract

Five phenolic glycosides 1–5 and an iridoid glucoside 6 were isolated, together with 22 known compounds, from the dried barks and woods of *Strychnos axillaris*. Their structures were determined by application of spectroscopic (NMR, MS) and chemical methodologies. © 2007 Elsevier Ltd. All rights reserved.

Keywords: Strychnos axillaris; Loganiaceae; Phenolic glycosides; Iridoid glucoside; Calleryanin; Vanilloloside; Cantleyoside

1. Introduction

The genus Strvchnos (Loganiaceae) is well-known as a rich source of various bioactive indole alkaloids represented by strychnine (Bisset, 1980). Several β-carboline glucoalkaloids closely related to indole alkaloids have been isolated from Strychnos mellodora (Brandt et al., 1999). In continuation of our phytochemical studies on constituents of the genus Strychnos (Itoh et al., 2005, 2006), we examined S. axillaris Colebr. (=S. pubescens C.B. Clarke) collected in Thailand. This species has been traditionally used in East Asia as an arrow poison (Perry, 1980), but no phytochemical study of this plant has been reported. From our interests in glucoalkaloids in the polar fraction (Itoh et al., 2003), we investigated the n-BuOH-soluble fraction of this plant. In this paper, we report the isolation and structure elucidation of six new glycosides along with 22 known compounds from S. axillaris.

2. Results and discussion

The dried barks and woods of *S. axillaris* were extracted with MeOH under conditions of reflux. The

E-mail address: tanahash@kobepharma-u.ac.jp (T. Tanahashi).

extract was successively partitioned between H₂O and CHCl₃ and between H₂O and *n*-BuOH. The *n*-BuOH-soluble fraction was separated by a combination of chromatographic procedures to afford six new compounds 1-6 together with 22 known compounds: tachioside (Zhong et al., 1999), isotachioside (Zhong et al., 1999), 3,4,5-trimethoxyphenol $1-O-\beta$ -D-apiofuranosyl- $(1\rightarrow 6)-\beta$ -D-glucopyranoside (Duynstee et al., 1999), calleryanin (7) (Challice et al., 1980), vanilloloside (8) (Ida et al., 1994), 3,5-dimethoxy-4-hydroxybenzyl alcohol 4-O-β-Dglucopyranoside (Kitajima et al., 1998), caffeoylcallervanin (9) (Challice and Williams, 1968), (7S, 8R)-balanophonin 4-O-β-D-glucopyranoside (Warashina et al., 2005), (+)-syringaresinol O- β -D-glucoside (Lami et al., 1991), scorzonoside (Tolstikhina and Semenov, 1998), liriodendrin (Kobayashi et al., 1985), (-)-pinoresinol 4-O- β -D-glucopyranoside (Sugiyama and Kikuchi, 1991), (+)-lariciresinol 4'-O-β-D-glucoside (Sugiyama and Kikuchi, 1993), loganic acid (Nakamoto et al., 1988), loganin (Nakamoto et al., 1988), sweroside (Jensen et al., 1981), picconioside I (Damtoft et al., 1997), cantleyoside (10) (Kocsis et al., 1993), triplostoside A (Ma et al., 1992), strictosidinic acid (Arbain et al., 1993), 3,4-di-O-caffeoylquinic acid (Wang et al., 1992), and 3,5-di-O-caffeoylquinic acid (Wald et al., 1989). The structures of the new compounds were determined as follows.

^{*} Corresponding author. Tel./fax: +81 78 441 7545.

^{0031-9422/\$ -} see front matter © 2007 Elsevier Ltd. All rights reserved. doi:10.1016/j.phytochem.2007.12.002

Compound 1 was obtained as an amorphous powder, $[\alpha]_D$ -81. Its HR-SIMS showed a pseudomolecular ion $[M-H]^-$ at m/z 433.1354, indicating a molecular formula of C18H26O12. It also had UV maxima at 202 and 278 nm and IR bands at 3386 and 1508 cm⁻¹. Its ¹H NMR spectrum (Table 1) exhibited an AMX spin system at δ 6.79 (dd, J = 8.5, 2.0 Hz), 6.87 (d, J = 2.0 Hz), and 7.15 (d, J = 2.0 Hz)J = 8.5 Hz), a signal for an oxygenated benzylic methylene group at δ 4.48 (s), as well as resonances for a β -glucopyranosyl unit at δ 3.35–4.70, implying the presence of a callervanin (7) moiety (Challice et al., 1980). This was supported by the NOESY correlations between H-2 (δ 6.87), H-6 (δ 6.79) and H₂-7 (δ 4.48) and between H-5 (δ 7.15) and H-1' of glucose unit (δ 4.70). The ¹H and ¹³C NMR spectra of 1 showed additional signals for a β -apiofuranosyl unit at $\delta_{\rm H}$ 3.59 (2 H, s), 3.76 (1H, d, J = 9.5 Hz), 3.92 (1H, d, J = 2.5 Hz), 3.97 (1H, d, J = 9.5 Hz), 4.99 (1H, d, J = 2.5 Hz) and $\delta_{\rm C}$ 65.6, 75.0, 78.1, 80.5, 111.1, besides the resonances for a calleryanin moiety. Acid hydrolysis of 1 liberated D-glucose and D-apiose, which were identified by GLC analysis of their thiazolidine derivatives (Hara et al., 1986). On the basis of the HMBC correlation between the H-1" of the apiose moiety and C-6' of the glucose moiety, it was concluded that an apiose was linked to C-6' of the calleryanin moiety, which was supported by the downfield shift of C-6' and the upfield shift of C-5' by glycosidation when compared with 7. Accordingly, compound 1 was characterized as $6'-O-\beta$ -D-apiofuranosylcalleryanin.

