TETRAHEDRON:
ASYMMETRY

Pergamon TetrahedronAsymmetryd (1998) 1065-1072

Asymmetric aza-Claisen rearrangement of allyl imidates
catalyzed by homochiral cationic palladium(ll) complexes

Yasuhiro Uozumi 2 Kazuhiko Katd® and Tamio Hayashi®*

aFaculty of Pharmaceutical Sciences, Nagoya City University, Mizuho-ku, Nagoya 467-8603, Japan
bDepartment of Chemistry, Faculty of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan

Received 4 February 1998; accepted 6 February 1998

Abstract

The asymmetric aza-Claisen rearrangemenEpf3-alkyl-2-propenyN-[4-trifluoromethyl)phenyl]benzimidates
was catalyzed by a homochiral cationic palladium(ll) complex generated from &=R-(2-
diphenylphosphino)phenyl-4-benzyloxazoline} and silver tetrafluoroborate (Pd:silver=1:1) to Yieé(1-
alkyl-2-propenyl)N-[4-(trifluoromethyl)phenyllbenzamide of up to 81% ee. © 1998 Published by Elsevier
Science Ltd. All rights reserved.

1. Introduction

Transition metal catalyzed [3,3]-sigmatropic rearrangements are among the important transformations
in modern synthetic organic chemistry.However, only scattered attention has been paid to catalytic
asymmetric [3,3]-sigmatropic rearrangements which would constitute a powerful strategy for the synthe-
sis of a variety of optically active compounds. The aza-Claisen rearrangement of allyl imidates catalyzed
by divalent palladium species is a typical cdsRecently, Overman reported the first example of a
catalytic asymmetric rearrangement of allyl imida&e where a cationic palladium(Il) complex bearing
an optically active tertiary diamine as a ligand catalyzed the rearrangement tN-gilyd amide2ain
up to 60% eé.

On the other hand, we have reported the palladium-catalyzed asymmetric Heck Peactibthe
Wacker-type reactidhwhere a cationic palladium(ll) species plays a key role in the activation of the
carbon—carbon double bond as well as in the enantioface seléétiss a part of our efforts to develop
a wide utility of the cationic chiral palladium(ll) catalysts, the asymmetric aza-Claisen rearrangement
of allyl imidates was examined. We describe herein that higher enantioselectivity (up to 81% ee) was
obtained by use of a cationic palladium(ll) catalyst of 2-(2-diphenylphosphino)phenyl-4-alkyloxazoline
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(phox, 4) in the asymmetric aza-Claisen rearrangement of 3-alkyl-2-propergtylbenzimidatedl to
N-(1-alkyl-2-propenyl)N-arylbenzamide of up to 81% ee (Scheme 1).

Ph 0 0
AV\NJ\O PdCI,L*/AgBF, (catalyst) \N/U\ph * Ar\NJ\ph
R/\) R/?\/ :

1a-c 2a-c 3

1a: Ar = 4-CF3CgHy, R = CHCHoCHs
1b: Ar = CeHs, R= CH2CHQCH3
1¢: Ar = 4-CF5CgHq, R = CH(CH),

Scheme 1.

2. Results and discussion

Rearrangement of)-2-hexenylN-[4-(trifluoromethyl)phenyllbenzimidatda to N-(1-hexen-3-yl)-
N-[4-(trifluoromethyl)phenyl]benzamid@a was examined in the presence of palladium(ll) catalysts
coordinated with chiral bis(oxazoline), phosphino-oxazoline, and bis(phosphine) ligands under sev-
eral reaction conditions (Scheme 1). TReallyl amide 2a was isolated by chromatography on silica
gel and the enantiomeric excess was determined by HPLC analysis using a chiral stationary column
(Chiralpack AD; eluent: hexane:isopropanol=9:1). The absolute configuration was determined by com-
parison of the specific rotation with that reported for optically ace® The results summarized
in Table 1 reveal that the most stereoselective ligandSg%)-2-(2-(diphenylphosphino)phenyl)-4-
(benzyl)oxazoline @-bn-phox4a)° (entry 1). According to the procedures reported by Overfnan,

a cationic palladium catalyst was generated from dichl@e(t)-2-(2-(diphenylphosphino)phenyl)-
4-(benzyl)oxazolyllpalladium(ll) [PAG{(9-bn-phox}] by treatment with 1 equiv. (to Pd) of silver
tetrafluoroboraté® The rearrangement diproceeded in refluxing 1,2-dichloroethane to give 81% yield

