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Mechanism of thermal decomposition of diphenyldiazomethane 
in the presence of oxygen 
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The kinetics, products, and mechanism of thermal decomposition ofdiphcnyldiazomethane 
(RN 2, R = Ph2C) in the presence of oxygen were studied. Thermolysis is accompanied  by 
chemiluminescence. An emitter of chemiluminescence (3RO) forms in the  reaction of 
benzophenone O-o~de 15,O()with RN 2. 
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T h e r m a l  d e c o m p o s i t i o n  o f  diazo c o m p o u n d s  in the 
presence  o f  oxygen is a c o n v e n i e n t  procedure  for the 
p repa ra t i on  and  s tudy  o f  chemica l  convers ions  o f  ca rbo-  
nyl oxides,  wh ich  a re  in t e rmed ia tes  o f  ozonolys is  o f  
olefins,  t,2 

Previous ly ,  3 u s i n g  t he rmolys i s  of  d i p h e n y l d i a z o -  
m e t h a n e  as an  e x a m p l e ,  it has been  dem ons t r a t ed  tha t  
this  r eac t ion  is a c c o m p a n i e d  by chem i l um i nes cence .  
The  t r iplet  exci ted b e n z o p h e n o n e  3R=O (R = Ph2C)  is 
the e m i t t e r  o f  th is  r eac t i on .  In this work, we s tud ied  the  
kinet ics  and  p r o d u c t s  o f  the decompos i t ion  o f  RN 2, 
d e t e r m i n e d  the  s tage o f  chemiexc i t a t ion ,  and  suggested 
a m e c h a n i s m  o f  the  process .  

All kinetic and chemiluminescence experiments were car- 
ried out at 75 ~ in a MeCN solution with cont inuous supply 
of the reaction mixture with a i r  or an O2--Ar gas mixture. 

Results and Discassion 

Combustion products. T h e  majo r  p r o d u c t s  o f  the 
d e c o m p o s i t i o n  of  RN 2 in t h e  p resence  of  0 2 are  R = O  
and  RN2R (Table  I). T h e i r  yie lds  depend  l i t t l e  on  the 
type of  the  process ( p h o t o l y s i s  or  t h e r m o l y s i s ) ,  the  
solvent ,  and  the t e m p e r a t u r e  a n d  subs tan t i a l ly  d e p e n d  
on  the ratios of  the initial c o n c e n t r a t i o n s  ( [O2]o/[  RN2]0). 
The  yield o f  R=O i n c r e a s e s ,  the  yield o f  R N ~ R  de-  

Experimental 

Table 1. Dependences of the yields of R=O and RN2R upon 
decomposition of RN 2 under  an atmosphere of 0 2 on the 
experimental conditions 

Acetonitdle and o-dichlorobenzene were purified accord- 
ing to standard procedures. 4 RN 2 was synthesized and purified 
according to the procedure reported previously. 5 Benzophe- 
none azine (RN2R) was prepared according to the known Solvent T/~ JR!N210 Yield (mol.%) Refer- 

P r~ /tool L - t  R=O RNN2R ence 
Concentrations of RN 2 and RN2R were determined spec- 

trophotometrically at 3,ma x = .525 nm (e 130 L tool - t  cm -1) Photochemical decomposition 
and 484 nm (s 600 L mol -I  cm-L), respectively (for RN2 at 
484 nm and RN2R at 525 nm, the extinction coefficients are C6Ht2 -20 0.125 56 10 8 
70 and I0 L tool -I cm - I ,  respectively). Benzophenone was C6H6 -20 0.125 68 11 S 
determined b y G L C  ( t50--200 ~ 10% SE-30on Chromaton C6HI2--C6DI2 26 2 . 4 " 1 0  -2 82 Traces 9 

C6HsCH~--C6DsCD 326 1 .6"10  -2 83 Traces I0 
N-AW). CH3CN " " -20 - 1 0  -3 97 3 II 

After saturation of acetonitrile with air at 75 ~ the 
concentration of oxygen (0.7" 10 -3 tool L -I)  dissolved in Thermal decomposition 
acetonitrile was calculated according to the known procedure. 7 C6H5C1 80 0 .05 70 30 12 