The second new glycoside **2** was also obtained as an amorphous powder. The ¹H NMR spectroscopic features of **2** were closely similar to those of **1** except for the signals for another AMX spin system [δ 6.79 (d, J = 8.5 Hz), 7.05 (dd, J = 8.5, 2.0 Hz), 7.16 (d, J = 2.0 Hz)], trans-olefinic protons [δ 6.38, 7.65 (each d, J = 16.0 Hz)], and a methoxy

group [δ 3.86 (*s*)]. These resonances were assignable to a *trans*-feruloyl group by its NOESY correlation between a methoxy singlet and an aromatic proton at δ 7.16 (*d*, J = 2.0 Hz) and HMBC interactions between aromatic protons at $\delta_{\rm H}$ 7.05 and 7.16 and an olefinic carbon at $\delta_{\rm C}$ 147.4. The ester linkage of the *trans*-feruloyl group to the hydroxyl group at C-5" of apiose moiety was demonstrated by the downfield shift of C-5" relative to those in 1 and the HMBC cross peaks between H₂-5" [$\delta_{\rm H}$ 4.27, 4.30 (each *d*, J = 11.5 Hz)] and C-9"'' of *trans*-feruloyl group ($\delta_{\rm C}$ 169.0). Thus, compound 2 was deduced to be 5"-O-trans-feruloyl-6'-O- β -D-apiofuranosylcalleryanin.

The spectroscopic properties of compound **3** were quite similar to those of **2** except for additional signals for a methoxy group at $\delta_{\rm H}$ 3.84 and $\delta_{\rm C}$ 56.7 (Table 1). The location of the methoxy group was determined to be at C-3 by comparison of the ¹H and ¹³C NMR spectroscopic data for the benzyl alcohol moiety with those of vanilloloside (**8**) (Ida et al., 1994). Further evidence was obtained from the NOESY correlation between H-2 [$\delta_{\rm H}$ 6.99 (*d*, J = 2.0 Hz)] and the methoxy singlet. Accordingly, compound **3** was established as 5"-O-trans-feruloyl-6'-O- β -Dapiofuranosylvanilloloside.

Compound 4, $C_{23}H_{26}O_{11}$, was also isolated as an amorphous powder. Its ¹H and ¹³C NMR spectroscopic data (Table 2) showed that 4 consisted of a vanilloloside (8) moiety esterified with a *trans*-caffeoyl group. Acylation of the hydroxyl group at C-7 was determined by the HMBC correlation between H₂-7 and C-9" of the caffeoyl group, and by comparison of the ¹³C NMR spectroscopic data of 4 with those of 8 and caffeoylcalleryanin (9) (Challice and Williams, 1968). Accordingly, the structure of 4 was determined to be 7-*O*-*trans*-caffeoylvanilloloside.