of N-allyl amide §)-2a of 70% ee (x]p%° +50.5 € 0.23, dichloromethane), lftfor (R)-2a of 55% ee:
[x]p?® —37.2 € 0.5, dichloromethane)). The reaction carried out at 40°C raised the enantiomeric excess
to 76% ee, though the reaction is slower (entry 2). Dicationic palladium(ll) catalyst generated by addition
of 2 equiv. (to Pd) of silver tetrafluoroborate is not effective for the rearrangeme2d, teesulting in
carbon—oxygen bond cleavage to gNd4-(trifluoromethyl)phenyllbenzamides) (entry 3). The effects

of the added silver salts on the reaction pathway are consistent with those reported by OV@vithenut

silver salt, PdCGK(S)-bn-phox)} did not catalyse the rearrangement at all. The reaction with other
phosphino-oxazoline ligands, which have isoprogly? andt-butyl 4c® substituents at the C4-position,
proceeded with 36% and 50% enantioselectivity, respectively (entries 5 and 6). Ferrocene5halog
exhibited moderate catalytic activity and stereoselectivity (entry 7). Chiral bis(oxazoline) littaads,
bis(oxazolyl)propanes,'® 2,2 -bioxazolyl 714 and 2,2-bis[4-(benzyl)oxazolyl]-1,1-binaphthyl (6,9-
bn-boxax)8'° gave2a with much lower enantioselectivity (entries 8, 9 and 10). The palladium complex
of (9-BINAP 916 was found to be stereoselective, but less catalytically active (entry 11).
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Table 1
Asymmetric rearrangement afcatalyzed by cationic palladium(ll) compleRes

entry  substrate catalyst time yield of products® % ee of 2¢
(h) 2 (%) 3 (%) (abs. config.)d

1 la PdCl,{(S)-bn-phox 4a}/AgBF4 15 81 0 70 (S)
2¢ la  PdCIy{(S5)-bn-phox 4a}/AgBF4 24 41 3 76 (S)
3f la  PdCI>{(S)-bn-phox 4a}/2AgBF4 24 2 71 52 ()
48 la PdCl,{(S)-bn-phox 4a}/none 24 0 0 -
5 la  PdCIr{(S)-ip-phox 4b}/AgBF4 24 34 4 36 (S)
la  PdCIp{(S)-tb-phox 4c}/AgBF4 24 12 44 50 (S)
7 la  PdCly(5)/AgBF4 24 54 30 50 ()
8h la  PdCIlp(CH3CN),/6/AgBF4 24 69 10 2 (S)
9h la  PdCIly(CH3CN),/7/AgBF4 24 52 24 5(S)
10 la  PdCIly{(S,S)-bn-boxax 8}/AgBFs 24 44 33 17 (S)
11 la  PdCl2{(S)-BINAP 9}/AgBF4 72 24 36 67 (R)
12 la' PdCIp{(S)-bn-phox 4a}/AgBF4 15 56 27 28 (R)
13 1b  PdCI>{(S)-bn-phox 4a}/AgBF4 24 88 6 47 (S)
14 1c  PdCI>{(S)-bn-phox 4a}/AgBF4 24 30 37 81 (5)

a All reactions were carried out in the presence of palladium catalysts (10 mol %) prepared from
palladium dichloride complexes and silver tetrafluoroborate (Pd/silver = 1/1) in refluxing
dichloroethane unless otherwise noted.  Isolated yield. ¢ Determined by HPLC analysis with chiral
stationary phase column, Chiralpack AD. 9 The absolute configuration was determined by
comparison of the optical rotation with that reported for optically active 2a (ref. 4). ¢ The reaction
was carried out at 40 °C. fThe reaction with 20 mol % of silver tetrafluoroborate (Pd/silver = 1/2).
& Without silver salt. # Palladium(II)-bis(oxazoline) complexes were prepared from PdClp(CH3CN);
and optically active bis(oxazoline) ligands 6 and 7, and then used without purification.