The kinetics of consumption of RN 2 was studied with the o_C6H4CI 2. 85 1 .2 '  10 -3 76 22 This 
use of a temperature-controlled glass cell placed into the cell work 
chamber of a spectrophotometer  A temperature-controlled o.C6H4C12 85 5 . 7 '  10 -3 84 9 The same 
glass reactor equipped with a reflux condenser and a thermo- o.C6H4CI 2 85 2 .3"  10 -3 89 8 
couple was placed into a chemiluminescence device (a tight~ o-C6H4CI 2 85 1.2" 10 -3 90 7 
proof chamber). FEU-39 or FEU-148 were used as a detector 
of radiation. " In air. 
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creases, and the total yield of the products becomes 
approximately quantitative as the [O210/[ RN210 increases. 

Kinetics of consumption of RaN z. Kinetic experiments 
were carried out at [O2] 0 = 0.7" 10 -3 tool L -t and 
rather low values of [RN2]0, i.e., under conditions in 
which R=O is the major product of the reaction. 

Kinetic curves of consumpt ion of diazoalkane are 
readily tinearized on the coordinates of the equation 
In([RN2]o/[RN2]) = kspt (the conversion was 70--80%); 
whence it follows that the  kinetics of consumption of 
RN 2 obeys the first-order equation: 

- d [ R N 2 ] / d t  = k~p[RN2}. (I) 

The results of spectrophotometrical determination of 
the rate constant 1% at various initial concentrations 
[RN2] 0 are given below: 

[RN210" 103/mol L -I 0.8 2.0 7.4 15.0 
~p" 104/s -I 2.6 2.7 2.8 2.7 

Chemiluminescence upon thermal decomposition of 
RN 2. The relationship between initial intensities of 
chemiluminescence (-to) and  [RN2] 0 was studied under 
an atmosphere of O2--Ar (1 : 1). At rather low initial 
concentrations of the substrate, the value of I 0 increases 
as the concentration [RN2] 0 increases: 

[RN210" t04/mol L -I 0.9 1.7 2.2 4.4 8.8 l l .0 
10/vel.unit 17 29 35 72 108 117 

When [O210/[RN210 ~ 1.9, this dependence is linear (the 
correlation coefficient is 0.99). The concentration of O 2 
in a solution was calculated on the assumption that its 
solubility obeys Henry ' s  law. 

The kinetics of chemiluminescence decay was stud- 
ied in the region of the linear dependence of I 0 on 
[RN2] 0. The process was characterized by the effective 
first-order rate constant /CCL , which was calculated from 
the initial regions of the kinetic curves of decay accord- 
ing to the following equat ion:  

Ir l( lo// ') = kCLt, (2) 

where I is the current intensi ty of chemiluminescence. 
It was established tha t  at [RN2] 0 = 1.0.10 -4 and 

4- 10 -4 tool L - t ,  kcL are 2.6. 10 -4 and 2.4-10 -4 s -t. 
respectively. 

Mechanism of the process.  Based on the experimen- 
tal results and the published data, ti,13-23 the following 
mechanism of the process at the initial stage (the first- 
order rate constants are given in s -t ,  the second-order 
rate constants are given in L tool -I s -I) can be sug- 
gested. 

Reactions (0)--(3.2) (without a channel of formation 
of 3R=O) were considered in the literature many times 
as elementary stages of the  mechanism of photolysis and 
thermolysis of RN 2 in the presence of oxygen. Reactions 

Scheme ! 

(0 )  FIN 2 . IR + N 2 

(ST. TS) ~R - 3 R ks T = 3 . 2 . 1 0  9 lS,lti 

k rs  = 6.3- 10 6 16 

(1) 1R + RN 2 = R = N - - N = R  k~ = 2.3" 1010 l't 

(2.1) 3R + RN2 ,- R ~ = N - - ~ = R  k2~ = 3.4- 10 7 I1 

(2.2) 3R 4- 02 ~- F[O(~ k22 = 5- 109 1~.19 

(3.1) I/IOO + RN, 2 - R = O ,  3 R = 0  4- N2 
k31 = 4 " 1 0  5 18 

(3.2) fio6 § 6o6 ,, 2 R = O  + O2 
2k32 = (3 - -9 ) -  107 tg,tt 

(4.0) 3R=O a. R=O, hv k4 o ~ 104_105 t3 ,20  

(4.i) 

__.j - F I = O  + RN~ 

3R=O + RN 2 / 
= 31q + R=O + N 2 

(4.2) 3R=O + 0 2 

(5.0) I0 2 . 