Table 1	
¹ H and ¹³ C NMR spectral	data of compounds 1-3 in CD3OD

	1				2				3			
	δ_{C}	$\delta_{\rm H}$			$\delta_{\rm C}$	$\delta_{\rm H}$			δ_{C}	$\delta_{\rm H}$		
1	138.5				138.6				137.8			
2	116.0	6.87	d	(2.0)	116.1	6.84	d	(2.0)	112.7	6.99	d	(2.0)
3	148.4				148.4				150.8 ^a			
4	146.0				146.1				147.3			
5	118.9	7.15	d	(8.5)	118.9	7.15	d	(8.5)	118.1	7.12	d	(8.0)
6	119.7	6.79	dd	(8.5, 2.0)	119.7	6.76	dd	(8.5, 2.0)	120.9	6.86	dd	(8.0, 2.0)
7	64.7	4.48	s		64.9	4.42	s		65.0	4.49	s	
3-OMe									56.7	3.84	s	
glc												
1'	104.5	4.70	d	(8.0)	104.5	4.67	d	(8.0)	103.0	4.81	d	(7.5)
2'	74.9	3.48	brt	(8.5)	74.9	3.48	dd	(9.0, 8.0)	75.0	3.49	dd	(9.0, 7.5)
3'	77.6	3.44	t	(9.0)	77.6	3.42	t	(9.0)	77.9	3.43	t	(9.0)
4'	71.6	3 35	brt	(9.0)	71.7	3 34	brt	(9.0)	71.8	3 33	brt	(9.5)
5'	77.2	3 55	ddd	(95, 65, 2.0)	77.1	3 57	ddd	(90, 65, 20)	77.1	3 56	ddd	(95, 65, 20)
6'	68.8	3 63	dd	(110, 65)	68 7	3 63	dd	(110, 65)	68.8	3.61	dd	(110, 65)
6'	00.0	4 02	dd	(11.0, 0.5) (11.0, 2.0)	00.7	4.05	dd	(11.0, 0.5) (11.0, 2.0)	00.0	4 00-4 04	m	(11.0, 0.5)
ani		4.02	uu	(11.0, 2.0)		4.05	uu	(11.0, 2.0)		4.00 4.04		
1″	111.1	4 99	d	(2.5)	110.8	5.02	d	(2.0)	110.8	4 99	d	(2.0)
2"	78.1	3.92	d	(2.5)	78.6	3.98	d	(2.0)	78.6	3.94	d	(2.0)
2 3″	80.5	5.72	u	(2.5)	79.0	5.70	u	(2.0)	79.0	5.54	u	(2.0)
5 4″	75.0	3 76	đ	(9.5)	75.1	3 84	d	(9.5)	75.1	3.82	d	(9.5)
	75.0	3.07	d	(9.5)	/ 5.1	4.05	d	(9.5)	75.1	4.02	d	(9.5)
+ 5″	65.6	2.50	u	(9.5)	67.4	4.05	u d	(9.5)	67.4	4.02	d	(9.5)
5	05.0	3.39	5		07.4	4.27	u d	(11.5)	07.4	4.24	u d	(11.0)
J agril						4.30	u	(11.5)		4.20	u	(11.0)
1///					127.6				1277			
2///					12/.0	710	L	(2.0)	127.7	7 17	L	(2,0)
2					111.8	/.10	a	(2.0)	111.8	/.1/	a	(2.0)
3					149.5				149.5			
4					150.9	6 70		(0.5)	150.9"	6.00	1	(0,5)
5'''					116.6	6./9	d	(8.5)	116.6	6.80	d	(8.5)
6'''					124.3	7.05	dd	(8.5, 2.0)	124.3	7.06	dd	(8.5, 2.0)
1					147.4	7.65	d	(16.0)	147.3	/.64	d	(16.0)
8					115.1	6.38	d	(16.0)	115.1	6.38	d	(16.0)
9'''					169.0	• • •			168.9			
3'''-OMe					56.5	3.86	S		56.5	3.87	S	

^a Assignments with the same superscript may be interchanged.

Compound **5**, $C_{28}H_{34}O_{16}$, was obtained as an amorphous powder and its ¹H and ¹³C NMR spectroscopic features were closely similar to those of **9**, except for additional signals arising from a β -glucopyranosyl unit. The attachment of the second glucopyranosyl unit at C-4" of caffeoylcalleryanin moiety was confirmed by the HMBC correlation between H-1"" of glucose unit and C-4" and by the NOESY interaction between H-5" and H-1". Accordingly, compound **5** was assigned to 4"-*O*- β -D-glucopyranosyl-caffeoylcalleryanin.

Compound 6, named axillaroside, was assigned the molecular formula $C_{33}H_{46}O_{20}$ from its HR-SIMS. Its ¹H NMR spectrum showed signals for two olefinic protons at δ 7.24 (d, J = 1.5 Hz) and 7.49 (d, J = 2.0 Hz), two acetal proton resonances at δ 5.28 (d, J = 5.0 Hz) and 5.50 (d, J = 4.5 Hz), two sets of signals for β -glucopyranosyl units at δ 3.20–4.68, a doublet for a secondary methyl group at δ 1.07 (J = 6.5 Hz), and resonances for a terminal vinyl group at δ 5.23 (dd, J = 10.0, 1.5 Hz), 5.27 (dd, J = 17.0, 1.0 Hz), and 5.66 (br dt, J = 17.0, 10.0 Hz), indicating the presence of an iridoid glucoside unit and a secoiridoid glu-

coside unit in the molecule. These spectroscopic features were similar to those of cantleyoside (10), which was also isolated in this study, except for the absence of the signal for an aldehyde proton in its ¹H NMR spectrum (Kocsis et al., 1993). Its ¹³C NMR spectrum exhibited three carbonyl carbon resonances at δ 168.0, 169.5, and 176.1. These observations suggested that glucoside 6 was composed of loganin (11) unit and secologanoside (12) units. The presence of a secologanoside unit was further supported by a fragment ion peak at m/z 389.