(S)-bn-phox (4a): R = CH,Ph O’>
O (S)-ip-phox (4b) : R = CH(CHs), S PP
'\} (S)-tb-phox (4c) : R = C(CHg)s X .
Ph,P N Fo >
5

o\><ro
S/lN N|\> OO (S,S)-bn-boxax (8):
Z o)
PhCH, ¢ CH,Ph _—_— \]
<N A
o o R CH,Ph
)
N N

5 (S)-BINAP (9): R = PPh,
PhCH, . CH,Ph

The rearrangement oZJ isomerla gave an enantiomeric produd®)¢2athough the selectivity was
lower than that observed foEJ isomerla (entry 12). Allyl imidatelb which has a phenyl substituent
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at the imidate nitrogen instead of 4-trifluoromethylphenyl giivallyl benzamide2b in high yield with
moderate enantiomeric purity (entry 13). The highest stereoselectivity was observed in the reaction of
1c, which gave2cin 81% ee under the same reaction conditions (entry 14).

FsC Ph
QL
n-Pr\—_—)

1a'
In conclusion, it was found that a cationic palladium(ll) complex generated from R@Hon-phox}
and silver tetrafluoroborate was an efficient catalyst for asymmetric aza-Claisen rearrangement of allyl
imidates givingN-allyl amide derivatives of high % ee.

3. Experimental
3.1. General

Optical rotations were measured with a JASCO DIP-370 polariméteX MR spectra were measured
with a JEOL JNM-LA500 (500 MHz) spectrometer in CRXGkith tetramethylsilane as an internal
standard. Chemical shifts are reportedippm. HPLC analyses were performed on a Shimadzu LC-9A
liquid chromatograph system with chiral stationary phase column, Daicel Chemical Co. Ltd, Chiralpack
AD.

3.2. Materials

Optically active ligands, §-bn-phox 4a° (S)-ip-phox 4b,° (9-tb-phox 4c°® (9-(-)-2-[(9-2-
(diphenylphosphino)ferrocenyl]-4-(isopropyl)oxazoliné,'*  2,2-bis(oxazolyl)propane 6,1 2,2-
bioxazolyl 7,** and 2,2-bis[4-(benzyl)oxazolyl]-1,1-binaphthyl (§,3-bn-boxax) 8> were prepared
according to the reported procedures. Optically active palladium(ll) complex;{#@@BEHBINAP} was
prepared according to the reported proced§r¥. THF, benzene and hexane were distilled from sodium
benzophenone ketyl under nitrogen. Dichloromethane and dichloroethane were distilled from calcium
hydride under nitrogen.

3.3. Preparation of PdG(phosphine-oxazoline) complexes

A typical procedure is given for the preparation of dichlo8p{2-(2-(diphenylphosphino)phenyl)-4-
(benzyl)oxazoline]palladium(ll) (Pd&l( S)-bn-phox}):

3.3.1. Dichloro[)-2-(2-(diphenylphosphino)phenyl)-4-(benzyl)oxazoline]palladium(ll)  (RPAS)-
bn-phox})

A solution of 250 mg (0.59 mmol) of§)-(+)-2-(2-(diphenylphosphino)phenyl)-4-(benzyl)oxazoline
((9-bn-phox4a) in 5 mL of benzene was added to a mixture of 154 mg (0.59 mmol) of RGEECN),
and 5 mL of benzene. The reaction mixture was stirred for 20 min. A yellow precipitate was col-
lected by filtration and washed with benzene to give 352 mg (98% vyield) of dichBwEf}-2-(2-
(diphenylphosphino)phenyl)-4-(benzyl)oxazoline]palladium(ll): mp 247°C (dedy?® +497 € 0.27,
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chloroform); *H NMR & 1.68 (br t,J=12.7 Hz, 1H), 3.87 (ddJ=13.3, 3.5 Hz, 1H), 4.30 (dd=8.8, 4.9

Hz, 1H), 4.39 (br tJ=9.3 Hz, 1H), 5.80 (m, 1H), 6.99 (m, 1H), 7.21 (m, 5H), 7.45 (m, 4H), 7.58 (m, 5H),
7.74 (m, 3H), 8.10 (m, 1H)*3C NMR § 40.64, 67.98, 72.39, 162.08:P NMR § 26.70. Anal. calcd for
CosH24NOPCLPd: C, 56.16; H, 4.01; N, 2.34. Found: C, 56.39; H, 3.89; N, 2.15.

