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Abstract: When activated with Takemoto�s catalyst,
1,2-keto esters constitute versatile nucleophiles in
the Michael addition reaction with nitroalkenes af-
fording synthetically valuable, optically active anti-
adducts in very good yields and high enantiomeric
excesses.
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The Michael addition is one of the most important
ways to create C�C bonds in organic synthesis.[1] The
last ten years have witnessed the emergence of orga-
nocatalysis which is now often employed to develop
new stereoselective Michael additions.[2] Nitroalkenes
are particularly attractive acceptors because of their
high reactivity and thanks to the nitro group, qualified
as the “synthetic chameleon”,[3] which can be easily
transformed into various functionalities.[4] Hence,
functionalized Michael adducts represent very useful
building blocks[5] or may also be involved in subse-
quent transformations allowing the development of
complex domino processes.[6,7]

In continuation to our ongoing studies on conjugate
additions to nitroolefins,[8] we became interested in
the challenging reactivity of a-keto esters as pronu-
cleophiles in organocatalyzed Michael reactions since
no example of such a transformation has been report-
ed so far.[9,10] Our own interest in the activation of
1,2-dicarbonyl compounds[11] and the very recent
report from Terada and co-workers on an unprece-
dented enantioselective organocatalyzed amination of
a-keto esters using an axially chiral guanidine base,[12]

prompted us to disclose our preliminary contributions
to this emerging field.

To accomplish this goal, we envisioned a simple
methodology involving activation by a bifunctional or-
ganocatalyst with nitroalkenes as reactive acceptors.
We reasoned that these olefins would act as more
powerful electrophiles compared to 1,2-keto esters[13]

which should then behave as pronucleophiles. The
competitive self-condensation reaction would then be
disfavored.[14] Besides, the final Michael adducts
would possess very high synthetic potential given
their dense and diverse functionalities.

We first selected b-nitrostyrene (1a) and ethyl 2-
oxo ACHTUNGTRENNUNGbutanoate (2a) as model substrates to examine the
role of the organocatalyst and the best activation
mode (Table 1, entries 1–5).

Catalyst I[15] proved to be unsuitable for this trans-
formation affording the product in very low yield
(10%) although a good diastereomeric ratio was ob-
tained (entry 1). The use of (S)-diphenylprolinol II[16]

with an extra H-bonding site gave the product in low
yield with good diastereoselectivity (entry 2). Catalyst
III, which was efficient in organocatalyzed enantiose-
lective Michael additions with malonate nucleo-ACHTUNGTRENNUNGphiles,[8c,17] gave a low yield and a low selectivity
(entry 3). More elaborated Cinchona-alkaloid derived
catalysts IV and V bearing either the thiourea[18] or
the squaramide[19] subunits proved to be efficient pro-
viding the product in good yield and acceptable selec-
tivities (entries 4 and 5). Finally, we found that the
Takemoto�s catalyst VI,[20] when used in EtOAc was
the most efficient (entry 7), and it was chosen for the
following optimization experiments.[21] While the tert-
butyl ester 2b afforded the product 3b in lower diaste-
reoselectivity (entry 8), the use of the benzyl ester 2c
allowed the formation of 3c in a promising 7:1 anti:-
syn ratio and 88% ee (entry 9). Finally, decreasing the
temperature to 0 8C (entry 10) had a positive impact
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on selectivities albeit in slightly lower yield which was
confirmed by reaction at �35 8C (entry 11).

Our methodology was then tested by varying both
the nitroalkene 1 and the benzyl keto ester 2 using
the optimized reaction conditions (Table 2). With an
extra carbon on the keto ester (2d, R2 =Et instead of
R2 = Me in 2c) the diastereoselectivity was greatly im-
proved (>20:1, entry 1) with equally excellent yield
and enantioselectivity.

In the case of aromatic compounds (entries 1–5) in-
cluding ortho-substituted phenylnitroalkenes (en-
tries 4 and 5) and heteroaromatic nitroalkenes (en-

tries 6–8), the reaction proceeded with very good
yields and selectivities with no significant effect of the
substitution although a longer reaction time was re-
quired when 3-indolyl-substituted nitroalkene 1h was
employed.