The site of ester linkage was confirmed by HMBC experiments. The signal at δ_c 169.5 was assigned to C-11 of the loganin moiety by HMBC correlations from H-3, H-5 and the methoxyl resonance at δ 3.69, and the signal at δ_c 176.1 was assigned to C-7" of the secologanoside moiety by HMBC correlations from H-5" and H₂-6". The remaining carbonyl carbon resonance at δ_c 168.0, which was assigned to C-11" of the secologanoside moiety by HMBC interactions with H-3" and H-5", was correlated with H-7 [δ 5.20 (*br t*, J = 5.5 Hz)] of the loganin unit, indicating that the C-11 carboxyl group of the secologanoside moiety was linked to the

Table 2 ¹H and ¹³C NMR spectral data of compounds **4** and **5** in CD₃OD

	4		5					
	δ_{C}	$\delta_{\rm H}$			$\delta_{\rm C}$	$\delta_{\rm H}$		
1	132.7				133.3			
2	114.0	7.06	d	(2.0)	117.2	6.91	d	(2.0)
3	150.9				148.4 ^a			
4	148.0				146.7			
5	117.9	7.16	d	(8.0)	118.7	7.18	d	(8.0)
6	122.5	6.96	dd	(8.0, 2.0)	121.0	6.84	dd	(8.0, 2.0)
7	67.1	5.15	S		67.0	5.11	S	
3-OMe	56.8	3.87	s					
glc								
1′	102.8	4.91	d	(7.0)	104.2	4.77	d	(7.5)
2'	75.0	3.50	brt	(8.0)	74.8 ^b	3.51	dd	(9.0, 7.5)
3'	77.9	3.46	brt	(9.0)	77.5°	3.38-3.50	m	,
4′	71.4	3.36-3.46	m		71.3	3.38-3.50	m	
5'	78.3	3.36-3.46	m		78.3 ^d	3.38-3.50	m	
6′	62.5	3.69	dd	(12.0, 5.0)	62.4	3.71	dd	(12.0, 5.0)
6'		3.87	dd	(12.0, 1.5)		3.90	dd	(12.0, 2.0)
acyl								
1″	127.7				131.3			
2″	115.2	7.03	d	(2.0)	116.0	7.11	d	(2.0)
3″	146.9				148.6 ^a			
4″	149.7				148.9			
5″	116.5	6.77	d	(8.0)	118.1	7.19	d	(8.5)
6″	123.1	6.94	dd	(8.0, 2.0)	122.3	7.04	dd	(8.5, 2.0)
7″	147.2	7.56	d	(16.0)	146.3	7.59	d	(16.0)
8″	115.0	6.28	d	(16.0)	117.2	6.38	d	(16.0)
9″	169.1			· /	168.6			. ,
glc								
1'''					103.5	4.85	d	(7.5)
2'''					74.9 ^b	3.51	dd	(9.0, 7.5)
3'''					77.6°	3.38-3.50	m	,
4'''					71.3	3.38-3.50	m	
5'''					78.4 ^d	3.38-3.50	m	
6'''					62.4	3.71	dd	(12.0, 5.0)
6'''						3.90	dd	(12.0, 2.0)

^{a-d} Assignments with the same superscript may be interchanged.

C-7 hydroxy group of loganin component. Accordingly, axillaroside was formulated as shown in formula **6**.

3. Concluding remarks

In the present study, five new phenolic glycosides 1-5 with a benzyl alcohol moiety and a new iridoid glucoside **6** were isolated along with a glucoalkaloid strictosidic acid. Iridoid glycosides and their related indole alkaloids have previously been reported from the genus *Strychnos*. However, this is the first instance of the isolation of benzyl alcohol glycosides such as calleryanin and vanilloloside from the genus.

4. Experimental

4.1. General

UV spectra were recorded on a Shimadzu UV-2500PC spectrophotometer and IR spectra on a Shimadzu FTIR-

8200 spectrophotometer. ¹H (500 MHz) and ¹³C (125 MHz) NMR spectra were recorded on a Varian VXR-500 spectrometer with TMS as an internal standard. MS and HRMS were obtained with a Hitachi M-4100 mass spectrometer. Glycerol or 3-nitrobenzyl alcohol was used as the matrix for SIMS and HRSIMS. MPLC was carried out with Wakogel FC-40 or Wakosil 40C18. TLC was performed on precoated Kieselgel 60F₂₅₄ plates (Merck).

4.2. Plant material

The bark and wood of *Strychnos axillaris* Colebr. were collected at Sakae Rat, Nakhon Ratchasima, Thailand in March 1986 and identified by Dr. T. Smitinand, The Forest Herbarium, Royal Forest Department, Bangkok, Thailand.