3.3.2. Dichloro[)-2-(2-(diphenylphosphino)phenyl)-4-(isopropyl)oxazoline]palladium(ll) (RS)-
ip-phox})

89% Yield: mp 239°C (dec);df]p%° +704 € 0.08, chloroform);!H NMR & 0.02 (d,J=6.9 Hz, 3H),
0.82 (d,J=7.4 Hz, 3H), 2.68 (m, 1H), 4.38 (dd7=9.3, 5.4 Hz, 1H), 4.50 (br §=9.3 Hz, 1H), 5.61 (m,
1H), 6.82 (m, 1H), 7.36-7.60 (m, 9H), 7.71 (m, 3H), 8.14 (m, 1HE NMR § 12.80, 18.57, 30.47,
68.99, 71.30, 161.4GP NMR § 21.01. Anal. calcd for g4H24NOPCbLPd: C, 52.34; H, 4.39; N, 2.54.
Found: C, 52.05; H, 4.33; N, 2.53.

3.3.3. Dichloro[{)-2-(2-(diphenylphosphino)phenyl)-#Hgutyl)oxazoline]palladium(ll) (PACGK(S)-tb-
phox})

78% Yield: mp 263°C (dec);f]p2° +464 € 0.18, chloroform);IH NMR § 1.56 (s, 9H), 4.54 (m,
2H), 5.53 (dd,J=7.9, 5.6 Hz, 1H), 6.93 (m, 1H), 7.40 (m, 4H), 7.49-7.64 (m, 7H), 7.72 (br t, 1H),
8.19 (m, 1H);*3C NMR & 25.86, 29.71, 34.39, 70.72, 74.58, 162.%#® NMR § 25.42. Anal. calcd for
CasH26NOPCLPd: C, 46.90; H, 4.09; N, 2.19. Found: C, 46.71; H, 4.01; N, 2.25.

3.3.4. Dichloro{®)-2-[(S)-2-(diphenylphosphino)ferrocenyl]-4-(isopropyl)oxazoline}palladium(ll)

84% Yield: mp 265°C (dec);f]p?° —958 (€ 0.04, chloroform);*H NMR § 1.01 (d,J=6.9 Hz, 3H),
1.07 (d,J=6.9 Hz, 3H), 3.10 (m, 1H), 3.81 (s, 5H), 4.38 (brJ9.3 Hz, 1H), 4.49 (ddJ)=8.8, 4.4
Hz, 1H), 4.53 (m, 1H), 4.77 (br s, 1H), 5.10 (br s, 1H), 5.33 (m, 1H), 7.26-7.41 (m, 5H), 7.64 (m,
3H), 8.33 (m, 2H);**C NMR § 14.91, 18.77, 29.98, 73.14, 167.5%5P NMR § 15.73. Anal. calcd for
CogH2sNOPChPdFe: C, 51.06; H, 4.29; N, 2.13. Found: C, 51.17; H, 4.37; N, 1.99.

3.4. Preparation of imidate$

A typical procedure is given for the preparation &){2-hexenyIN-[4-(trifluoromethyl)phenyllbenz-
imidate 1a.8

3.4.1. E)-2-HexenyIN-[4-(trifluoromethyl)phenyllbenzimidatéa

To a mixture of 649 mg (4.03 mmol) of 4-trifluoromethylaniline and 608 mg (6.02 mmol) of
triethylamine in 20 mL of dichloromethane was added 620 mg (4.41 mmol) of benzoyl chloride at 0°C
and the reaction mixture was stirred for 30 min. The reaction mixture was washed with 10% hydrochloric
acid. The organic layer was dried over sodium sulfate and concentrated under reduced pressure to give
crude N-[4-(trifluoromethyl)phenyllbenzamide (1.04 g, 97% yieldd NMR & 7.52 (br t,J=7.9 Hz,
2H), 7.59 (br tJ=7.4 Hz, 1H), 7.64 (dJ=8.4 Hz, 2H), 7.79 (d)=8.4 Hz, 2H), 7.88 (br dJ=8.3 Hz, 2H),

7.93 (br s, 1H).