Interestingly, and in sharp contrast with other Mi-
chael additions,[22] aliphatic nitroalkenes including io-
doalkane 1k, are suitable substrates affording the Mi-
chael adducts with comparable selectivities although a
lower yield was generally obtained (entries 9 and 13)
and longer reaction times were required.[23] Hindering
the nucleophilic carbon of the keto ester by using

Table 1. Optimization of the reaction conditions.[a]

Entry Catalyst Temperature Solvent 2 3 Yield[b] [%] dr[c,d] (anti/syn) ee[e,f] [%]

1 I r.t. toluene 2a 3a 10 7:1 nd
2 II r.t. toluene 2a 3a 15 10:1 nd
3 III r.t. toluene 2a 3a 18 2:1 nd
4 IV r.t. toluene 2a 3a 82 4:1 77
5 V r.t. toluene 2a 3a 75 9:1 87
6 VI r.t. toluene 2a 3a 77 2:1 89
7 VI r.t. EtOAc 2a 3a 91 3.5:1 80 [87]
8 VI r.t. EtOAc 2b 3b 95 2:1 93 [96]
9 VI r.t. EtOAc 2c 3c 90 7:1 88
10 VI 0 8C EtOAc 2c 3c 85 9:1 92
11 VI �35 8C EtOAc 2c 3c 75 8:1 93

[b] b-Nitrostyrene (1a) (0.2 mmol), keto ester 2 (0.4 mmol), solvent (0.4 mL) for 18 h.
[b] Isolated yield after column chromatography.
[c] Determined by 1H NMR analysis of the crude reaction product.
[d] The relative and absolute stereochemistries of the Michael adducts were determined by comparison with reported litera-

ture data.[9e,f]

[e] Determined by chiral HPLC analysis.
[f] Values in brackets are for the minor enantiomer.
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branched keto ester 2e (entries 10 and 11) or phenyl-
substituted keto ester 2f (entries 12 and 13) slowed
down the reaction and had a detrimental effect on the
reaction yield. However, in these four cases, both the
diastereoselectivity and the enantioselectivity remain
excellent.[24] Finally, the use of the benzyl 2-oxo-hex-
5-enoate (2g) led to the clean formation of the ex-
pected allylic functionalized Michael adduct 3q
(entry 14) with very good yield and excellent stereose-
lectivities.

The present methodology was then applied to two
challenging a-substituted nitroalkenes 1l and 1m as
electrophiles (Scheme 1). The use of a-substituted ni-
troalkenes is relatively limited in organocatalyzed
enantioselective Michael addition probably due to the
facile retro-Michael reaction.[25] Usually, the Michael
adducts are not isolated but “siphoned” in subsequent
domino transformations. Gratifyingly, in the first case
we were pleased to obtained the desired adduct 3r
bearing an anti:anti stereo-triad in 80% yield with a
total diastereocontrol and 97% ee.[26] The a-chloroni-
troolefin 1m was also very reactive leading to a 3/1
mixture of only two diastereomers of 3s in 94% yield
and high enantiomeric excess for both diastereomers.

The transition states depicted in Scheme 2 could ac-
count for both relative and absolute stereochemistries

observed in the Michael adducts. Following P�pai�s
model,[27] the protonated tertiary amine of catalyst VI
binds to the nitro function, hence enhancing the elec-
trophilic character of the nitroalkene, whereas the

Table 2. Scope of the conjugate addition.[a]

Entry R1 1 2 3 Time [h] Yield[b] [%] dr[c] (anti/syn) ee[d] [%]

1 Ph 1a 2d 3d 18 89 >20:1 94
2 4-MeOC6H4 1b 2d 3e 18 84 >20:1 94
3 4-O2NC6H4 1c 2d 3f 18 88 >20:1 94
4 2-BrC6H4 1d 2d 3g 18 98 >20:1 97
5 2-O2NC6H4 1e 2d 3h 18 99 >20:1 98
6 2-thienyl 1f 2d 3i 18 88 >20:1 95
7 3-furanyl 1g 2d 3j 18 72 >20:1 94
8 3-indolyl 1h 2d 3k 72 89 >20:1 94
9 PhCH2CH2 1i 2d 3l 18 55 >20:1 94
10 Ph 1a 2e 3m 36 36 >20:1 91
11 4-BrC6H4 1j 2e 3n 72 41 >20:1 90
12 Ph 1a 2f 3o 18 70 >20:1 80
13 ICH2CH2 1k 2f 3p 96 44 >20:1 90
14[e] Ph 1a 2g 3q 18 87 >20:1 93

[a] Standard conditions: nitroalkene 1 (0.2 mmol), keto ester 2 (0.4 mmol) in EtOAc (0.4 mL) at 0 8C.
[b] Isolated yield after column chromatography.
[c] Determined by 1H NMR analysis of the crude reaction product.
[d] Determined by chiral HPLC analysis.
[e] Reaction performed with 1 mmol of 1a.