4.3. Extraction and isolation

Dried and powdered mixture (2000 g) of bark and wood of *S. axillaris* was extracted with MeOH under conditions of reflux for 1 h, with the extracts concentrated *in vacuo* and a part (39 g) of the resulting residue (130 g) resuspended in H₂O and extracted successively with CHCl₃ and *n*-BuOH. The residue (23.6 g) from the *n*-BuOH layer was fractionated using reversed-phase MPLC. Elution with H₂O-MeOH mixtures of the indicated MeOH content (% v/v) gave nine frs, 1 (5%, 286 mg), 2 (10%, 160 mg), 3 (15%, 414 mg), 4 (20%, 197 mg), 5 (20%, 797 mg), 6 (25-30%, 1.11 g), 7 (30-35%, 457 mg), 8 (35%, 4.59 g), and 9 (40–45%, 1.54 g). Fr. 1 was purified by preparative HPLC (µBondasphere 5µ C18-100 Å, MeOH-H₂O, 1:4, MeOH-MeCN-H₂O, 1:2:97, v/v/v) and preparative TLC (EtOAc-C₆H₆-EtOH, 4:1:3, CHCl₃-MeOH, 7:3, CHCl₃-MeOH-H₂O, 70:30:3, v/v/v) to afford 7 (68.7 mg), 8 (20.7 mg), loganic acid (18.8 mg), tachioside (3.4 mg), and isotachioside (3.3 mg), respectively. In the same way, frs. 2–9 were purified by a combination of reversed-phase MPLC with MeOH-H₂O, normal-phase MPLC with CHCl3-MeOH, preparative HPLC (µBondasphere 5µ C18-100 Å, MeOH-H₂O, 2:8-11:9 (by vol.), MeOH-H2O-AcOH, 40:60:1, MeCN-H2O, 3:17, MeCN-H₂O–AcOH, 20:85:1, 15:85:1, v/v/v) and preparative TLC (CHCl₃-MeOH, 7:3; CHCl₃-MeOH-H₂O, 70:30:3, 14:6:1, v/v/v). Fr. 2 yielded 1 (15.2 mg), 8 (19.6 mg), loganic acid (20.9 mg), and 3,5-dimethoxy-4-hydroxybenzyl alcohol 4-O-β-D-glucopyranoside (7.6 mg); fr. 3: loganic acid (196 mg); fr. 4: loganin (4.2 mg), sweroside (24.6 mg), and 3,4,5-trimethoxyphenol 1-*O*- β -D-apiofuranosyl- $(1 \rightarrow 6)$ - β -D-glucopyranoside (20.1 mg); fr. 5: sweroside (46.8 mg), 3,4-di-O-caffeoylquinic acid (17.0 mg), liriodendrin (158 mg), and 3,5-di-O-caffeoylquinic acid (15.7 mg); fr. 6: 3,4-di-*O*-caffeoylquinic acid (40.2 mg), scorzonoside (9.7 mg), liriodendrin (588 mg), and (+)-lariciresinol 4-Oβ-D-glucoside (21.1 mg); fr. 7: 2 (2.9 mg), 3 (2.8 mg), 5 (57.8 mg), (7S, 8R)-balanophonin 4-*O*- β -D-glucopyranoside (3.7 mg), 10 (4.9 mg), (+)-syringaresinol O- β -D-glucoside (10.8 mg), 3,4-di-O-caffeoylquinic acid (28.4 mg), scorzonoside (8.8 mg), (-)-pinoresinol 4-O- β -D-glucopyranoside (5.7 mg), and strictosidinic acid (8.7 mg); fr. 8: 4 (13.4 mg), 5 (7.5 mg), 6 (5.6 mg), 9 (535 mg), 10 (768 mg), and 3,4-di-O-caffeoylquinic acid (78.4 mg); fr. 9: 10(25.7 mg), picconioside I (11.9 mg), and triplostoside A (160 mg).

4.4. 6'-O- β -D-Apiofuranosylcalleryanin (1)

White powder; $[\alpha]_D^{23} - 81$ (*c* 1.5, MeOH); UV λ_{max}^{MeOH} nm (log ε): 202 (3.82), 278 (3.39); IR ν_{max}^{KBr} cm⁻¹ : 3386, 1508; For ¹H and ¹³C NMR spectroscopic data, see: Table 1; NOESY: H-7 and H-3, 5; H-6 and H-1'; HMBC: H-3 to C-1, 2, 5, 7; H-5 to C-1, 3, 7; H-6 to C-1, 2, 4; H-7 to C-3, 4, 5; H-1' to C-1; H-1'' to C-6'; negative ion HRSIMS *m*/*z* 433.1354 (calcd for C₁₈H₂₅O₁₂, 433.1347).

4.5. 5"-O-trans-Feruloyl-6'-O- β -D-apiofuranosylcalleryanin (2)

White powder; $[\alpha]_D^{25} - 44$ (*c* 0.3, MeOH); UV λ_{max}^{MeOH} nm (log ε): 219sh (4.26), 231sh (4.14), 286 (3.98), 298sh (3.99), 327 (4.14); IR $\nu_{max}^{KBr} \text{cm}^{-1}$: 3426, 1717, 1597, 1516; For ¹H and ¹³C NMR spectroscopic data, see: Table 1; NOESY:

H-7 and H-3, 5; H-6 and H-1'; H-6' and H-1"; H-2^{*m*}, 6^{*m*} and H-7^{*m*}; OMe and H-2^{*m*}; HMBC: H-3 to C-1, 5; H-5 to C-1; H-6 to C-1, 2; H-7 to C-3, 4, 5; H-1' to C-1; H-6' to C-1"; H- 5" to CO; H-2^{*m*} to C-3^{*m*}, 4^{*m*}, 7^{*m*}; H-5^{*m*} to C-3^{*m*}, 4^{*m*}; H-6^{*m*} to C-2^{*m*}, 4^{*m*}; H-7^{*m*} to C-2^{*m*}, 6^{*m*}, CO; H-8^{*m*} to C-1^{*m*}, CO; OMe to C-3^{*m*}; negative ion SIMS m/z 609 [M-H]⁻, 139; negative ion HRSIMS m/z 609.1823 (calcd for C₂₈H₃₃O₁₅, 609.1820).