A mixture of 596 mg (2.25 mmol) ofN-[4-(trifluoromethyl)phenyllbenzamide and 469 mg
(2.25 mmol) of phosphorus pentachloride was heated at 85°C for 1 h. After being cooled to
room temperature, volatile materials were removed under reduced pressure to giveN:fdde
(trifluoromethyl)phenyl]benzimidoy! chloride (630 mg, 99% yieldd NMR & 7.07 (br d,J=8.35 Hz,
2H), 7.50 (br tJ=7.9 Hz, 2H), 7.58 (br t)=7.4 Hz, 1H), 7.67 (dJ=8.4 Hz, 2H), 8.17 (br dJ=7.8 Hz,
2H).
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To a suspension of 121 mg (2.20 mmol) of sodium hydride in 35 mL of THF was added a solution of
220 mg (2.20 mmol) ofE)-2-hexen-1-ol in THF (5 mL) at 0°C and the mixture was stirred for 10 min.
To the mixture was added 610 mg (2.15 mmol)Nef4-(trifluoromethyl)phenyl]benzimidoyl chloride
at 0°C. The reaction mixture was stirred at room temperature for 4 h and a small amount of water was
added. The entire solution was extracted with chloroform. The organic layer was dried over sodium
sulfate, concentrated, and chromatographed on silica gel (eluent: EtOAc:hexane=1:19) to give 634 mg
(83% vyield) of E)-2-hexenyIN-[4-(trifluoromethyl)phenyl]benzimidatel§): *H NMR & 0.92 (t,J=7.4
Hz, 3H), 1.45 (br sextet]=7.4 Hz, 2H), 2.09 (br q)=6.9 Hz, 2H), 4.81 (dJ=6.9 Hz, 2H), 5.75-5.91
(m, 2H), 6.78 (d,J=8.3 Hz, 2H), 7.22-7.34 (m, 5H), 7.42 (#:8.3 Hz, 2H).

3.4.2. ¢)-2-HexenyIN-[4-(trifluoromethyl)phenyl]lbenzimidaté&a

61% Yield;'H NMR § 0.93 (t,J=7.3 Hz, 3H), 1.44 (br sexted=7.3 Hz, 2H), 2.17 (br gJ=7.3 Hz,
2H), 4.92 (dJ=6.4 Hz, 2H), 5.71 (m, 1H), 5.76 (m, 1H), 6.79 @8.3 Hz, 2H), 7.28 (m, 5H), 7.42 (d,
J=8.3 Hz, 2H);*3C NMR § 13.69, 22.64, 29.73, 62.91, 121.70, 124.11, 124.49480 Hz), 124.52 (q,
J=272 Hz), 126.10 (br t)=5 Hz), 128.09, 129.26, 130.22, 130.78, 134.82, 151.78, 159.13. Anal. calcd
for CyoH20NOFs: C, 69.15; H, 5.80; N, 4.03. Found: C, 69.22; H, 6.07; N, 4.05.

3.4.3. E)-2-HexenyIN-(phenyl)benzimidatéb

77% Yield;*H NMR § 0.94 (t,J=7.4 Hz, 3H), 1.45 (br sexted=7.4, 2H), 2.08 (br g)=6.9 Hz, 2H),
4.81 (d,J=5.9 Hz, 2H), 5.77 (m, 1H), 5.88 (m, 1H), 6.71 (brX;7.4 Hz, 2H), 6.94 (br t)=7.3 Hz, 1H),
7.15-7.32 (m, 7H).

3.4.4. E)-4-Methyl-2-pentenyN-[4-(trifluoromethyl)phenyllbenzimidat&c

86% Yield; 1H NMR & 0.95 (d,J=6.9 Hz, 6H), 2.27 (br octet, 1H), 4.72 (5.9 Hz, 2H), 5.63 (dt,
J=15.2, 5.9 Hz, 1H), 5.76 (dd)=15.2, 6.4 Hz, 1H), 6.69 (d]=8.3 Hz, 2H), 7.13 (m, 2H), 7.22 (m, 3H),
7.32 (d,J=8.3 Hz, 2H);13C NMR § 22.12, 30.90, 67.80, 121.39, 121.68, 124.48J&R2 Hz), 124.83
(q,J=270 Hz), 126.08 (qJ=4 Hz), 128.09, 129.26, 130.20, 130.88, 142.86, 151.81, 159.05. Anal. calcd
for CooH20NOFs: C, 69.15; H, 5.80; N, 4.03. Found: C, 69.05; H, 6.07; N, 3.76.