Scheme 1. Michael addition of a-keto esters onto a-substi-
tuted nitroalkenes.
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thio ACHTUNGTRENNUNGurea moiety binds to the strongly polarized eno-
late. In the resulting conformationally restrained envi-
ronment, the Si face of the thermodynamic (Z)-eno-
late[28] preferentially attacks the Re face of the nitroal-
kene accounting for the formation of the anti-(R,R)-
Michael adduct. The formation of the syn Michael
adduct 3c which would come from the Re face attack
of the (Z)-enolate is minor (syn:anti<1:20). In this
transition state, the binding of the thiourea moiety to
the enolate is disfavored because of the strong steric
interaction between the benzylic ester function and
the catalyst.[29]

In order to prove the synthetic usefulness of our
methodology, we carried out several transformations
of the Michael adducts allowing the formation of vari-
ous interesting building blocks with increased molecu-
lar complexity (Scheme 3). It has already been shown
in the literature that these Michael adducts could be
easily reduced to the corresponding pyrrolidines.[9e–g]

Alternatively, under basic conditions, the Michael
adduct 3s was cleanly converted to the trans dihydro-
furan 4 with a total chirality transfert.[30,31] Finally,
using the conditions we developed previously,[8a,c] 3q
was converted to the highly functionalized five-mem-
bered carbocycle 5 bearing three stereogenic centers
with good yield and excellent diastereocontrol.

In conclusion, we have developed the first efficient
Takemoto�s catalyst-promoted activation of 1,2-keto
esters in an enantioselective Michael addition with ni-
troalkenes. The method is simple and can be applied
to many substrates with excellent yields and selectivi-
ties. Moreover the versatility of the condensation has

been demonstrated with the easy transformation of
the Michael adducts to five-membered carbo- and
heterocyles with the creation and control of addition-
al stereocenters.

Experimental Section

General Procedure for the Enantioselective Michael
Addition

Catalyst VI (10 mol%) was added to a solution of nitroal-
kene (0.2 mmol, 1.0 equiv.) and a-keto ester (0.4 mmol,
2.0 equiv.) in EtOAc (0.4 mL) at 0 8C. The reaction mixture
was stirred until complete conversion of the starting materi-
als (monitored by TLC). Purification by flash column chro-
matography (silica gel, petroleum ether/AcOEt) afforded
the pure Michael adduct. The anti/syn diastereomeric ratio
was determined by 1H NMR spectroscopic analysis of the
crude mixture and the enantiomeric excess (ee) was deter-
mined by HPLC analysis on a chiral phase.ACHTUNGTRENNUNG(3R,4R)-Benzyl 3-Ethyl-5-nitro-2-oxo-4-phenyl-
pentanoate (3d)

This compound was isolated as a white solid; yield: 63 mg
(89%); mp 75–77 8C; Rf = 0.47 (ethyl acetate/petroleum
ether= 1:4); dr anti/syn>20:1; HPLC (Chiralpak IC,
hexane/i-PrOH =80/20, flow rate=1.0 mL min�1, l=
254 nm): tmajor = 12.47 min, tminor =7.83 min, ee= 94%; [a]22

D :
+13.2 (c= 1, CHCl3); 1H NMR (400 MHz, CDCl3): d= 7.38–
7.34 (3 H, m, ArH), 7.29–7.27 (2 H, m, ArH), 7.23–7.20 (3H,
m, ArH), 5.14 (1 H, d, J=12.1 Hz, CH2Ph), 5.10 (1H, d, J=
12.1 Hz, CH2Ph), 4.71 (1 H, dd, J=12.8, 5.4 Hz, CH2NO2),
4.66 (1H, dd, J=12.8, 9.4 Hz, CH2NO2), 3.85 (1H, ddd, J=
9.4, 9.4, 5.4 Hz, PhCH), 3.74 (1H, ddd, J=9.4, 9.4, 3.7 Hz,
CHC=O), 1.84 (1 H, ddq, J=13.5, 9.4, 7.4 Hz, CH2CH3),
1.73 (1H, dqd, J= 13.5, 7.4, 3.7 Hz, CH2CH3), 0.88 (3H, t,
J=7.4 Hz, CH2CH3); 13C NMR (100 MHz, CDCl3): d=
195.1, 160.6, 136.8, 134.1, 129.0 (2 C), 128.8, 128.7 (2 C),

Scheme 2. Proposed transition states for the Michael addi-
tion.

Scheme 3. Transformations of Michael adducts into hetero-
and carbocycles.
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128.6 (2 C), 128.1, 128.0 (2 C), 77.7, 68.1, 51.5, 44.7, 22.2,
11.3; MS (ES +): m/z= 373.1759, calcd. for C20H25N2O5 [M+
NH4]

+: 373.1758].
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