4.6. 5"-O-trans-Feruloyl-6'-O- β -D-apiofuranosylvanilloloside (3)

White powder; $[\alpha]_D^{26} - 45$ (*c* 0.3, MeOH); UV λ_{max}^{MeOH} nm (log ε): 220sh (4.26), 230sh (4.19), 285 (3.92), 297sh (3.91), 327 (4.09); IR v_{max}^{KBr} cm⁻¹ : 3421, 1716, 1595, 1516; For ¹H and ¹³C NMR spectroscopic data, see: Table 1; NOESY: H-3 and H-7, OMe; H-5 and H-7; H-6 and H-1'; H-6' and H-1''; H-6''' and H-7'''; OMe and H-2'''; HMBC: H-3 to C- 5; H-5 to C-3, 7; H-6 to C-4; H-7 to C-3, 4, 5; H-1' to C-1; H-1'' to C-6'; H- 5'' to CO; H-2''' to C-3''', 6'''; H-5''' to C-1''', 3'''; H-6''' to C-2'''; H-7''' to C-1''', 2''', 6''', 8''', CO; H-8''' to C-1''', CO; OMe to C-3'''; negative ion SIMS *m*/*z* 623 [M-H]⁻, 153; negative ion HRSIMS *m*/*z* 623.1979 (calcd for C₂₉H₃₅O₁₅, 623.1977).

4.7. 7-O-trans-Caffeoylvanilloloside (4)

White powder; $[\alpha]_D^{25} - 39$ (*c* 0.7, MeOH); UV λ_{max}^{MeOH} nm (log ε): 249sh (3.98), 285sh (4.02), 300sh (4.07), 329 (4.16); IR $v_{max}^{KBr}cm^{-1}$: 3421, 1697, 1601, 1516; For ¹H and ¹³C NMR spectroscopic data, see: Table 2; NOESY: H-3, 5 and H-7; OMe and H-3; H-6 and H-1'; HMBC: H-3 to C-1, 2, 7; H-5 to C-1, 3, 7; H-6 to C-1, 2; H-7 to C-3, 4, 5, 9"; H-2" to C-4", 7"; H-5" to C-3", 4"; H-6" to C-2", 4", 7"; H-7" to C-2", 6", 8", 9"; H-8" to C-1", 9"; OMe to C-2, H-1' to C-1; negative ion SIMS m/z 477 [M-H]⁻, 179; negative ion HRSIMS m/z 477.1387 (calcd for C₂₃H₂₅O₁₁, 477.1398).

4.8. $4''-O-\beta-D-Glucopyranosyl-caffeoylcalleryanin (5)$

White powder; $[\alpha]_D^{24} - 83$ (*c* 1.0, MeOH); UV λ_{max}^{MeOH} nm (log ε): 244sh (4.04), 286 (4.20), 320 (4.11); IR $\nu_{max}^{KBr}cm^{-1}$: 3389, 1697, 1635, 1508; For ¹H and ¹³C NMR spectroscopic data, see: Table 2; NOESY: H-3, 5 and H-7; H-6 and H-1'; H-5" and H-1'''; HMBC: H-3 to C-1, 5, 7; H-5 to C-1, 3, 6, 7; H-6 to C-1, 4; H-7 to C-3, 4, 5, 9"; H-2" to C-4", 7"; H-5" to C-1", 6"; H- 6" to C-2", 4", 5", 7"; H-7" to C-1", 2", 6", 8", 9"; H-8" to C-1", 9"; H-1' to C-1; H-1''' to C-4"; negative ion SIMS m/z 625 [M-H]⁻, 463; negative ion HRSIMS m/z 625.1777 (calcd for C₂₈H₃₃O₁₆, 625.1770).

4.9. Axillaroside (6)

White powder; $[\alpha]_D^{25} - 60$ (*c* 0.6, MeOH); UV λ_{max}^{MeOH} nm (log ϵ): 234 (4.24); IR $v_{max}^{KBr} cm^{-1}$: 3421, 1697, 1636; ¹H