3.5. Asymmetric aza-Claisen rearrangement of imiddtesth catalysts prepared from Pdg(S)-bn-
phox}

A typical procedure is given for the asymmetric rearrangemenfiafTable 1, entry 1). To a
suspension of 2.0 mg (1dmol) of AgBF,4 in 0.1 mL of dichloromethane was added a solution of 6.6
mg (11 pmol) of dichloro[§)-(+)-2-(2-(diphenylphosphino)phenyl)-4-(benzyl)oxazolyl]palladium(ll)
[PACL{(9-bn-phox}] in 0.1 mL of dichloromethane at room temperature. After 5 min, precipitated
silver chloride was removed by filtration. The filtrate was concentrated in vacuo to give an orange solid.
The orange solid was dissolved in 0.2 mL of 1,2-dichloroethane and 34.7 mg (0.10 mmB)2f (
hexenyIN-[4-(trifluoromethyl)phenyl]benzimidatéa in 0.1 mL of 1,2-dichloroethane was added. The
reaction mixture was stirred at 40°C for 24 h. After being cooled to room temperature, removal of solvent
followed by preparative TLC on silica gel (hexane:EtOAc=19:1) gave 14.2 mg (41%%)(dfthexen-3-
yl)-N-[4-(trifluoromethyl)phenyllbenzamid2a, (41% yield, 76% ee):d]p?° +51.3 € 0.18, chloroform).
IHNMR 8 0.94 (t,J=7.4 Hz, 3H), 1.43 (br sexted=7.4 Hz, 2H), 1.57-1.65 (m, 1H), 1.68—1.76 (m, 1H),
5.22 (d,J=10.3 Hz, 1H), 5.23 (m, 1H), 5.29 (d=17.6 Hz, 1H), 5.89 (ddd])=17.6, 10.3, 7.4 Hz, 1H),

7.14 (br d,J=8.8 Hz, 2H), 7.17 (br dJ=7.8 Hz, 2H), 7.24 (m, 3H), 7.14 (br d=8.4 Hz, 2H). The
enantiomeric purity oRa was determined by HPLC analysis with a chiral stationary phase column.
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Conditions: column, Daicel Chemical Industries Ltd, Chiralpack AD; eluent. hexane:isopropanol=9:1;
detection 254 nm light. The absolute configuration was determined t&)bey(measurement of the
specific rotation: §]p2°® +50.5 € 0.23, dichloromethane), it.for (R)-2a of 55% ee: X]p?® —37.2

0.5, dichloromethane).

3.5.1. §)-(+)-N-(1-Hexen-3-yN-phenylbenzamid2b

88% Yield, 47% ee:&]p?° +28.4 € 0.15, chloroform)H NMR & 0.94 (t,J=7.4 Hz, 3H), 1.45 (sextet,
J=7.4 Hz, 2H), 2.08 (qJ=6.9 Hz, 2H), 4.81 (dJ=5.9 Hz, 2H), 5.77 (m, 1H), 5.85 (m, 1H), 6.71 (br d,
J=7.4 Hz, 2H), 6.94 (br t)=7.3 Hz, 1H), 7.15-7.32 (m, 7H).

3.5.2. §)-(+)-N-(4-Methyl-1-penten-3-yIN-(4-trifluoromethyl)phenyllbenzamidze

30% Yield, 81% ee:&]p?° +71.9 € 0.10, chloroform);!H NMR & 0.94 (d,J=6.9 Hz, 3H), 1.19 (d,
J=6.9 Hz, 3H), 2.30 (m, 1H), 4.48 (brd=9.8 Hz, 1H), 5.21 (dJ=9.8 Hz, 1H), 5.22 (dJ=17.2 Hz, 1H),
5.91 (br t,J=9.8 Hz, 1H), 7.14 (dJ)=8.3, 2H), 7.15-7.26 (m, 5H), 7.45 (@:8.3 Hz, 2H);3C NMR §
20.24, 20.37, 29.81, 70.36, 119.09, 123.71J&R74 Hz), 125.91 (br s), 127.90, 128.39 {0-34 Hz),
128.71, 129.43, 129.66, 135.96, 136.48, 146.11, 170.55. Anal. calcdddpdNOFs: C, 69.15; H, 5.80;
N, 4.03. Found: C, 69.08; H, 5.84; N, 3.97.
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