(5.1) 10 2 + RN 2 

02 

. R = O  + O 2, 10 2 
k42 = ( 2 - - 3 ) .  10 g Z1,22 

k50~ 2" 104 23 

. f iOO + N  2 ks~ = 1 . 1 0  g t9 

(4.0)--(5.l)  were included in t h e  scheme of the process 
because chemiluminescence w a s  observed upon d e c o m -  
position of RN 2. 

It is necessary to make some comments on Scheme I. 
1. Under our experimental conditions, reactions of 

tR, 3R, and 3R=O with M e C N  are negligibly slow, t3,t4 
and, therefore, they are not i n c l u d e d  in the scheme of 
the process. 

2. Because of very high r a t e  constants ks-r, k t ,  i22, 
and k42, the following compet i t ive  reactions m a y  be 

ignored: IR 0~, 3R, reconabinat ion of IR a n d  3R, 
and annihilation of 3R=O.13.14 

3. The reaction I R + O 2 ,- 1~O6 is spin forbid- 
den. This reaction either does no t  actually occur 18 or is 
v e r y  s l o w .  I 

4. lsomerization of f~O(~ to the corresponding 
dioxirane requires a rather h i g h  activation energy (20-- 
30 kcal tool-t), z4 Under our experimental condit ions,  
this reaction does not proceed t o  a large degree, which  is 
also evidenced by the compos i t ion  of the thermolysis 
products. 

5. Apparently, 3R forms b y  the reaction of  3R=O 
with RN 2 through the stage o f  formation of the excited 
dissociation 3RN2 intermediate. 

Based on the rate constar~ts given in Scheme 1, it 
can be demonstrated that in a steady-state mode under 
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the conditions of our experiment  ([RN2] 0 ~ 10-4-10  -2 
and [O210 ~ 10 -3 mol L-~), the following relationships 
are fulfilled: 

ksT >> kI~[RN2I, k22[O21 >> k2~[RN2], 

k.~IRN2I >> 2k32[1~O(31; k31[l~Orl >> kt[~RI, 

/~l[l~O() I >> k2tl~Rl, ~2[O21 >> /r ~s~[RN21 >> ks0. (3) 

The conclusion that react ion (3.1) proceeds substantially 
faster than reactions ( I )  and (2.1) (see Scheme I) is also 
confirmed by the composi t ion  of products of the ther- 
molysis of  RN 2 (the yield of  ketone is substantially 
larger that the yield o f  azine). 

Kinetics of consumption of RN 2. According to the 
mechanism suggested above, 

- d [ R N 2 l / d t  = k R N 2 [ R N 2 ] ,  (4) 

where kRN 2 = k 0 + k~t[IR] + k2113R] + k31[l~,Orl ~- 

or, taking into account  Eq. (3), 

k a N  2 = /c O + k3l[ [~O(~)  ] + O 41k4113R=O ]  + k s l [ I O 2 ] .  

By substituting steady concentrations [ROO], [3R=O], 
and [~O2], which were determined taking into account 
relationships (3), we obta in  

2,to 
/CRN 2 = [ -- ~ " 

Here 

�9 ----- (D31(D41ct41 4- rD31~42ot42 , 

cL41 = k41[RN2I/(k41[RN2I + k42[O21), 
a42 = /q2[O2l/(k41[RN21 + /%[O21) = I - a41. 

~3~, ~4~, and ~42 = 0.29 zl are the quantum yields of 
excitation of 3R=O in (3. I) and formation of 3R and IO 2 
in reactions (4.1) and (4.2), respectively. 