NMR (CD₃OD) δ 1.07 (1H, d, J = 6.5 Hz, H-10), 1.74 (1H, ddd, J = 14.5, 8.0, 5.0 Hz, H-6), 2.07 (1H, td, J = 9.0, 5.0 Hz, H-9), 2.10–2.18 (1H, m, H-8), 2.29 (1H, ddd, J = 14.5, 7.5, 1.5 Hz, H-6), 2.30 (1H, dd, J = 16.5,9.0 Hz, H-6"), 2.81 (1H, br dt, J = 9.0, 5.0 Hz, H-9"), 2.91 (1H, dd, J = 16.5, 4.0 Hz, H-6"), 3.11 (1H, br q, J = 8.0 Hz, H-5), 3.20, 3.22 (2H, each dd, J = 9.0, 8.0 Hz, H-2', 2""), 3.26-3.38 (2H, m, H-5', 5""), 3.27, 3.28 (2 H, each br t, J = 9.0 Hz, H-4', 4'''), 3.28-3.38 (1 H, m, H-5''), 3.36, 3.37 (2H, each t, J = 9.0 Hz, H-3', 3'''), 3.66, 3.67 (2H, each dd, J = 12.0, 6.0 Hz, H-6', 6'''), 3.69 (3H, s, OMe), 3.89, 3.90 (2H, each dd, J = 12.0, 2.0 Hz, H-6', 6'''), 4.66 (1H, d, J = 8.0 Hz, H-1', 4.68 (1H, d, J = 8.0 Hz, H-1''), 5.20 (1H, br t, J = 5.5 Hz, H-7), 5.23 (1H, dd, J = 10.0,1.5 Hz, H-10"), 5.27 (1H, dd, J = 17.0, 1.0 Hz, H-10"), 5.28 (1H, d, J = 5.0 Hz, H-1), 5.50 (1H, d, J = 4.5 Hz, H-1"), 5.66 (1H, br dt, J = 17.0, 10.0 Hz, H-8"), 7.24 (1H, d, J = 1.5 Hz, H-3), 7.49 (1H, d, J = 2.0 Hz, H-3"); ¹³C NMR (CD₃OD) δ 13.9 (C-10), 29.1 (C-5"), 32.7 (C-5), 35.3 (C-6"), 40.4 (C-6), 41.4 (C-8), 45.4 (C-9"), 47.2 (C-9), 51.8 (OMe), 62.8 (C-6', 6"'), 71.6, 71.7 (C-4', 4"'), 74.7, 74.8 (C-2', 2'''), 78.1 (C-3', 3'''), 78.3 (C-7), 78.5 (C-5', 5'''), 97.6 (C-1), 97.7 (C-1"), 100.1 (C-1""), 100.3 (C-1'), 110.5 (C-4"), 113.3 (C-4), 120.6 (C-10"), 134.5 (C-8"), 152.7 (C-3), 153.7 (C-3"), 168.0 (C-11"), 169.5 (C-11), 176.1 (C-7"); HMBC: H-1 to C-3, 5; H-3 to C-1, 4, 5, 11; H-5 to C-6, 9, 11; H-6 to C-5; H-7 to C-5, 9, 11"; H-8 to C-9; H-9 to C-8, 10; H-10 to C-8, 9; H-1" to C-3", 5"; H-3" to C-1", 4", 5", 11"; H-5" to C-7", 11"; H-6" to C-4", 5", 7", 9"; H-9" to C-4", 5", 8"; H-10" to C-9"; OMe to C-11; H-1' to C-1; H-1^{'''} to C-1^{''}; negative ion SIMS m/z 761 [M-H]⁻, 599, 389; negative ion HRSIMS m/z 761.2503 (calcd for C₃₃H₄₅O₂₀, 761.2506).

4.10. Acid hydrolysis of compounds 1-6

Each compound (1 mg) was heated at 95 °C with dioxane (0.5 mL) and 5% H₂SO₄ (0.5 mL) for 1 h. After neutralization with Amberlite IRA-400 (OH⁻ form), each reaction mixture was concentrated and the residue was passed through a Sep-Pak C₁₈ cartridge with H₂O. The eluate was concentrated and the residue was treated with Lcysteine methyl ester hydrochloride (1 mg) in pyridine (0.125 mL) at 60 °C for 1 h. The solution was then treated with *N*, *O*-bis(trimethylsilyl)trifluoroacetamide (0.05 mL) at 60 °C for 1 h. The supernatant was applied to GLC; GLC conditions: column, Supelco SPBTM-1, 30 m × 0.25 mm; column temperature, 230 °C; N₂ flow rate, 0.8 mL/min; *t*_R of derivatives, D-glucose 12.9 min, L-glucose 13.5 min, D-apiose 7.2 min. D-Glucose and D-apiose were detected from 1–3 and D-glucose was detected from 4–6.

Acknowledgments

Our thanks go to Dr. M. Sugiura (Kobe Pharmaceutical University) for NMR spectra and to Dr. K. Saiki (Kobe Pharmaceutical University) for MS measurements. This research was financially supported by Kobe Pharmaceutical University Collaboration Fund.

References

- Arbain, D., Putra, D.P., Sargent, M.V., 1993. The alkaloids of Ophiorrhiza filistipula. Aust. J. Chem. 46, 977–985.
- Bisset, N.G., 1980. In: Phillipson, J.D., Zenk, M.H. (Eds.), Indole and Biogenetically Related Alkaloids. Academic Press, New York (Chapter 3).
- Brandt, V., Tits, M., Geerlings, A., Frédérich, M., Penelle, J., Delaude, C., Verpoorte, R., Angenot, L., 1999. β-Carboline glucoalkaloids from *Strychnos mellodora*. Phytochemistry 51, 1171–1176.
- Challice, J.S., Williams, A.H., 1968. Phenolic compounds of the genus *Pyrus*. I. Occurrence of flavones and phenolic acid derivatives of 3,4dihydroxybenzyl alcohol 4-glucoside in *Pyrus calleryana*. Phytochemistry 7, 119–130.
- Challice, J.S., Loeffler, R.S.T., Williams, A.H., 1980. Phenolic compounds of the genus *Pyrus*. Part 8. Structure of calleryanin and its benzylic esters from *Pyrus* and *Prunus*. Phytochemistry 19, 2435–2437.
- Damtoft, S., Franzyk, H., Jensen, S.R., 1997. Iridoid glucosides from *Picconia excelsa*. Phytochemistry 45, 743–750.
- Duynstee, H.I., De Koning, M.C., Van der Marel, G.A., Van Boom, J.H., 1999. An expeditious route to the synthesis of kelampayosides A and B. Tetrahedron 55, 9881–9898.
- Hara, S., Okabe, H., Mihashi, K., 1986. Separation of aldose enantiomers by gas–liquid chromatography. Chem. Pharm. Bull. 34, 1843–1845.
- Ida, Y., Satou, T., Ohtsuka, M., Nagasao, M., Shoji, J., 1994. Phenolic constituents of *Phellodendron amurense* bark. Phytochemistry 35, 209– 215.
- Itoh, A., Tanahashi, T., Nagakura, N., Nishi, T., 2003. Two chromonesecoiridoid glycosides and three indole alkaloid glycosides from *Neonauclea sessilifolia*. Phytochemistry 62, 359–369.
- Itoh, A., Oya, N., Kawaguchi, E., Nishio, S., Tanaka, Y., Kawachi, E., Akita, T., Nishi, T., Tanahashi, T., 2005. Secoiridoid glucosides from *Strychonos spinosa*. J. Nat. Prod. 68, 1434–1436.
- Itoh, A., Tanaka, Y., Nagakura, N., Nishi, T., Tanahashi, T., 2006. A quinic acid ester from *Strychonos lucida*. J. Nat. Med. 60, 146–148.
- Jensen, S.R., Mikkelsen, C.B., Nielsen, B.J., 1981. Iridoids in Loasaceae. Part I. Iridoid mono- and di-glycosides in *Mentzelia*. Phytochemistry 20, 71–83.
- Kitajima, J., Ishikawa, T., Tanaka, Y., Ono, M., Ito, Y., Nohara, T., 1998. Water-soluble constituents of fennel. V. Glycosides of aromatic compounds. Chem. Pharm. Bull. 46, 1587–1590.
- Kobayashi, H., Karasawa, H., Miyase, T., Fukushima, S., 1985. Studies on the constituents of cistanchis herba. V. Isolation and structures of two new phenylpropanoid glycosides, cistanosides E and F. Chem. Pharm. Bull. 33, 1452–1457.
- Kocsis, Á., Szabó, L.F., Podányi, B., 1993. New bis-iridoids from Dipsacus laciniatus. J. Nat. Prod. 56, 1486–1499.
- Lami, N., Kadota, S., Kikuchi, T., Momose, Y., 1991. Constituents of the roots of *Boerhaavia diffusa* L. III. Identification of calcium channel antagonistic compound from the methanol extract. Chem. Pharm. Bull. 39, 1551–1555.
- Ma, W.-G., Wang, D.-Z., Zeng, Y.-L., Yang, C.-R., 1992. Iridoidal glycosides from *Triplostegia grandiflora*. Yunnan Zhiwu Yanjiu 14, 92– 96.
- Nakamoto, K., Otsuka, H., Yamasaki, K., 1988. 7-O-Acetyl loganic acid from *Alangium platanifolium* var. *trilobum*. Phytochemistry 27, 1856– 1858.
- Perry, L.M., 1980. In: Medicinal Plants of East and Southeast Asia. The MIT Press, Massachusetts, p. 245.
- Sugiyama, M., Kikuchi, M., 1991. Studies on the constituents of Osmanthus species. VII. Structures of lignan glycosides from the

leaves of Osmanthus asiaticus Nakai. Chem. Pharm. Bull. 39, 483-485.

- Sugiyama, M., Kikuchi, M., 1993. Characterization of lariciresinol glucosides from Osmanthus asiaticus. Heterocycles 36, 117–121.
- Tolstikhina, V.V., Semenov, A.A., 1998. Minor metabolites of *Scorzonera* hispanica L. cell culture. Rastitel'nye Resursy 34, 77–80.
- Wald, B., Wray, V., Galensa, R., Herrmann, K., 1989. Malonated flavonol glycosides and 3,5-dicaffeoylquinic acid from pears. Phytochemistry 28, 663–664.
- Wang, Y., Hamburger, M., Gueho, J., Hostettmann, K., 1992. Cyclohexanecarboxylic-acid derivatives from *Psiadia trinervia*. Helv. Chim. Acta 75, 269–275.
- Warashina, T., Nagatani, Y., Noro, T., 2005. Further constituents from the bark of *Tabebuia impetiginosa*. Phytochemistry 66, 589–597.
- Zhong, X.-N., Otsuka, H., Ide, T., Hirata, E., Takeda, Y., 1999. Hydroquinone diglycoside acyl esters from the leaves of *Myrsine* seguinii. Phytochemistry 52, 923–927.