When [RN210/[O2I 0 changes by a factor of ~15, the 
experimental value of  kRN 2 remains virtually unchanged. 
This suggests that �9 << 1, and, therefore, 

k a N  2 ~ 2k  0. (5) 

Stage of chemiexcitation and the kinetics of chemi- 
luminescence decay. Tr ip le t  excited 3R=O molecules 
can be generated in exothermic  reactions (3.1) and 
(3.2). According to the procedure reported previously, 25 
AH3. 2 = - 7 6  kcal mol -~. The value of AH3 1 calculated 
from the published da t a  25 is - 124  kcal mol - t .  There- 
fore, both these reactiolas can yield 3R=O, whereas 
reaction (3.1) can p roduce  also iR=O (E T = 68.6, E s = 
83.7 kcal tool-I) .  ~3 

With the aim of  identifying the stage of chemi- 
excitation, let us cons ide r  the dependence of I0 on 
[RN2] 0 within the f ramework of the suggested mecha- 
nism. 

According to S c h e m e  1, the intensity of chemilumi- 
nescence is described b y  the following equation: 

/ = ~4o'k4013R=OI, 

where ~40 is the quantum yield of radiation. 
The stage of chemiluminescence  is descr ibed by 

reaction (3.1), whereas in the steady-state mode  with 
q~<<l  

k40 ." ko[RN~l (6) 
t -- ~ ' cL  k4,iP-,~21 + ~ , 2 I o 2 1  " ' 

where ~CL = (~31~40 - 

When k42[O21 >> k41[RN2] and [02] = [O210 = const, 
from Eq. (6) we obtain 

k~ "ko[RN21. (7) 
[ = OCL k42[O210 

According to Eq. (7), the in i t ia l  intensity of chemi lumi -  
nescence 10 is directly p ropor t iona l  to [RN2] 0- 

Equation (7) agrees wel l  with the experimental  re- 
sults obtained at rather h igh  [O2]0/[RN2] 0 ratios (a 
constant concentration of  oxygen in the solut ion was 
provided by suppling the r e a c t i o n  mixture with gas). 

Let us consider the s i tua t ion ,  when reaction (3.2) is 
the stage of chemiexcitation: 

k~ - - ' 2 k  " /k  ~2 
I = ~32~4o k41[RN~. ] § 32~,~/ JIJ . 

In this case, one would e x p e c t  that the value o f  [0 will 
decrease with increasing [Rlq2] 0, which is cont radic tory  
to the experimental results. 

Therefore, reaction (3.2) does not contr ibute signifi- 
cantly to generation of 3R-----O. This conclusion is true 
also for any other p o t e n t i a l l y  possible r eac t ion  of 
chemiexcitation, which d o e s  not involve RN 2 as a re- 
agent. 

Equation (7) can be u s e d  for determining the rate 
constant of  overall decompos i t ion  of  [RN2]: 

I = F[RN2]0e -~RN2', In(/o//)  = kRN2t, (8) 

here 

F = ~cLk~176 
k42[O210 

Determination of k 0. B y  comparing Eqs. (1), (4), 
alld (5) and Eqs. (2) and ( 8 ) ,  we obtain 

k~p = kCL = kRN 2 ~ 2k o. (9) 

Using the experimental valtles of ksp and kCL (in the 
overall range of changes in the [RN2]0/[O2] 0 ratio by a 
factor of 150), we can ca l cu l a t e  

k 0 = (1.3_+0.1). 10 -4 s "~. 

According to the data r e p o r t e d  in Ref. 26, k 0 = 
1.4-10 -4 s -1 (85 ~ 

In conclusion, note an i~ te res t ing  characterist ic  fea- 
ture of thermal decompos i t ion  of  RN 2 in the presence of 
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O 2. The mechanism o f  this  process involves quantum-  
chain reactions: 

~ ( ~  RN2=,, 3R O O~ RN2= ' - ' o~  MS, 

~o8 R~ ~Ro RN~ ~R o~= M6. 

However,  because of  the low value of  F, in each specific 
case the contr ibut ion o f  these chain reactions to the 
overall process is small ,  and these reactions may be 
considered only as side channe l s  of  consumption of  RN~. 

We thank V. Kazakov and A. Voloshin for valuable 
advice and helpful d iscuss ion and E. Chainikova for 
de terminat ion  o f  the solubi l i ty  of  oxygen. 
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